首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The present work investigates the impacts and mechanisms associated with natural organic matter (NOM) in the Fe0 treatment system of Cu2+ and Zn2+ under roof runoff conditions. The NOM in runoff waters was characterized using XAD-4/8 adsorption resins, copper complexation, acidic capacity and liquid chromatography with online carbon detection. Batch kinetic experiments and flow-through configurations were performed and the results of metal removal were elucidated taking into account the characteristics of NOM. Based on the findings, it is shown that NOM influences the removal of metals through several complex pathways. At an un-favored condition for adsorption of metals, i.e., on iron corrosion products, at pH相似文献   

2.
Li CW  Korshin GV 《Chemosphere》2002,49(6):629-636
In this study, the complexation of Tb3+ with natural organic matter (NOM) was studied by the method of time-resolved fluorescence spectroscopy. In the presence of NOM, the excitation of Tb3+ was observed in a wide range of wavelengths, for which virtually no excitation of free Tb3+ took place. The pseudo-quantum yield spectra (excitation intensity normalized by corresponding light absorbance values) had a maximum at 282 nm. This indicated that the excitation of NOM-bound Tb3+ proceeds through energy transfer from aromatic groups in NOM. The concentration of the metal-binding sites (C(L)) was determined by titration with Tb3+ and was found to range from 0.21% to 0.83% of total moles of organic carbon. The actual number of the carbon atoms that comprise these functionalities was hypothesized to be at least seven times higher. The C(L) values were well correlated with the reactivity of NOM with chlorine quantified by total organic halogen formation potential and with the contribution of polyhydroxyaromatic moieties determined by pyrolysis-GC/MS method. The correlation of C(L) with the contributions of aromatic and carboxylic moieties in NOM determined by 13C NMR was poor. Based on the data, it was concluded that the metal binding functionalities in NOM are closely associated with halogen attack sites.  相似文献   

3.
Ngwenya BT 《Chemosphere》2007,67(10):1982-1992
Bacteria can immobilize significant quantities of trace metals through surface complexation reactions. However, bacterial cell lysis is an integral part of the development process, and the extent to which this process affects adsorbed metals has not been properly investigated. In order to evaluate the effects of cell lysis on metal fixation, bacterial suspensions containing approximately 10 ppm Zn in 0.01 M NaNO(3) were monitored over an one-month period for adsorbed Zn, pH, cell concentration, dissolved organic carbon, NH(3) and dissolved amino acids. Cell concentration decreased with time, in parallel with an increase in dissolved organic carbon. Zn adsorption decreased with time for suspensions with near-neutral (5.5-7.0) initial pH values, consistent with the reduction in cell concentration and/or formation of metal-ligand complexes in solution, with lysis products acting as ligands. However, Zn adsorption increased with time for suspensions with initially low pH (相似文献   

4.
Competitive complexation of metal ions with humic substances   总被引:12,自引:0,他引:12  
Zhou P  Yan H  Gu B 《Chemosphere》2005,58(10):1327-1337
The surface complexation model was applied to simulate the competitive complexation of Ni, Ca and Al with humic substances. The presence of two types of binding sites in humic acid, carboxylic and phenolic functional groups, were assumed at both low and high pH conditions. Potentiometric titrations were used to characterize the intrinsic acidity constants of the two binding sites and their concentrations. It was found that the diffuse-layer model (DLM) could fit the experimental data well under different experimental conditions. Ni and Ca ions strongly compete with each other for reactions with the humic acid but Al showed little influence on the complexation of either Ni or Ca due to its hydrolysis and precipitation at pH approximately 5. The surface complexation constants determined from the mono-element systems were compared with those obtained from the multiple-element system (a mixture of the three metal ions). Results indicate little changes in the intrinsic surface complexation constants. Modeling results also indicate that high concentrations of Ca in the contaminated groundwater could strongly inhibit the complexation of Ni ions whereas an increase in pH and the humic concentration could attenuate such competitive interactions. The present study suggests that the surface complexation model could be useful in predicting interactions of the metal ions with humic substances and potentially aid in the design of remediation strategies for metal-contaminated soil and groundwater.  相似文献   

5.
Kitis M  Kaplan SS 《Chemosphere》2007,68(10):1846-1853
The oxidative removal of natural organic matter (NOM) from waters using hydrogen peroxide and iron-coated pumice particles as heterogeneous catalysts was investigated. Two NOM sources were tested: humic acid solution and a natural source water. Iron coated pumice removed about half of the dissolved organic carbon (DOC) concentration at a dose of 3000 mg l(-1) in 24 h by adsorption only. Original pumice and peroxide dosed together provided UV absorbance reductions as high as 49%, mainly due to the presence of metal oxides including Al(2)O(3), Fe(2)O(3) and TiO(2) in the natural pumice, which are known to catalyze the decomposition of peroxide forming strong oxidants. Coating the original pumice particles with iron oxides significantly enhanced the removal of NOM with peroxide. A strong linear correlation was found between iron contents of coated pumices and UV absorbance reductions. Peroxide consumption also correlated with UV absorbance reduction. Control experiments proved the effective coating and the stability of iron oxide species bound on pumice surfaces. Results overall indicated that in addition to adsorptive removal of NOM by metal oxides on pumice surfaces, surface reactions between iron oxides and peroxide result in the formation of strong oxidants, probably like hydroxyl radicals, which further oxidize both adsorbed NOM and remaining NOM in solution, similar to those in Fenton-like reactions.  相似文献   

6.
Veterinary antimicrobials are emerging environmental contaminants of concern. In this study, the sorption of enrofloxacin (ENR) onto humic acids (HAs) extracted from three Brazilian soils was evaluated. HAs were characterized by elemental analysis and solid 13C nuclear magnetic resonance spectroscopy. The sorption of ENR onto HAs was at least 20-fold higher than onto the soils from which they were separated. Ionic and cation bridging are the primary interactions involved. The interactions driven by cation exchange are predominant on HAs, which appear to have abundant carboxylic groups and a relatively high proportion of H-bond donor moieties with carbohydrate-like structures. Interactions explained by cation bridging and/or surface complexation on HAs are facilitated by moieties containing conjugated ligands, significant content of oxygen-containing functional groups, such as phenolic-OH or lignin-like structures. HAs containing electron-donating phenolic moieties and carboxylic acid ligand groups exhibit a sorption mechanism that is primarily driven by strong metal binding, favoring the formation of ternary complexes between functional groups of the organic matter and drugs.  相似文献   

7.
Chen J  Gu B  Leboeuf EJ  Pan H  Dai S 《Chemosphere》2002,48(1):59-68
Natural organic matter (NOM) is known to be complex in nature with varying structural and functional characteristics. In this study, an aquatic NOM was fractionated into the polyphenolic-rich (NOM-PP) and the carbohydrate-rich (NOM-CH) fractions in an attempt to better characterize their chemical and structural properties along with a reference soil humic acid (SHA). Various spectroscopic techniques were employed for the study, including ultraviolet-visible (UV/Vis). 13C-nuclear magnetic resonance, Fourier-transform infrared, fluorescence, and electron paramagnetic resonance spectroscopies. Results indicate that the relative abundance of aromatic C=C and methoxyl (-OCH3) functional groups are in the order of SHA > NOM-PP > NOM-CH. However, the aquatic NOM-PP and NOM-CH fractions are characterized by high contents of carboxylic and alcoholic functional groups relative to the SHA. In particular, the NOM-PP fraction appears to contain more phenolic and ketonic functional groups than the NOM-CH and SHA fractions, and it gives a strong fluorescence and high paramagnetic spin count. On the other hand, the NOM-CH fraction possesses a relatively low amount of carbon but a high amount of oxygen or oxygen-containing structural features, such as carbohydrate-OH and carboxylic groups, and shows the least fluorescence intensity and paramagnetic spin counts. Results of these spectroscopic studies confirm the heterogeneous nature of NOM, and point out the importance of isolation and improved characterization of various NOM subcomponents in order to better understand the behavior and roles of NOM in the natural environment.  相似文献   

8.
Li W  Zhang S  Jiang W  Shan XQ 《Chemosphere》2006,63(8):1235-1241
Interactions between anions and cations are important to understand the chemical processes of pollutants in environment. In this study, batch experiments were carried out to investigate the simultaneous adsorption of Cu and Cd on hematite as affected by phosphate. Phosphate pretreatment suppressed the maximum adsorption of Cu and Cd on hematite and moved the adsorption pH edges to a higher pH range. Phosphate application time had a marked impact on Cu and Cd adsorption and longer contact time resulted in more reduction of Cu and Cd adsorption. Results of back-titration, Fourier transform infrared (FTIR) spectroscopy study and ionic strength effect on the adsorption revealed that Cu and Cd were adsorbed on hematite mainly through the inner-sphere complex formation mechanism and phosphate treatment reduced the inner-sphere adsorption sites, thus decreasing Cu and Cd adsorption on hematite.  相似文献   

9.
Zhou DM  Wang YJ  Cang L  Hao XZ  Luo XS 《Chemosphere》2004,57(10):1237-1244
Glyphosate [N-(phosphonomethyl)glycine] (GPS; H3G) is a widely used pesticide throughout the world. It affects metal behaviors in soil-plant system due to its functional groups, which react with metal ions to form metal complexes. Adsorption and cosorption of cadmium and glyphosate on a Wushan soil (WS soil, Anthrosol) and a Zhuanhong soil (ZH soil, Udic Ferrisol) as affect by solution pH were studied by means of batch adsorption experiments. It indicated that the adsorption quantity of Cd or glyphosate was highly relevant to soil characteristics. The WS soil had higher adsorption capacity of Cd than the ZH soil, due to its high organic matter content and cation exchange capacity (CEC). In contrast, the adsorption quantity of glyphosate on the WS soil was less than that on the ZH soil, because the WS soil has lower iron and aluminum oxides content but higher pH than the ZH soil. The herbicide glyphosate affected Cd adsorption on the two soils when they coexisted in a same soil solution, which was attributed to a glyphosate-induced pH-decrease and the corresponding decline in negative surface charges of the soil. Beside that, glyphosate reacted with solution Cd to form the water-soluble complexes that had lower affinity to soil surface in comparison with Cd itself. On the other hand, the presence of Cd in the soil solution also affected the adsorption of glyphosate on the soils. The presence of Cd increased adsorption quantity of glyphosate on the WS and ZH soils, which was resulted from the decrease of equilibrium solution pH caused by Cd2+ exchange with H+ ions of soil surface. In addition to that, glyphosate adsorption possibly takes place on sites where Cd was previously adsorbed and acted as a bridge between the soil and glyphosate.  相似文献   

10.
Batch studies were carried out to investigate the adsorption of zinc(II) from fresh waters on an iron(III) hydroxide surface maintained at the pH of zero point of charge of hydroxide (ZPC, 6.85) and also on both the acidic (5.5) and alkaline (8.2) sides of pH of ZPC, at 15 and 35 degrees C. Zinc(II) adsorption on iron(III) hydroxide increased with an increase in pH. The rise in temperature from 15 to 35 degrees C increased zinc(II) adsorption at pH 5.5 and 6.85, but decreased it at alkaline pH (8.2). In none of the cases did adsorption attain a maximum adsorption density. The results indicate the presence of heterogeneous sites of varying affinity on the adsorbent. Zinc(II) adsorption followed Langmuir behaviour only at small adsorption densities (less than 10(-2.95) M Zn/kg at pH 5.5) and at higher adsorption densities, the availability of strongest binding sites decreased. Nonspecifically adsorbed zinc(II) (reversible to Ba(II)) decreased with the increase in pH and temperature. Sequential desorption experiments also revealed that desorption of adsorbed zinc(II) decreased with an increase in pH.  相似文献   

11.
Nano zerovalent iron (nZVI) is an effective remediant for removing various organic and inorganic pollutants from contaminated water sources. Batch experiments were conducted to characterize the nZVI surface and to investigate the effects of various solution properties such as pH, initial cadmium concentration, sorbent dosage, ionic strength, and competitive ions on cadmium removal by nZVI. Energy-dispersive X-ray and X-ray photoelectron spectroscopy results confirmed removal of Cd2+ ions by nZVI through adsorption. Cd2+ adsorption decreased in the presence of competitive cations in the order: Zn2+?>?Co2+?>?Mg2+?>?Mn2+?=?Cu2+?>?Ca2+?>?Na2+?=?K+. Higher concentrations of Cl? significantly decreased the adsorption. Cadmium removal increased with solution pH and reached a maximum at pH 8.0. The effects of various solution properties indicated Cd2+ adsorption on nZVI to be a chemisorption (inner-sphere complexation) process. The three surface complexation models (diffuse layer model, constant capacitance model, and triple layer model) fitted well to the adsorption edge experimental data indicating the formation of nZVI–Cd bidentate inner-sphere surface complexes. Our results suggest that nZVI can be effectively used for the removal of cadmium from contaminated water sources with varying chemical conditions.  相似文献   

12.
Hsia T. H.  S. L. Lo  C. F. Lin 《Chemosphere》1992,25(12):1825-1837
The adsorption of As(V) by amorphous iron oxide was investigated at 25°C, 0.01 M NaNO3 background electrolyte as a function of solution pH(4–10) at three initial As(V) concentrations and two Fe(III) concentrations. As(V) adsorption increased with decreasing pH. A modified Langmuir isotherm has been used for describing an equilibrium partition existing between solid and liquid phases. The triple-layer model was used for simulating As(V) adsorption on iron oxide surface. This model was able to describe As(V) adsorption over the pH range 4–10, all at the concentrations of As(V) and Fe(III) studied. =Fe(H2AsO4)0, = Fe(HAsO4) and = Fe(AsO4)2− have been shown through simulation with inner-sphere complexation products to be more consistent with experimental adsorption observations than complexation with other surface species.  相似文献   

13.
Mechanisms of competitive adsorption of Pb, Cu, and Cd on peat   总被引:15,自引:0,他引:15  
Combined use of batch equilibration adsorption and X-ray absorption spectroscopy (XAS) was employed to study the mechanisms of competitive adsorption of Pb, Cu, and Cd on Danish and Heilongjiang peat in single- and multi-solute systems. The adsorption capacity and initial adsorption rate on the same peat in single-solute systems followed the order Pb>Cu>Cd. Both the adsorbed amount of each metal (q'm) and its initial adsorption rate were decreased in multi-solute systems. It was observed that the adsorbed amounts of metals at low-energy adsorption sites (qm,1) decreased pronouncedly compared to those at high-energy adsorption sites (qm,2), indicating that the competitive adsorption of Pb, Cu and Cd occurred mainly at the low-energy adsorption sites. XAS study revealed that both Pb and Cu were coordinated in peat predominantly to carboxylic moieties without excluding the hydroxyl groups, thereby providing an insight into the mechanism of competitive adsorption of Pb and Cu on peat.  相似文献   

14.
Adsorption and precipitation of tetracycline with struvite.   总被引:1,自引:0,他引:1  
The interaction of tetracycline with struvite during adsorption and precipitation processes was investigated. Tetracycline removal by adsorption was affected by solution pH, contact time, and struvite concentration. The lowest tetracycline removal (8.4%) was observed at pH 7.7, the dissociation constant (pKa2) of tetracycline. Because of the electrostatic repulsion, the amount of tetracycline adsorbed on the surface was low. The small amount of adsorption was the result of surface complexation between tetracycline ions and metal ions. Calcium (Ca2+) ions in the adsorbent enhanced the binding of tetracycline. Freundlich (KF: 0.04, n: 1.49) and Redlich-Peterson (KR: 0.08, alphaR: 0.98, betaR: 0.49) models best defined the equilibrium data. In the case of struvite precipitation, approximately 22% of tetracycline was removed as a result of binding to struvite alongside struvite formation.  相似文献   

15.
Results of glyphosate (GPS) adsorption on three soils of different characteristics show that the interaction of this pesticide with the soils was not related to their CEC and clay minerals content, but to the content of iron and aluminum amorphous oxides and organic matter. The presence of Cu in treatment solutions enhanced GPS adsorption, due to several reasons: GPS coordinates strongly to Cu, and Cu GPS complexes formed seem to have higher ability to be adsorbed on the soil than free GPS; GPS adsorption can take place on sites where Cu was previously adsorbed, acting as a bridge between the soil and GPS; when Cu was present the solution pH decreased, and GPS adsorption increased, since lower pHs lead to the formation of GPS species with lower negative charge, which are adsorbed more easily on the negatively charged soil surfaces.  相似文献   

16.
Coagulation has been proposed as a best available technology for controlling natural organic matter (NOM) during drinking water treatment. The presence of heavy metals such as copper(II) in source water, which may form copper-NOM complexes and/or interact with a coagulant, may pose a potential challenge on the coagulation of NOM. In this work, the effect of copper(II) on NOM removal by coagulation using alum or PAX-18 (a commercial polymerized aluminum chloride from Kemiron Inc., Bartow, Florida) was examined. The results show that the presence of 1 to 10 mg/L of copper(H) in the simulated waters improved the total organic carbon (TOC) removal by up to 25% for alum coagulation and by up to 22% for PAX-18 coagulation. The increased NOM removal with the presence of copper(II) in the waters can most likely be ascribed to the formation copper-NOM complexes that may be more adsorbable on aluminum precipitates and to the formation of copper(II) co-precipitates that may also adsorb NOM. The presence of 1 to 5 mg/L of copper(I) in the waters containing 3 mg/L NOM as carbon was reduced below the maximum contaminant level goal (1.3 mg/L as copper) using either coagulant. The results suggest that the presence of copper(H) in source water may not adversely affect the NOM removal by coagulation. A good linear correlation was observed between the TOC removal efficiency and the log-total moles of the precipitated metals, which include the metal ion from a coagulant and the divalent metal ion(s) in source water.  相似文献   

17.
Zhang W  Zhuang L  Yuan Y  Tong L  Tsang DC 《Chemosphere》2011,83(3):302-310
Phenanthrene is commonly present together with heavy metals at many contaminated sites. This study investigated the influence of coexisting lead (Pb2+) or cadmium (Cd2+) on phenanthrene adsorption on soils. Batch experiments were conducted under different geochemical conditions including pH, mineral structure, organic matter content, and varying amounts of heavy metals. The results showed that the presence of heavy metals in solution at a fixed pH of 5.8 ± 0.1 enhanced phenanthrene adsorption, the extent of which was closely related to the concentrations and the electro-negativity of the metals. The enhancement on phenanthrene adsorption was positively correlated to the amount of adsorbed metals. Although Cd2+ is a softer Lewis acid, Pb2+ displayed a more significant effect as it was adsorbed to a greater extent on the soil surfaces. Thus, density of cation accumulation appears to be more influential than metal softness in enhancing phenanthrene adsorption. Moreover, with a portion of organic matter removed by heating at 550 °C, there was a stronger enhancement of phenanthrene adsorption by coexisting Pb2+, indicating an increasingly dominant mechanisms associated with Pb2+ at a lower organic matter content. Similar enhancement phenomenon was observed on bentonite and kaolinite, probably resulting from the cation-π bonding between the adsorbed soft metal cations and the aromatic ring of phenanthrene in solution. The desorption experiments further suggested that the bonding of phenanthrene adsorption was strengthened in the presence of Pb2+ and that a larger proportion of adsorbed phenanthrene remained on the soils (residual fraction) even after sequential methanol extractions. Further spectroscopic analyses and surface characterization are required to provide direct evidence of the formation and relative significance of cation-π bond for phenanthrene adsorption.  相似文献   

18.
Batch and continuous experiments using model and real wastewaters were conducted to investigate the effect of metal salt (ferric and alum) addition in wastewater treatment and the corresponding phosphate removal from a design and operational perspective. Key factors expected to influence the phosphorus removal efficiency, such as pH, alkalinity, metal dose, metal type, initial and residual phosphate concentration, mixing, reaction time, age of flocs, and organic content of wastewater, were investigated. The lowest achievable concentration of orthophosphate under optimal conditions (0.01 to 0.05 mg/L) was similar for both aluminum and iron salts, with a broad optimum pH range of 5.0 to 7.0. Thus, in the typical operating range of wastewater treatment plants, pH is not a sensitive indicator of phosphorus removal efficiency. The most significant effect for engineering practice, apart from the metal dose, is that of mixing intensity and slow kinetic removal of phosphorus in contact with the chemical sludge formed. Experiments show that significant savings in chemical cost could be achieved by vigorously mixing the added chemical at the point of dosage and, if conditions allow, providing a longer contact time between the metal hydroxide flocs and the phosphate content of the wastewater. These conditions promoted the achievement of less than 0.1 mg/L residual orthophosphate content, even at lower metal-to-phosphorus molar ratios. These observations are consistent with the surface complexation model presented in a companion paper (Smith et al., 2008).  相似文献   

19.
20.
Balaji T  Yokoyama T  Matsunaga H 《Chemosphere》2005,59(8):1169-1174
An adsorption process for the removal of As(V) and As(III) was evaluated under various conditions using zirconium(IV) loaded chelating resin (Zr-LDA) with lysine-Nalpha,Nalpha diacetic acid functional groups. Arsenate ions strongly adsorbed in the pH range from 2 to 5, while arsenite was adsorbed between pH 7 and 10.5. The sorption mechanism is an additional complexation between arsenate or arsenite and Zr complex of LDA. Adsorption isotherm data could be well interpreted by Langmuir equation for As(V) at pH 4 and As(III) at pH 9 with a binding constant 227.93 and 270.47 dm3 mol(-1) and capacity constant 0.656 and 1.1843 mmol g(-1), respectively. Regeneration of the resin was carried out for As(V) using 1 M NaOH. Six adsorption/desorption cycles were performed without significant decrease in the uptake performance. Column adsorption studies showed that the adsorption of As(V) is more favorable compared to As(III), due to the faster kinetics of As(V) compared to As(III). Influence of the coexisting ions on the adsorption of As(V) and As(III) was studied. The applicability of the method for practical water samples was studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号