首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Concentrations of Al, B, Ca, Cu, Fe, K, Mg, Mn, N, Na, P, S and Zn in the foliage of white fir (Abies alba), Norway spruce (Picea abies) and common beech (Fagus sylvatica) from 25 sites of the Carpathian Mts. forests (Czech Republic, Poland, Romania, Slovakia and Ukraine) are discussed in a context of their limit values. S/N ratio was different from optimum in 90% of localities when compared with the European limit values. Likewise we found increase of Fe and Cu concentrations compared with their background levels in 100% of locations. Mn concentrations were increased in 76% of localities. Mn mobilization values indicate the disturbance of physiological balance leading to the change of the ratio with Fe. SEM-investigation of foliage waxes from 25 sites in the Carpathian Mts. showed, that there is a statistically significant difference in mean wax quality. Epistomatal waxes were damaged as indicated by increased development of net and amorphous waxes. The most damaged stomata in spruce needles were from Yablunitsa, Synevir and Brenna; in fir needles from Stoliky, and in beech leaves from Malá Fatra, Morské Oko and Beregomet. Spruce needles in the Carpathian Mts. had more damaged stomata than fir needles and beech leaves. Spruce seems to be the most sensitive tree species to environmental stresses including air pollution in forests of the Carpathian Mountains. Foliage surfaces of three forest tree species contained Al, Si, Ca, Fe, Mg, K, Cl, Mn, Na, Ni and Ti in all studied localities. Presence of nutrition elements (Ca, Fe, Mg, K and Mn) on foliage surface hinders opening and closing stomata and it is not physiologically usable for tree species.  相似文献   

2.
The properties of the atmosphere have changed and will continue to change due to changes in anthropogenic activity. The change in the atmosphere is reflected in the functioning and growth of forests. This is analyzed by considering the changes in the amounts and flow rates of different substances in the entire system of the atmosphere, forest soil and forest trees. Possible effects are either direct or indirect. Three direct effects are treated in more detail, i.e. the effect generated by toxic compounds, increasing CO2 and N deposition. The indirect effects are connected to the acidification of soil, i.e. the amounts of nutrients and toxic compounds in the soil.The study concerns coniferous forests on sandy soils in Finland. Generalization of the results and a forecast to the year 2040 is based on a multiplicative model based on the five components. According to the growth data in conservation stands the growth on sandy soils has increased by 30% during the period 1900–1980. Model analysis for the same period is shown to produce good agreement with the measured growth data. The increase of growth is presumed to be due to the steady increase in CO2 and nitrate deposition. Continuing changes in the environment will affect negative changes in the forest growth by the end of the 20th century. The decrease is presumed to be due to acidification effects in the soil. The ion exchange process in the soil will generate a time lag between acid deposition and its effect. This time lag in the soil in Finland is expected to be 20 ±10 years. Effects of two other time lags are also analyzed.  相似文献   

3.
Within the framework of the project "Effects of forest health on biodiversity with emphasis on air pollution in the Carpathian Mountains" 26 permanent study sites were established in the vicinity of the ozone monitoring sites. The study sites were located on the NW-SE transect through the Western (12 sites), Eastern (11 sites) and Southern (3 sites) Carpathians in forest ecosystems typical of each area. Some of the forest monitoring sites were located in national parks, biosphere reserves and areas of protected landscape. Each permanent site of 0.7 ha area consisted of 5 small 500m(2) circular plots, arranged in the form of a cross, i.e. four placed on the cardinal points (N, E, S, W) and one in the center. Phytosociological records were done twice during the 1998 growing season using the Braun-Blanquet's method. The study sites represented various types of forest: Picea abies stands (8), beech (Fagus sylvatica) stands (10), fir (Abies alba) stands (2) and mixed beech-fir, spruce-fir and beech-spruce stands (6). Age of most stands was 80-100 years. Degree of crown damage varied greatly between sites, a percentage of damaged trees decrease in Carpathians from West to East. It corresponds well with the O(3) level in these areas. Typical damage by O(3) in herb layer species in several Carpathian sites were found. Land-use map for the entire Carpathian Mountains and two detailed land use maps for Tatras (Western Carpathians) and Retezat (Southern Carpathians) are presented. A little more than half of the Carpathian territory is forested. The most densely forested are Eastern Carpathians, while the most sparsely Western Carpathians. Arable lands occupy 22.6% of the Carpathians, pastures and meadows 6.2%, water bodies 1.9%, and build up areas several percent. In the highest elevation of the Carpathians alpine meadows (11.3%) and rocks (3.5%) are distributed.  相似文献   

4.
Over the past 20 years, the focus of forest science on air pollution has moved from forest decline to a holistic framework of forest health, and from the effects on forest production to the ecosystem services provided by forest ecosystems. Hence, future research should focus on the interacting factorial impacts and resulting antagonistic and synergistic responses of forest trees and ecosystems. The synergistic effects of air pollution and climatic changes, in particular elevated ozone, altered nitrogen, carbon and water availability, must be key issues for research. Present evidence suggests air pollution will become increasingly harmful to forests under climate change, which requires integration amongst various stressors (abiotic and biotic factors, including competition, parasites and fire), effects on forest services (production, biodiversity protection, soil protection, sustained water balance, socio-economical relevance) and assessment approaches (research, monitoring, modeling) to be fostered.  相似文献   

5.
This study investigates changes in tree condition and environmental factors in Lithuania during the active growing season in 1991-2001. The average crown defoliation and the proportion of healthy trees of Pinus sylvestris, Picea abies, Betula sp., Fraxinus excelsior, Alnus incana, Alnus glutinosa, Populus tremula, and Quercus robur, meteorological (average temperature, amount of precipitation, hydrothermal coefficient) and air pollution data (acidity of precipitation, concentrations of SO2, NO2 and exposure of O3) were analysed. During the period 1991-2001 the condition of Pinus sylvestris, Populus tremula showed a tendency of improvement, while defoliation of Fraxinus excelsior significantly increased. The proportion of healthy trees correlated well with the average temperature and O3 (AOT40), while defoliation correlated well with the acidity of precipitation and the concentrations of SO2 and NO2. Deciduous species appeared to be more sensitive to O3 exposure and conifers to the concentrations of SO2 and NO2.  相似文献   

6.
7.
We analyzed 13 years of hourly measurements of SO2, NOx, and O3, at forest ecosystem research sites in SE Germany. A quasi-continuous data record was obtained by combining data sets from two locations. Before interpreting trends in the combined data set, we analyzed if the change of location introduced a systematic bias. We employed autocorrelation functions, Hurst statistics, complexity analysis, and recurrence quantification and found that the partial data sets exhibited no indication of the presence of any bias. For SO2, we also compared the data from the forest sites with data obtained in nearby cities and also found no indications for any systematic effects. Applying nonparametric trend statistics we found a significant decrease of the SO2. Most of the observed decrease is due to the reductions of SO2 emissions in eastern Germany, but reductions in western Germany and the Czech Republic also played important roles. For O3, we observed a significant increase, the causes of which are unclear from our data alone. No trend was identified for NOx.  相似文献   

8.
9.
Ozone (O3) concentrations were monitored during the 1997-1999 growing seasons in 32 forest sites of the Carpathian Mountains. At all sites (elevation between 450 and 1320 m) concentrations of O3, nitrogen dioxide (NO2), and sulfur dioxide (SO2) were measured with passive samplers. In addition, in two western Carpathian locations, Vychodna and Gubalówka, ozone was continuously monitored with ultraviolet (UV) absorption monitors. Highest average hourly O3 concentrations in the Vychodna and Guba?ówka sites reached 160 and 200 microg/m3 (82 and 102 ppb), respectively (except for the AOT40 values, ozone concentrations are presented as microg/m3; and at 25 degrees C and 760 mm Hg, 1 microg O3/m3 = 0.51 ppb O3). These sites showed drastically different patterns of diurnal 03 distribution, one with clearly defined peaks in the afternoon and lowest values in the morning, the other with flat patterns during the entire 24-h period. On two elevational transects, no effect of elevation on O3 levels was seen on the first one, while on the other a significant increase of O3 levels with elevation occurred. Concentrations of O3 determined with passive samplers were significantly different between individual monitoring years, monitoring periods, and geographic location of the monitoring sites. Results of passive sampler monitoring showed that high O3 concentrations could be expected in many parts of the Carpathian range, especially in its western part, but also in the eastern and southern ranges. More than four-fold denser network of monitoring sites is required for reliable estimates of O3 distribution in forests over the entire Carpathian range (140 points). Potential phytotoxic effects of O3 on forest trees and understory vegetation are expected on almost the entire territory of the Carpathian Mountains. This assumption is based on estimates of the AOT40 indices for forest trees and natural vegetation. Concentrations of NO2 and SO2 in the entire Carpathian range were typical for this part of Europe and below the expected levels of phytotoxicity.  相似文献   

10.
11.
Human health effects of air pollution   总被引:21,自引:0,他引:21  
Hazardous chemicals escape to the environment by a number of natural and/or anthropogenic activities and may cause adverse effects on human health and the environment. Increased combustion of fossil fuels in the last century is responsible for the progressive change in the atmospheric composition. Air pollutants, such as carbon monoxide (CO), sulfur dioxide (SO(2)), nitrogen oxides (NOx), volatile organic compounds (VOCs), ozone (O(3)), heavy metals, and respirable particulate matter (PM2.5 and PM10), differ in their chemical composition, reaction properties, emission, time of disintegration and ability to diffuse in long or short distances. Air pollution has both acute and chronic effects on human health, affecting a number of different systems and organs. It ranges from minor upper respiratory irritation to chronic respiratory and heart disease, lung cancer, acute respiratory infections in children and chronic bronchitis in adults, aggravating pre-existing heart and lung disease, or asthmatic attacks. In addition, short- and long-term exposures have also been linked with premature mortality and reduced life expectancy. These effects of air pollutants on human health and their mechanism of action are briefly discussed.  相似文献   

12.
An eleven-year foliar sulphur (S) monitoring program was carried out from 1976 to 1986 near a sulphur recovery-gas plant in west-central Alberta, Canada, as part of a case study designed to determine the effects of chronic, low concentration sulphur gas emissions on the forest ecosystem surrounding the gas plant. Measurements of both foliar total sulphur (ST) and foliar inorganic sulphur (SO4-S) concentration in lodgepole x jack pine trees at the end of each of the 11 growing seasons were taken to provide an indication of S loading of the forest from industrial sulphur emissions. To measure the state of the forest ecosystem, foliar ST was separated into foliar accumulated sulphur (inorganic sulphur or SO4-S) and foliar assimilated sulphur (organic sulphur or S0) and the ratio of SO4-S/S0 taken. Foliar S0 was calculated as the difference between foliar ST and foliar SO4-S. The median SO4-S/S0 ratio, with all three years of needles considered, varied from 0.29 at a reference location (AV) to 0.88 at the location with the highest stress (AI). The corresponding mean values ranged from 0.3 at the reference location to 2.2 at the location of highest stress. The mean seasonal photosynthetic rate of current year's foliage of the pine trees and soil pH were reduced at a stressed location (AI) compared to the reference location (AV), between 1976 and 1981. Over this same time period the mean foliar SO4-S/S0 ratio increased from 0.4 +/- 0.1 to 1.0 +/- 0.3 at the stressed location (AI) and remained nearly the same at the reference location (AV) at 0.3 +/- 0.1. This research suggests that the foliar SO4-S/S0 ratio is a useful indicator of the state of forest ecosystems under S air pollution stress. It is concluded that foliar S separated into various fractions has potential as an early warning environmental management tool.  相似文献   

13.
A floristic summary and analysis was performed on a list of the plant species that have been studied for the effects of gaseous and chemical air pollutants on vegetation in order to compare the species with the flora of North America north of Mexico. The scientific names of 2081 vascular plant species were extracted from almost 4000 journal articles stored in two large literature databases on the effects of air pollutants on plants. Three quarters of the plant species studied occur in North America, but this was only 7% of the total North American flora. Sixteen percent and 56% of all North American genera and families have been studied. The most studied genus is Pinus with 70% of the North American species studied, and the most studied family is the grass family, with 12% of the species studied. Although Pinus is ranked 86th in the North American flora, the grass family is ranked third, indicating that representation at the family level is better than at the genus level. All of the top ten families in North America are represented in the top 20 families in the air pollution effects literature, but only one genus (Lupinus) in the top ten genera in North America is represented in the top thirteen genera in the air pollution literature.  相似文献   

14.
Environmental Science and Pollution Research - Air pollution is an important cause of non-communicable diseases globally with particulate matter (PM) as one of the main air pollutants. PM is...  相似文献   

15.
Three databases on air pollution effects on vegetation were developed by storing bibliographic and abstract data for technical literature on the subject in a free-form database program, 'askSam'. Approximately 4 000 journal articles have been computerized in three separate database files: BIOLEFF, LICHENS and METALS. BIOLEFF includes over 2 800 articles on the effects of approximately 25 gaseous and particulate pollutants on over 2 000 species of vascular plants. LICHENS includes almost 400 papers on the effects of gaseous and heavy metal pollutants on over 735 species of lichens and mosses. METALS includes over 465 papers on the effects of heavy metals on over 830 species of vascular plants. The combined databases include articles from about 375 different journals spanning 1905 to the present. Picea abies and Phaseolus vulgaris are the most studied vascular plants in BIOLEFF, while Hypogymnia physodes is the most studied lichen species in LICHENS. Ozone and sulfur dioxide are the most studied gaseous pollutants with about two thirds of the records in BIOLEFF. The combined size of the databases is now about 5.5 megabytes.  相似文献   

16.
BackgroundCurrent standards for fine particulates and nitrogen dioxide are under revision. Patients with cardiovascular disease have been identified as the largest group which need to be protected from effects of urban air pollution.MethodsWe sought to estimate associations between indicators of urban air pollution and daily mortality using time series of daily TSP, PM10, PM2.5, NO2, SO2, O3 and nontrauma deaths in Vienna (Austria) 2000–2004. We used polynomial distributed lag analysis adjusted for seasonality, daily temperature, relative humidity, atmospheric pressure and incidence of influenza as registered by sentinels.ResultsAll three particulate measures and NO2 were associated with mortality from all causes and from ischemic heart disease and COPD at all ages and in the elderly. The magnitude of the effect was largest for PM2.5 and NO2. Best predictor of mortality increase lagged 0–7 days was PM2.5 (for ischemic heart disease and COPD) and NO2 (for other heart disease and all causes). Total mortality increase, lagged 0–14 days, per 10 μg m−3 was 2.6% for PM2.5 and 2.9% for NO2, mainly due to cardiopulmonary and cerebrovascular causes.ConclusionAcute and subacute lethal effects of urban air pollution are predicted by PM2.5 and NO2 increase even at relatively low levels of these pollutants. This is consistent with results on hospital admissions and the lack of a threshold. While harvesting (reduction of mortality after short increase due to premature deaths of most sensitive persons) seems to be of minor importance, deaths accumulate during 14 days after an increase of air pollutants. The limit values for PM2.5 and NO2 proposed for 2010 in the European Union are unable to prevent serious health effects.  相似文献   

17.
Oxidant air pollution effects on plants of Joshua Tree National Monument   总被引:1,自引:0,他引:1  
Joshua Tree National Monument (JOTR) is located about 100 km east of the Los Angeles Basin, site of the heaviest concentration of photochemical oxidant (O(3)) air pollution in the US. This investigation was conducted to measure O(3) concentrations in JOTR and to determine the effects of O(3) on vegetation in the park. Potentially phytotoxic concentrations of O(3) were recorded in JOTR in 1984 and 1985, but peak concentration occurred at night, when most plant species would be less sensitive to O(3). No O(3) effects were observed on permanent vegetation observation plots in JOTR in 1984 or 1985. Controlled exposures of native summer annual and woody perennial species to O(3) showed that most did not develop visible O(3) injury symptoms except at concentrations higher than those expected in the park. However, Rhus trilobata Nutt. was injured at 0.10 ppm O(3), 4 h per day for 4 days. This species would be a useful bioindicator to assess the effects of O(3) on native desert plants.  相似文献   

18.
Although the growths of ambient pollutants have been attracting public concern, the characteristic of the associations between air pollutants and mortality remains elusive. Time series analysis with a generalized additive model was performed to estimate the associations between ambient air pollutants and mortality outcomes in Shenzhen City for the period of 2012–2014. The results showed that nitrogen dioxide (NO2)-induced excess risks (ER) of total non-accidental mortality and cardiovascular mortality were significantly increased (6.05% (95% CI 3.38%, 8.78%); 6.88% (95% CI 2.98%, 10.93%), respectively) in interquartile range (IQR) increase analysis. Also, these associations were strengthened after adjusting for other pollutants. Moreover, similar associations were estimated for sulfur dioxide (SO2), particulate matter with an aerodynamic diameter of <10 μm (PM10), and total non-accidental mortality. There were significant higher ERs of associations between PM10 and mortality for men than women; while there were significant higher ERs of associations between PM10/NO2 and mortality for elders (65 or elder) than youngers (64 or younger). Season analyses showed that associations between NO2 and total non-accidental mortality were more pronounced in hot seasons than in warm seasons. Taken together, NO2 was positively associated with total non-accidental mortality and cardiovascular mortality in Shenzhen even when the concentrations were below the ambient air quality standard. Policy measures should aim at reducing residents’ exposure to anthropogenic NO2 emissions.  相似文献   

19.
20.
GOAL, SCOPE AND BACKGROUND: Air pollution has been of a major problem in the Pearl River Delta of south China, particularly during the last two decades. Emissions of air pollutants from industries have already led to damages in natural communities and environments in a wide range of the Delta area. Leaf parameters such as chlorophyll fluorescence, leaf area (LA), dry weight (DW) and leaf mass per area (LMA) had once been used as specific indexes of environmental stress. This study aims to determine in situ if the daily variation of chlorophyll fluorescence and other ecophysiological parameters in five seedlings of three woody species, Ilex rotunda, Ficus microcarpa and Machilus chinensis, could be used alone or in combination with other measurements for sensitivity indexes to make diagnoses under air pollution stress and, hence, to choose the correct tree species for urban afforestation in the Delta area. METHODS: Five seedlings of each species were transplanted in pot containers after their acclimation under shadowing conditions. Chlorophyll fluorescence measurements were made in situ by a portable fluorometer (OS-30, Opti-sciences, U.S.A). Ten random samples of leaves were picked from each species for LA measurements by area-meter (CI-203, CID, Inc., U.S.A). DW was determined after the leaf samples were dried to a constant weight at 65 degrees C. LMA was calculated as the ratio of DW/LA. Leaf N content was analyzed according to the Kjeldhal method, and the extraction of pigments was carried out according Lin et al. RESULTS AND DISCUSSION: The daily mean Fv/Fm (Fv is the variable fluorescence and Fm is the maximum fluorescence) analysis showed that Ilex rotunda and Ficus microcarpa were more highly resistant to pollution stress, followed by Machilus chinensis, implying that the efficiency of photosystem II in I. rotunda was less affected by air pollutants than the other two species. Little difference in daily change of Fv/Fm in I. rotunda between the polluted and the clean site was also observed. However, a relatively large variation of Fv/Fm appeared in the other two species, particularly in M. chinensis, suggesting that they were more sensitive to air pollutants than I. rotunda. The mean LA was reduced for all species growing at the polluted site. The mean LMA for all species exceeded the sclerophylly threshold given by Cowling and Campbell and increased for those under pollution stress, which could be explained as one of the acclimation strategies for plants to air pollution stress. Little difference in leaf chlorophyll content was observed in F. microcarpa and M. chinensis, while remarkable differences were found in I. rotunda growing at the polluted and the clean site. Content of leaf carotenoids was largely reduced in I. rotunda growing at the polluted site, but increased in F. microcarpa and M. chinensis, compared with plants growing at the clean site. Plants growing at the clean site had a lower leaf N content than those growing at the polluted site. In addition, species with a higher resistance to pollution stress showed less difference in leaf N content than those sensitive species. CONCLUSION: Based on Fv/Fm measurements of the three woody species, I. rotunda showed the highest resistance to air pollutants from ceramic industries, followed by F. microcarpa. M. chinensis was the most sensitive species to air pollution, had lowest capacities to cope with the air pollution stress, which was consistent with visual injury symptoms observed in the crown profiles of plants at the polluted site. Fv/Fm, LAM, LA, leaf pigments and N content could be used alone or in combination to diagnose the extent of the physiological injury. The ratio of Fv/Fm, however, was the best and most effective parameter. RECOMMENDATION AND OUTLOOK: Tree species which have higher air-pollutant resistance, as diagnosed by such ecophysiological parameters, should be considered first and planted widely for urban afforestation or forest regeneration in areas where the forest was seriously degraded or forest health was markedly effected by the same kind of air pollutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号