首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Physico-chemical characteristics of some river and hand-dug well waters used for drinking and domestic purposes in the oil rich Niger Delta area of Nigeria were assessed using standard methods. The concentrations of the parameters in the river water samples ranged in the following order: pH (5.6–6.9), temperature (26.90–28.60°C), turbidity (23–63 NTU), electrical conductivity (52–184 μs/cm), DO (5.4–7.2 mg/l), BOD (21–57 mg/l), TDS (6.0–217 mg/l), PO4 3− (0.19–1.72 mg/l), SO4 2− (25–36.8 mg/l), NO3 (20.3–28 mg/l), Fe (6.07–15.71 mg/l), Zn (0.04–0.24 mg/l), Pb (0.01–0.17 mg/l), Ni (0.01–0.13 mg/l), Vn (0.01–0.20 mg/l) and Hg (0.001–0.002 mg/l). The concentrations of these parameters in the hand-dug well water ranged in the following order: pH (5.7–6.8) temperature (26–30°C), turbidity (134–171 NTU), electrical conductivity (160–340 μs/cm), DO (5.4–6.4 mg/l), BOD (13–34 mg/l), TDS (110–190 mg/l), PO4 3− (0.84–1.84 mg/l), SO4 2− (10.6–28.1 mg/l), NO3 (11.3–23 mg/l), Fe (13.17–16.31 mg/l), Ni (0.01–0.02 mg/l), Vn (0.01–0.04 mg/l) and Hg (0.001–0.004 mg/l). The concentrations of BOD, turbidity, NO3 and Fe in the water samples were above WHO and FMENV permissible limits for safe drinking water. The results suggest that the use of such waters for drinking and domestic purposes pose a serious threat to the health of the users and calls for the intervention of government agencies.  相似文献   

2.
A total of 16 people died and over 500 people were hospitalized due to diarrhoeal illness in the Bholakpur area of Hyderabad, India on 6th May 2009. A study was conducted with immediate effect to evaluate the quality of municipal tap water of the Bholakpur locality. The study consists of the determination of physico-chemical properties, trace metals, heavy metals, rare earth elements and microbiological quality of drinking water. The data showed the variation of the investigated parameters in samples as follows: pH 7.14 to 8.72, EC 455 to 769 μS/cm, TDS 303.51 to 515.23 ppm and DO 1.01 to 6.83 mg/L which are within WHO guidelines for drinking water quality. The water samples were analyzed for 27 elements (Li, Be, B, Na, Mg, Al, Si, K, Ca, V, Cr, Mn, Fe, Ni, Co, Cu, Zn, As, Se, Rb, Sr, Mo, Ag, Cd, Sb, Ba and Pb) using inductively coupled plasma-mass spectrometry (ICP-MS). The concentrations of Fe (0.12 to 1.13 mg/L), Pb (0.01 to 0.07 mg/L), Cu (0.01 to 0.19 mg/L), Ni (0.01 to 0.15 mg/L), Al (0.16 to 0.49 mg/L), and Na (38.36 to 68.69 mg/L) were obtained, which exceed the permissible limits of the World Health Organization (WHO) for drinking water quality guidelines. The remaining elements were within the permissible limits. The microbiological quality of water was tested using standard plate count, membrane filtration technique, thermotolerant coliform (TTC), and most probable number (MPN) methods. The total heterotrophic bacteria ranged from 1.0 × 105 to 18 × 10cfu/ml. Total viable bacteria in all the water samples were found to be too numerable to count and total number of coliform bacteria in all water samples were found to be of order of 1,100 to >2,400 MPN index/100 ml. TTC tested positive for coliform bacteria at 44.2°C. All the water samples of the study area exceeded the permissible counts of WHO and that (zero and minimal counts) of the control site (National Geophysical Research Institute) water samples. Excessively high colony numbers indicate that the water is highly contaminated with microorganisms and is hazardous for drinking purposes. Bacteriological pollution of drinking water supplies caused diarrhoeal illness in Bholakpur, which is due to the infiltration of contaminated water (sewage) through cross connection, leakage points, and back siphoning.  相似文献   

3.
In rural areas in Bangladesh, groundwater is the principal source of water supply. This underground water is available in considerable amount in shallow aquifers. It is free from pathogenic microorganisms and hence water-borne diseases. In plain lands, other than hilly areas, water supply to 97% rural population comes from tube-wells, which is regarded to be a phenomenal achievement in preserving public health. Besides, a dependable water supply system all throughout the country is offset by two factors: (a) high salinity in surface plus groundwater in coastal areas; (b) want of suitable groundwater aquifers in hilly areas and the high cost of setting up tube-wells due to deep underground water table and stony layers. However, presence of arsenic in underground water now poses a serious threat to the success once made in water supply by setting up of manually operated tube-wells in the village areas—the achievement is now on the brink of total collapse. In about 61 districts out of 64, presence of arsenic exceeds a quantity of 0.05 mg/1, a permissible limit as per Bangladeshi water quality standard. Harvesting rainwater can be a pragmatic solution to this problem, which is common in many places in Sylhet especially in the hilly areas on the north eastern part of the city. This can be an alternative source of drinking water because of availability of rainwater from March to October. Heavy rain occurs from end of May till mid September, which is commonly known as the rainy season. This paper focuses on the possibility of harvesting rainwater in rural communities and thickly populated urban areas of Sylhet. It also demonstrates the scopes of harvesting rainwater using simple and low-cost technology. With setting up of a carefully planned rainwater storage tank, a family can have all of its drinking water from rain. Planned use of rainwater through rainwater harvesting in the roof catchments may fulfill the entire annual domestic water demand of a family in the rural areas of Bangladesh.  相似文献   

4.
Precipitation chemistry programs in different regions of the world have different quality control limits for ion balance parameter IPD in wet deposition monitoring (R). The range of R values was calculated by assuming sample rainwater models in this paper. It was found that R was influenced by the inorganic ion types, total ion concentrations (IS) and the accuracy of the measurements (a i ). R was defined and calculated as a function of a i and ion concentration C i . R values of different types of wet deposition (including ocean type, continent type and combined oceanic and continental deposition) were different. There were also differences between the samples of the same type if the samples had different total ion concentrations. When IS>100 μeq/L, the ranges of R of ocean type deposition, continent type deposition and combined oceanic and continental deposition were 5∼7%, 5∼9% and 5∼11%, respectively. When IS<50 μeq/L, if a i was 100%, the range of R was 33∼71% because of the lower accuracy. It was also found that R of each criterion was in the range of R as calculated in this paper when IS≥50 μeq/L, but when IS<50 μeq/L, the criteria varied greatly in their R values.  相似文献   

5.
石家庄市农村饮用水中氟化物健康风险评估   总被引:2,自引:1,他引:1  
利用中国疾病预防控制信息系统农村饮用水水质监测数据,对2010年18个项目县的水质监测结果进行分析,评估石家庄市农村饮用水氟化物对人群危害的风险。 石家庄市农村饮用水中氟化物浓度为0.01~0.98 mg/L,平原县和山区县饮用水氟化物浓度差异无显著性(t=-1.403,P>0.05),只有72份氟化物浓度超过0.5 mg/L,占9.7%。石家庄市农村患龋齿风险性较大,及时增加氟的摄入量非常必要。  相似文献   

6.
In this study, samples from a sewage treatment lagoon and those from a receiving stream were analyzed for their phthalate esters content. Knowledge of the distribution of ubiquitous phthalate esters in the sewage lagoon and the receiving stream was necessary because of the reports of their subtle toxicity to aquatic biota and humans. Liquid–liquid extraction, Clean-up experiment and High Performance Liquid Chromatography (HPLC) were the methods employed for the quantitative determination of the Phthalates. A study of uncontaminated water was done to establish blank levels. The sewage lagoon and the receiving stream were grossly polluted as several phthalate ester plasticizers: DMP, DEP, DPhP, DBP, DEHP, DOP and DINP were found present at monthly mean levels of between 24.02 mg/L and 139.25 mg/L in the sewage treatment lagoon and 10.41 mg/L and 80.53 mg/L in the receiving stream. The results showed higher levels of phthalate esters in the sewage lagoon compared to the receiving stream. The sewage lagoon was identified as a pollution point source into the receiving stream. Levels of phthalates obtained from the receiving stream are much higher than the water criteria of 3 μg/L phthalates recommended by the United States Environmental Protection Agency (USEPA) for the protection of fish and other aquatic life in water and the Suggested No-Adverse Effect Levels (SNAEL) of 7.5–38.5 μg/L for drinking water. This should give cause for great environmental concern. Peoples’ health downstream is at stake and so is the ‘health’ of the ecosystem.  相似文献   

7.
In groundwater, used for drinking water supply in the greater industrial area of Thessaloniki, in Northern Greece, concentrations of total arsenic exceeded the WHO provisional guideline value and the EU maximum contaminant level (MCL) of 10 μg/L. The concentration of total arsenic was in the range between 4–130 μg/L, whereas the median value was 36 μg/L and the average concentration 46 μg/L. Nine out of the eleven wells contained total arsenic at concentration higher than 10 μg/L and it should be stressed that 6 of them contain arsenic at concentrations between 10 (new MCL) and 50 μg/L (previous MCL). The examined groundwaters were found to contain elevated concentrations of manganese and phosphate. Arsenic had a positive correlation with the pH, indicating the possible effect of pH on arsenic mobilisation. These findings emerge the problem of contamination from arsenic, since, according to the EU directive 98/83, all drinking water sources within the European Union should have achieved compliance with the new limits by 12/2003, implying that the situation requires urgent remedial action.  相似文献   

8.
We assessed the quality and pollution status of source surface waters in Zaria, Nigeria by monitoring the nature, cause and extent of pollution in Samaru stream, Kubanni River and Kubanni dam over a period of 10 months, between March and December 2002. A total of 228 water samples was collected from 12 sites and analysed for a total of ten physicochemical and one bacteriological quality indicators, using standard methods. Aesthetic water quality impairment parameters were also observed. The mean values of most water quality parameters were significantly higher (P < 0.05) in both the stream and river than in the dam. There was no significant correlation between faecal coliform counts (FCC) and water temperature (in the range 15–33°C); pH (5.77–7.32); and turbidity (1.4–567 NTU). The high FCC ranged from 2.0 × 101 to 1.6 × 106 MPN/100 ml and exceeded the WHO standards for drinking water and water used for fresh-produce irrigation, and correlated positively (P < 0.05) with conductivity (in the range 68–1,029 μS/cm); TDS (10.0–70.0 mg/l); TSS (10.0–70.0 mg/l); Cl (7.5–181 mg/l); PO4P (0.01–0.41 mg/l); NO3N (0.6–3.8 mg/l) and BOD5 (0.1–14.9 mg/l). The main pollution sources were municipal wastewater, stormwater runoffs, the ABU sewage treatment plant, abattoir effluents and irrigation farms treated with chemical fertilisers. We conclude that these water bodies are potentially hazardous to public health and that proper sewage treatment and river quality monitoring are needed to warn against hazards to public health.  相似文献   

9.
Advances in research on pollution of organic pesticides (OPs) in surface water, pollution survey and risk assessments of organochlorine pesticides (OCPs) and organophosphorus pesticides (OPPs) of surface water in Hangzhou are conducted. Total concentrations of dichloro-diphenyl-trichloroethane (DDT) and hexachloride-benzene (HCH) in surface water were observed to be 0–0.270 μg/L and 0–0.00625 μg/L respectively. DDE, as a metabolite of DDT and many species of OPPS were determined in some samples of surface water. Parathion, the main pollutant among OPPs in surface water of Hangzhou, was observed to be 0–0.445 μg/L. Based on these experimental results, health risk assessments on the organic pollution are developed. It is observed that the total risk “R T” at present time of surface water in Hangzhou is mainly contributed by organophosphorus pesticides, especially Parathion; HCH and DDT are not the main contaminants; on the contrary, organophosphorous pesticides, especially Parathion, must be of concern at the present time.  相似文献   

10.
Heavy metal pollution of water resources can be apprehended in East Singhbhum region which is a highly mineralised zone with extensive mining of copper, uranium and other minerals. Ten groundwater samples were collected from each site and the heavy metal analysis was done by atomic absorption spectrophotometer. Analysis of the results of the study reveals that the concentration of iron, manganese, zinc, lead, copper and nickel in groundwater of Bagjata mining area ranged 0.06–5.3 mg l − 1, 0.01–1.3 mg l − 1, 0.02–8.2 mg l − 1, 1.4–28.4 μg l − 1, 0.78–20.0 μg l − 1 and 1.05–20.1 μg l − 1, respectively. In case of Banduhurang mining area, the range was 0.04–2.93 mg l − 1, 0.02–1.1 mg l − 1, 0.01–4.68 mg l − 1, 1.04–33.21 μg l − 1, 1.24–18.7 μg l − 1 and 1.06–14.58 μg l − 1, respectively. The heavy metals were found to be below the drinking water standards (IS:10500 1993) except iron (0.3 mg l − 1) and manganese (0.1 mg l − 1). The hazard quotients of the heavy metals for drinking water were below 1 posing no threat due to intake of water to the people for both the areas.  相似文献   

11.
In this study, chemical composition of the rain water in Mugla was investigated from February to April 2002. Rain water samples were obtained from Mugla, a small city in south western Turkey. The Yatagan Power Plant is located 30 km northwest of Mugla city. The values of pH and the concentrations of major ions (Ca2+, Na+, K+, SO4 2−, NO3 , NH4 +) in the rainwater samples were analyzed. The pH varied from 4.5 to 7.7 with an average of 6.9 which was in alkaline range considering 5.6 as the neutral pH of cloud water with atmospheric CO2 equilibrium. In the total 30 rain events, only two events were observed in acidic range (< 5.6) which occurred after continuous rains. The equivalent concentration of components followed the order: Ca2+ > SO4 2− > NH4 + > NO3 > Na+ > K+ > H+. The volume-weighted mean (VWM) of the measured ionic sum is 371.62 μeq/l. The ratio of between sum cations and sum anions (∑cations /∑ anions) is 1.52 μeq/l. The alkaline components (Ca2+, Na+, K+) contribute 52%, NH4 + 8%, whereas, the contribution from the acidic components is relatively small (40%). The low concentrations of H+ found in rainwater samples from Mugla suggest that an important portion of H2SO4 and HNO3 have been neutralized by alkaline particles in the atmosphere. The dust-rich local and surrounding limestone environment might have caused the high concentration of Ca2+ in Mugla area. The relatively high concentration of NH4 + observed at Mugla is suspected to be due to surrounding agricultural. The results obtained in this study are compared with those other studies conducted at various places in the world.  相似文献   

12.
Status of insecticide contamination of soil and water in Haryana, India   总被引:2,自引:0,他引:2  
Twelve samples each of soil and ground water were collected from paddy-wheat, paddy-cotton, sugarcane fields and tube wells from same or near by fields around Hisar, Haryana, India during 2002–2003 to monitor pesticide residues. Residues were estimated by GC-ECD and GC-NPD systems equipped with capillary columns for organochlorine, synthetic pyrethroid and organophosphate insecticides. In soil, HCH (0.002–0.051 μg g−1), DDT (0.001–0.066 μg g−1), endosulfan (0.002–0.039 μg g−1) and chlordane (0.0002–0.019 μg g−1) among organochlorines, cypermethrin (0.001–0.035 μg g−1) and fenvalerate (0.001–0.022 μg g−1) among synthetic pyrethroids and chlorpyriphos (0.002–0.172 μg g−1), malathion (0.002–0.008 μg g−1), quinalphos (0.001–0.010 μg g−1) among organophosphates were detected. Dominant contaminants were DDT, cypermethrin and chlorpyriphos from the respective groups. In water samples, HCH, DDT, endosulfan and cypermethrin residues were observed frequently. Only chlorpyriphos among organophosphates was detected in 10 samples. On consideration of tube well water for drinking purpose, about 80% samples were found to contain residues above the regulatory limits.  相似文献   

13.
A modeling study was conducted to evaluate the acid-base chemistry of streams within Shenandoah National Park, Virginia and to project future responses to sulfur (S) and nitrogen (N) atmospheric emissions controls. Many of the major stream systems in the park have acid neutralizing capacity (ANC) less than 20 μeq/L, levels at which chronic and/or episodic adverse impacts on native brook trout are possible. Model hindcasts suggested that none of these streams had ANC less than 50 μeq/L in 1900. Model projections, based on atmospheric emissions controls representative of laws already enacted as of 2003, suggested that the ANC of those streams simulated to have experienced the largest historical decreases in ANC will increase in the future. The levels of S deposition that were simulated to cause streamwater ANC to increase or decrease to three specified critical levels (0, 20, and 50 μeq/L) ranged from less than zero (ANC level not attainable) to several hundred kg/ha/year, depending on the selected site and its inherent acid-sensitivity, selected ANC endpoint criterion, and evaluation year for which the critical load was calculated. Several of the modeled streams situated on siliciclastic geology exhibited critical loads <0 kg/ha/year to achieve ANC >50 μeq/L in the year 2040, probably due at least in part to base cation losses from watershed soil. The median modeled siliciclastic stream had a calculated critical load to achieve ANC >50 μeq/L in 2100 that was about 3 kg/ha/year, or 77% lower than deposition in 1990, representing the time of model calibration.  相似文献   

14.
To evaluate boron contamination of public drinking water in China, both dissolved and total boron contents in 98 public drinking water sources from 49 cities, 42 brands of bottled water samples from supermarkets in several cities, and 58 water samples from boron industrial area were measured by inductively coupled plasma-mass spectrometry (ICP-MS). Our experimental results showed that boron existed in public drinking water sources mainly in dissolved status with total concentrations ranging from 0.003 to 0.337 mg/L (mean = 0.046 mg/L). The mean boron concentrations in mineral and pure bottled water were 0.052 and 0.028 mg/L, respectively. The results obtained in this work showed that there was no health risk on view of boron in public drinking water sources and bottled water. In boron industrial area, boron concentrations in surface water and ground water were 1.28 mg/L (range = 0.007–3.8 mg/L) and 18.3 mg/L (range = 0.015–140 mg/L), respectively, which indicated that boron industry caused boron pollution in local water system.  相似文献   

15.
Anthropogenic activities associated with industrialization, agriculture and urbanization have led to the deterioration in water quality due to various contaminants. To assess the status of urban drinking water quality, samples were collected from the piped supplies as well as groundwater sources from different localities of residential, commercial and industrial areas of Lucknow City in a tropical zone of India during pre-monsoon for estimation of coliform and faecal coliform bacteria, organochlorine pesticides (OCPs) and heavy metals. Bacterial contamination was found to be more in the samples from commercial areas than residential and industrial areas. OCPs like α,γ-hexachlorocyclohexane and 1,1 p,p-DDE {dichloro-2, 2-bis(p-chlorophenyl) ethene)} were found to be present in most of the samples from study area. The total organochlorine pesticide levels were found to be within the European Union limit (0.5 μg/L) in most of the samples. Most of the heavy metals estimated in the samples were also found to be within the permissible limits as prescribed by World Health Organization for drinking water. Thus, these observations show that contamination of drinking water in urban areas may be mainly due to municipal, industrial and agricultural activities along with improper disposal of solid waste. This is an alarm to safety of public health and aquatic environment in tropics.  相似文献   

16.
Different sources of pollution in Karasu Creek were investigated to obtain the water quality and ratio of contamination in this region. To achieve the main objectives of the present study, water samples were collected from Karasu Creek, starting from flow pattern at the upstream site of Akkaya Dam to the end of the dam, crossing the place where the Creek drains into. Dissolved oxygen, electrical conductivity, temperature and maximum/minimum pH were measured systematically for 12 months in the stations, where the water samples were collected. Chemical analyses of the water samples were carried out by using Cadas 50 S brand UV spectrometer to find out the Pb, Fe, Cu, Zn, Ni, Cr, Cd, S, F and Cn concentrations. These concentration were determined in μg/lt as 80–850; 180–4,920; 10–6,100; 440–25,530; 130–2,400; 120–280; 20–150; 214,250–1,113,580; 1,560–4,270 and 40–690, respectively. To determine metal levels of the water samples, multivariate analyses (element coefficient correlation, coefficient correlation dendrogram, hierarchical cluster analysis dendrogram, model summary and ANOVA) were used. The analyses yielded highly accurate results. There were positive correlations between some elements and their possible sources were the same. The stations which resembled each other along the creek were divided into three groups. The water quality of the creek was low and had toxic qualities. Eutrophication developed in Akkaya Dam along the creek. The source of pollution was thought to be industrial and residential wastes. Absolute (0–100 m), short distance (100–500 m) and medium distance (500–2,000 m) conservation areas should be determined in pollution areas along Karasu Creek and they should be improved.  相似文献   

17.
Fluoride Content in Drinking Water Supplies of Riyadh, Saudi Arabia   总被引:2,自引:0,他引:2  
Groundwater supplies about 34% ofthe total water demand for the capital city of SaudiArabia, Riyadh. The other 66% is desalinatedseawater. The fluoride level in Riyadh drinking watersupplies was evaluated. Samples were collected fromselected wells, treatment plants, desalinatedseawater, distribution network and 19 locally producedand imported bottled water. The fluoride level in theinfluent to the seven groundwater treatment plants andtheir final product water were in the range of 0.63–1.6 and 0.23–1.1 mg/L, respectively. Blending of theplants product water with the desalinated seawaterresulted in the fluoride level ranging from 0.01–0.5 mg/Lin the distribution network. Ninety percent of thesamples collected from the distribution network hadfluoride levels less than or equal to the calculatedweighted average value of 0.24 mg/L. The locallyproduced bottled waters as compared to 8 imported oneshave shown fluoride levels in the range of 0.2–0.83and 0.04–0.2 mg/L, respectively. In general, thefluoride level in Riyadh drinking water supplies isbelow the optimum recommended level of 0.7 to1.2 mg/L. It is therefore recommended thatfluoridation be considered in water treatment plants.  相似文献   

18.
为考察遂宁市辖区内集中式饮用水水源地污染物钡的分布特征和健康风险水平,通过电感耦合等离子体原子发射光谱法对研究区域内市级、县级和乡镇级所有在用的56个集中式饮用水水源地钡的浓度进行分析检测,借助空间分析与统计分析的结果,探讨了其空间分布和浓度差异,并利用环境健康风险评价模型,对不同类型水源地钡的健康风险进行了评价。结果表明,38个地表水水源地钡的浓度范围为0.065~0.180 mg/L,均值为0.110 mg/L;18个地下水水源地钡的浓度范围为0.027~0.370 mg/L,均值为0.130 mg/L。地表水与地下水水源地间钡的浓度差异具有统计学意义(P0.05),钡的空间分布也存在不同程度的差异性。各水源地中的钡经饮用和皮肤暴露两种途径对成人和儿童所引起的非致癌风险值为1.34×10~(-8)~1.62×10~(-8),远低于推荐的最大可接受风险水平(1.0×10~(-6)),各水源地因污染物钡导致的非致癌风险极低。  相似文献   

19.
In this study, the chemical composition of the rainwater in Yatağan, which is a region surrounding a coal power plant was investigated from February to April 2002. Rainwater samples were obtained from Yatağan, located northwest of Muğla City in Turkey. pH values and concentrations of major ions (Ca2+, Na+, K+, , , ) in the rainwater samples were analyzed. The pH varied from 5.1 to 7.9 with an average of 6.7 which was in alkaline range considering 5.6 as the neutral pH of cloud water in equilibrium with atmospheric CO2. In the total of 30 rain events, only three events were observed with water in the acidic range (<5.6), which occurred after continuous rains. The equivalent concentration of components followed the order: Ca2+ > > Na+ > > > K+ > H+. The anion and cation concentrations in the rainwater samples showed a high sulphate concentration (131 μEq/l), as well as high sodium (40 μEq/l) and calcium (298 μEq/l) concentrations. These values indicate that one probable source of the high sodium concentration is fly ash, after the coal burning process and the power plant can be effective on level concentrations in rainwater. In addition, the dust-rich local and surrounding limestone environment might have caused the high concentration of Ca2+ in rainwater of the Yatağan Basin. Due to a large contribution of these cations to the sulphate neutralization action, the rainwater of this region displays only a moderate acidity, which does not cause significant environmental impact.  相似文献   

20.
The present study was undertaken to examine the drinking water quality of Rawal Treatment Plant, Rawalpindi and its distribution network by collecting samples from eight different locations. The aim was to determine potential relationship between the presence of microorganisms and chlorine residual in the distribution network. Quantification of chlorine residual, turbidity, standard plate count (SPC), fecal and total coliforms by Most Probable Number (MPN) was performed. Three different forms of chlorine were measured at each sampling station such as free chlorine, residual chlorine, chloramines and total chlorine residual. A critical evaluation of data presented indicated that pH generally ranged from 7.02–7.30; turbidity varied from 0.34–2.79 NTU; conductivity fluctuated from 359–374 μS/cm; and TDS values were found to be ranging between 180–187 mg/l. Station # 7 was found to be most contaminated. The value of total chlorine was found to be 0.86 to1.7 mg/l at Station # 3 and 6, respectively. Highest standard plate count was 62 CFU/ml at Station # 7. Total coliforms were less than 1.1 MPN/100 ml at almost most of the stations except at Station # 3 where it was found to be greater than 23.0 MPN /100 ml. Overall aim of this study is to create awareness about contamination of drinking water in the water distribution networks and to make recommendations to provincial agencies such as EPA, CDA and WASA that regular monitoring should be carried out to ensure that the chlorine residual is available at consumer end.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号