首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Forested riparian corridors are thought to minimize impacts of landscape disturbance on stream ecosystems; yet, the effectiveness of streamside forests in mitigating disturbance in urbanizing catchments is unknown. We expected that riparian forests would provide minimal benefits for fish assemblages in streams that are highly impaired by sediment or hydrologic alteration. We tested this hypothesis in 30 small streams along a gradient of urban disturbance (1–65% urban land cover). Species expected to be sensitive to disturbance (i.e., fluvial specialists and “sensitive” species that respond negatively to urbanization) were best predicted by models including percent forest cover in the riparian corridor and a principal components axis describing sediment disturbance. Only sites with coarse bed sediment and low bed mobility (vs. sites with high amounts of fine sediment) had increased richness and abundances of sensitive species with higher percent riparian forests, supporting our hypothesis that response to riparian forests is contingent on the sediment regime. Abundances of Etheostoma scotti, the federally threatened Cherokee darter, were best predicted by models with single variables representing stormflow (r2 = 0.34) and sediment (r2 = 0.23) conditions. Lentic-tolerant species richness and abundance responded only to a variable representing prolonged duration of low-flow conditions. For these species, hydrologic alteration overwhelmed any influence of riparian forests on stream biota. These results suggest that, at a minimum, catchment management strategies must simultaneously address hydrologic, sediment, and riparian disturbance in order to protect all aspects of fish assemblage integrity.  相似文献   

2.
Three geomorphic considerations that underpin the design and implementation of realistic and strategic river conservation and rehabilitation programs that work with the nature are outlined. First, the importance of appreciating the inherent diversity of river forms and processes is discussed. Second, river dynamics are appraised, framing the contemporary behavioral regime of a reach in relation to system evolution to explain changes to river character and behavior over time. Third, the trajectory of a reach is framed in relation to downstream patterns of river types, analyzing landscape connectivity at the catchment scale to interpret geomorphic river recovery potential. The application of these principles is demonstrated using extensive catchment-scale analyses of geomorphic river responses to human disturbance in the Bega and Upper Hunter catchments in southeastern Australia. Differing implications for reach- and catchment-scale rehabilitation planning prompt the imperative that management practices work with nature rather than strive to ‘fight the site.’  相似文献   

3.
ABSTRACT: Successful stream rehabilitation requires a shift from narrow analysis and management to integrated understanding of the links between human actions and changing river health. At study sites in the Puget Sound lowlands of western Washington State, landscape, hydrological, and biological conditions were evaluated for streams flowing through watersheds with varying levels of urban development. At all spatial scales, stream biological condition measured by the benthic index of biological integrity (B‐IBI) declined as impervious area increased. Impervious area alone, however, is a flawed surrogate of river health. Hydrologic metrics that reflect chronic altered streamflows, for example, provide a direct mechanistic link between the changes associated with urban development and declines in stream biological condition. These measures provide a more sensitive understanding of stream basin response to urban development than do treatment of each increment of impervious area equally. Land use in residential backyards adjacent to streams also heavily influences stream condition. Successful stream rehabilitation thus requires coordinated diagnosis of the causes of degradation and integrative management to treat the range of ecological stressors within each urban area, and it depends on remedies appropriate at scales from backyards to regional storm water systems.  相似文献   

4.
5.
The Bird Integrity Index (BII) presented here uses bird assemblage information to assess human impacts to 28 stream reaches in the Blue Mountains of eastern Oregon. Eighty-one candidate metrics were extracted from bird survey data for testing. The metrics represented aspects of bird taxonomic richness, tolerance or intolerance to human disturbance, dietary preferences, foraging techniques, and nesting strategies that were expected to be positively or negatively affected by human activities in the region. To evaluate the responsiveness of each metric, it was plotted against an index of reach and watershed disturbance that included attributes of land use/land cover, road density, riparian cover, mining impacts, and percent area in clearcut and partial-cut logging. Nine of the 81 candidate bird metrics remained after eliminating unresponsive and highly correlated metrics. Individual metric scores ranged from 0 to 10, and BII scores varied between 0 and 100. BII scores varied from 78.6 for a minimally disturbed, reference stream reach to 30.4 for the most highly disturbed stream reach. The BII responded clearly to varying riparian conditions and to the cumulative effects of disturbances, such as logging, grazing, and mining, which are common in the mountains of eastern Oregon. This BII for eastern Oregon was compared to an earlier BII developed for the agricultural and urban disturbance regime of the Willamette Valley in western Oregon. The BII presented here was sensitive enough to distinguish differences in condition among stream riparian zones with disturbances that were not as obvious or irreversible as those in the agricultural/urban conditions of western Oregon.  相似文献   

6.
Classic island biogeographic theory predicts that equilibrium will be reached when immigration and extinction rates are equal. These rates are modified by number of species in source area, number of intermediate islands, distance to recipient island, and size of intermediate islands. This general model has been variously modified and proposed to be a stochastic process with minimal competitive interaction or heavily deterministic. Predictive models of recovery (regardless of the end point chosen) have been based on the appropriateness of the MacArthur-Wilson models. Because disturbance frequency, severity, and intensity vary in their effect on community dynamics, we propose that disturbance levels should first be defined before evaluating the applicability of island biogeographical theory. Thus, we suggest a classification system of four disturbance levels based on recovery patterns by primary and secondary succession and faunal organization by primary (invasion of vacant areas) and secondary (remnant of previous community remains) processes. Level 1A disturbances completely destroy communities with no upstream or downstream sources of colonizers, while some component of near surface interstitial or hyporheic flora and fauna survive level 1B disturbances. Recovery has been reported to take from five years to longer than 25 years, when most invading colonists do not have an aerial form. Level 2 disturbances destroy the communities but leave upstream and downstream colonization sources (level 2A) and, sometimes, a hyporheic pool of colonizers (level 2B). Recovery studies have indicated primary succession and faunal structuring patterns (2A) with recovery times of 90–400 days or secondary succession and faunal structuring patterns (2B) with recovery times of 40–250 days. Level 3 disturbances result in reduction in species abundance and diversity along a stream reach; level 4 disturbances result in reduction of abundance and diversity in discrete patches. Both disturbance types lead to secondary succession and secondary faunal organization. Recovery rates can be quite rapid, varying from less than 10 days to 100 or more days. We suggest that island biogeographical models seem appropriate to recovery by secondary processes after level 3 and 4 disturbances, where competition may be an important organizing factor, while models of numerical abundance and resource tracking are probably of better use where community development is by primary succession (levels 1 and 2). Development of predictive recovery models requires research that addresses a number of fundamental questions. These include the role of hydrologic patterns on colonization dynamics, the role of nonaerial colonizers in recovery from level 1 disturbances, and assessment of the impact of changes in the order of invasion by colonizers of varying energetic efficiencies. Finally, we must be able to assemble these data and determine whether information that guides community organization at one level of disturbance can provide insights into colonization dynamics at other levels.  相似文献   

7.
One reach of a northern California stream, burned by intense wildfire in 1979, was studied to monitor changes and recovery from the fire. Benthic macroinvertebrates collected three weeks and one to four, six, eight, and 11 years following the wildfire were used to assess stream condition and compared to samples from a reach of a nearby unburned stream. Transportable sediment was measured 11 years following the fire. The fire was also used as a worst case example to compare results with a standard cumulative watershed effects assessment methodology. Benthic invertebrate density and taxa richness of the burned reach were both low compared to the unburned reach three weeks after the fire. Mean density was significantly higher in the burned reach in the three years following the fire, while taxa richness was significantly lower in the burned reach over the same time period. Higher density and lower richness in the burned reaches persisted throughout the study period but were not significant after three years. Mean Shannon diversity of the burned reach was significantly lower than that of the unburned reach for each year of the study, although absolute differences diminished throughout the 11-year study period. Transportable sediment was significantly higher in the burned reach than the unburned comparison. Pearson correlations between sediment and biological metrics were weak. Although the correlation between invertebrate diversity and a measure of watershed disturbance (equivalent roaded acres) was high (r=0.95) for the burned watershed, the measure appeared to be a poor indicator of cumulative effects on stream condition. The measure (ERA) was poorly correlated with invertebrate diversity in the unburned reach and, while the ERA calculations indicated substantial recovery, biological and physical measures indicated recovery of the burned stream reach was incomplete.  相似文献   

8.
This paper recounts our predictions of channel evolution of the Black Vermillion River (BVR) and sediment yields associated with the evolutionary sequence. Channel design parameters allowed for the prediction of stable channel form and coincident sediment yields. Measured erosion rates and basin‐specific bank erosion curves aided in prediction of the stream channel succession time frame. This understanding is critical in determining how and when to mitigate a myriad of instability consequences. The BVR drains approximately 1,062 km2 in the glaciated region of Northeast Kansas. Once tallgrass prairie, the basin has been modified extensively for agricultural production. As such, channelization has shortened the river by nearly 26 km from pre‐European dimensions; shortening combined with the construction of numerous flow‐through structures have produced dramatic impacts on discharge and sediment dynamics. Nine stream reaches were established within three main tributaries of the BVR in 2007. Reaches averaged 490 m in length, were surveyed, and assessed for channel stability, while resurveys were conducted annually through 2010 to monitor change. This work illustrates the association of current stream state, in‐channel sediment contributions, and prediction of future erosion rates based on stream evolution informed by multiple models. Our findings suggest greater and more rapid sedimentation of a federal reservoir than has been predicted using standard sediment prediction methods.  相似文献   

9.
10.
Habitats or environmental factors that convey spatial and temporal resistance and/or resilience to biotic communities that have been impacted by biophysical disturbances may be called refugia. Most refugia in rivers are characterized by extensive coupling of the main channel with adjacent streamside forests, floodplain features, and groundwater. These habitats operate at different spatial scales, from localized particles, to channel units such as pools and riffles, to reaches and longer sections, and at the basin level. A spatial hierarchy of different physical components of a drainage network is proposed to provide a context for different refugia. Examples of refugia operating at different spatial scales, such as pools, large woody debris, floodplains, below dams, and catchment basins are discussed. We hope that the geomorphic context proposed for examining refugia habitats will assist in the conservation of pristine areas and attributes of river systems and also allow a better understanding of rehabilitation needs in rivers that have been extensively altered.  相似文献   

11.
Recovery of lotic macroinvertebrate communities from disturbance   总被引:7,自引:0,他引:7  
Ecosystem disturbances produce changes in macrobenthic community structure (abundances, biomass, and production) that persist for a few weeks to many decades. Examples of disturbances with extremely long-term effects on benthic communities include contamination by persistent toxic agents, physical changes in habitats, and altered energy inputs. Stream size, retention, and local geomorphology may ameliorate the influence of disturbances on invertebrates. Disturbances can alter food webs and may select for favorable genotypes (e.g., insecticidal resistance). Introductions of pesticides into lotic ecosystems, which do not result in major physical changes within habitats, illustrate several factors that influence invertebrate recovery time from disturbance. These include: (1) magnitude of original contamination, toxicity, and extent of continued use; (2) spatial scale of the disturbance; (3) persistence of the pesticide; (4) timing of the contamination in relation to the life history stages of the organisms; (5) vagility of populations influenced by pesticides; and (6) position within the drainage network. The ability of macroinvertebrates to recolonize denuded stream habitats may vary greatly depending on regional life histories, dispersal abilities, and position within the stream network (e.g., headwaters vs larger rivers). Although downstream drift is the most frequently cited mechanism of invertebrate recolonization following disturbance in middle- and larger-order streams, evidence is presented that shows aerial recolonization to be potentially important in headwater streams. There is an apparent stochastic element operating for aerial recolonization, depending on the timing of disturbance and flight periods of various taxa. Available evidence indicates that recolonization of invertebrate taxa without an aerial adult stage requires longer periods of time than for those that possess winged, terrestrial adult stages (i.e., most insects). Innovative, manipulative experiments are needed in order to address recolonization mechanisms of animals inhabiting streams that differ in size, latitude, disturbance frequency and magnitude, as well as the potential influence of early colonists on successional sequences of species following disturbance.  相似文献   

12.
This study quantified the impact of bison and cattle grazing management practices on bare ground coverage at the watershed, riparian, and forested riparian scales within the Flint Hills ecoregion in Kansas. We tested for correlations between bare ground coverage and fluvial suspended sediment concentrations during base‐flow and storm‐flow events. We used remotely sensed imagery combined with field surveys to classify ground cover and quantify the presence of bare ground. Base‐flow water samples were collected bi‐monthly during rain‐free periods and 24 h following precipitation events. Storm‐flow water samples were collected on the rising limb of the hydrograph, using single‐stage automatic samplers. Ungrazed treatments contained the lowest coverage of bare ground at the watershed, riparian, and forested riparian scales. Bison treatments contained the highest coverage of bare ground at the watershed scale, while high‐density cattle treatments contained the highest coverage of bare ground at the riparian and forested riparian scales. In bison and cattle‐grazed treatments, a majority of bare ground was located near fence lines, watershed boundaries, and third‐ and fourth‐order stream segments. Inorganic sediment concentrations at base flow were best predicted by riparian bare ground coverage, while storm‐flow sediment concentrations were best predicted by watershed scale bare ground coverage.  相似文献   

13.
Applications of Turbidity Monitoring to Forest Management in California   总被引:1,自引:1,他引:0  
Many California streams have been adversely affected by sedimentation caused by historic and current land uses, including timber harvesting. The impacts of timber harvesting and logging transportation systems on erosion and sediment delivery can be directly measured, modeled, or inferred from water quality measurements. California regulatory agencies, researchers, and land owners have adopted turbidity monitoring to determine effects of forest management practices on suspended sediment loads and water quality at watershed, project, and site scales. Watershed-scale trends in sediment discharge and responses to current forest practices may be estimated from data collected at automated sampling stations that measure turbidity, stream flow, suspended sediment concentrations, and other water quality parameters. Future results from these studies will provide a basis for assessing the effectiveness of modern forest practice regulations in protecting water quality. At the project scale, manual sampling of water column turbidity during high stream flow events within and downstream from active timber harvest plans can identify emerging sediment sources. Remedial actions can then be taken by managers to prevent or mitigate water quality impacts. At the site scale, manual turbidity sampling during storms or high stream flow events at sites located upstream and downstream from new, upgraded, or decommissioned stream crossings has proven to be a valuable way to determine whether measures taken to prevent post-construction erosion and sediment production are effective. Turbidity monitoring at the project and site scales is therefore an important tool for adaptive management. Uncertainty regarding the effects of current forest practices must be resolved through watershed-scale experiments. In the short term, this uncertainty will stimulate increased use of project and site-scale monitoring.  相似文献   

14.
Because catchment characteristics determine sediment and nutrient inputs to streams, upland disturbance can affect stream chemistry. Catchments at the Fort Benning Military Installation (near Columbus, Georgia) experience a range of upland disturbance intensities due to spatial variability in the intensity of military training. We used this disturbance gradient to investigate the effects of upland soil and vegetation disturbance on stream chemistry. During baseflow, mean total suspended sediment (TSS) concentration and mean inorganic suspended sediment (ISS) concentration increased with catchment disturbance intensity (TSS: R2= 0.7, p = 0.005, range = 4.0-10.1 mg L(-1); ISS: R2= 0.71, p = 0.004, range = 2.04-7.3 mg L(-1)); dissolved organic carbon (DOC) concentration (R2= 0.79, p = 0.001, range = 1.5-4.1 mg L(-1)) and soluble reactive phosphorus (SRP) concentration (R2= 0.75, p = 0.008, range = 1.9-6.2 microg L(-1)) decreased with increasing disturbance intensity; and ammonia (NH4+), nitrate (NO3-), and dissolved inorganic nitrogen (DIN) concentrations were unrelated to disturbance intensity. The increase in TSS and ISS during storms was positively correlated with disturbance (R2= 0.78 and 0.78, p = 0.01 and 0.01, respectively); mean maximum change in SRP during storms increased with disturbance (r = 0.7, p = 0.04); and mean maximum change in NO3- during storms was marginally correlated with disturbance (r = 0.58, p = 0.06). Soil characteristics were significant predictors of baseflow DOC, SRP, and Ca2+, but were not correlated with suspended sediment fractions, any nitrogen species, or pH. Despite the largely intact riparian zones of these headwater streams, upland soil and vegetation disturbances had clear effects on stream chemistry during baseflow and stormflow conditions.  相似文献   

15.
ABSTRACT: The Agricultural Drainage and Pesticide Transport model was used to examine the relationship between fish and suspended sediment in the context of a proposed total maximum daily load (TMDL) in two agricultural watersheds in Minnesota. During a 50‐year simulation, Wells Creek, a third‐order cold water stream, had an estimated 1,164 events (i.e., one or more consecutive days of estimated sediment loading) and the Chippewa River, a fourth‐order warm water stream, had 906 events of measurable suspended sediment. Sublethal thresholds were exceeded for 970 events and lethal levels for 194 events for brown trout in Wells Creek, whereas adult nonsalmonids would have experienced sublethal levels for 923 events and lethal levels for 241 events. Sublethal levels were exceeded for 756 events and lethal thresholds were exceeded for 150 events in the Chippewa River. Nonsalmonids would have experienced 15 events of mortality between 0 and 20 percent in Wells Creek. In the Chippewa River, there were 35 events of mortality between 0 and 20 percent and one event in which mortality could have exceeded 20 percent. The Minnesota Pollution Control Agency has proposed listing stream reaches as being impaired for turbidity at 25 NTU, which is approximately 46 mg suspended sediment/1. We estimated that 46 mg/1 would be exceeded approximately 30 days in a year (d/yr) in both systems. A TMDL of 46 mg SS/1 may be too high to ensure that stream fishes are not negatively affected by suspended sediment. We recommend that an indicator incorporating the duration of exposure be applied.  相似文献   

16.
River engineers use sediment transport formulas to design regulated channels in which the river's ability to transport bedload would remain in equilibrium with the delivery of materials from upstream. In gravel-bed rivers, a number of factors distort the simple relationship between particle size and hydraulic parameters at the threshold of sediment motion, inherent in the formulas. This may lead to significant errors in predicting the bedload transport rates in such streams and hence to instability of their regulated channels. The failure to recognize a nonstationary river regime may also result in unsuccessful channelization. Rapid channel incision has followed channelization of the main rivers of the Polish Carpathians in the 20th century. A case study of the Raba River shows that incision has resulted from the increase in stream power caused by channelization and the simultaneous reduction in sediment supply due to variations in basin management and a change in flood hydrographs. Calculations of bedload transport in the river by the Meyer-Peter and Müller formula are shown to have resulted in unrealistic estimates, perhaps because the different degree of bed armoring in particular cross-sections was neglected. It would have been possible to avoid improper channelization if the decreasing trend in sediment load of the Carpathian rivers had been recognized on the basis of geomorphological and sedimentological studies. Allowing the rivers to increase their sinuosity, wherever possible without an erosional threat to property and infrastructure, and preventing further in-stream gravel mining are postulated in order to arrest channel incision and reestablish the conditions for water and sediment storage on the floodplains.  相似文献   

17.
Wetland conservation is a critical environmental management issue. An emerging approach to this issue involves the construction of wetland environments. Because our understanding of wetlands function is incomplete and such projects must be monitored closely because they may have unanticipated impacts on ecological, hydrological, and geomorphological systems. Assessment of project-related impacts on stream channel stability is an important component of riverine wetlands construction and operation because enhanced erosion or deposition associated with unstable rivers can lead to loss of property, reductions in channel capacity, and degradation of water quality, aquatic habitat, and riparian aesthetics. The water/sediment budget concept provides a scientific framework for evaluating the impact of riverine wetlands construction and operation on stream channel stability. This concept is based on the principle of conservation of mass, i.e., the total amount of water and sediment moving through a specific reach of river must be conserved. Long-term measurements of channel sediment storage and other water/sediment budget components provide the basis for distinguishing between project-related impacts and those resulting from other causes. Changes in channel sediment storage that occur as a result of changes in internal inputs of water or sediment signal a project-related impact, whereas those associated with changes in upstream or tributary inputs denote a change in environmental conditions elsewhere in the watershed. A geomorphic assessment program based on the water/sediment budget concept has been implemented at the site of the Des Plaines River Wetlands Demonstration Projection near Chicago, Illinois, USA. Channel sediment storage changed little during the initial construction phase, suggesting that thus far the project has not affected stream channel stability.  相似文献   

18.
The purpose of this research is to study the temporal and spatial sediment delivery to and within the stream network following a wildfire on a chaparral watershed in Arizona, USA. Methods include interpretation of channel processes (aggradation, degradation) from sequential aerial photographs, field measurements of sediment delivery, and overland flow from ten microwatersheds having different vegetation cover (no vegetation, chaparral cover, and bare with vegetation buffer strips). The response of the watershed to the fire was very complex. The fire reduced the chaparral cover to zero in most locations and severe erosion led to filling of the channels by sediment. With vegetation recovery, sediment delivery from the watershed practically ceased. Vegetation buffer strips were mainly responsible for arresting the sediment delivered from bare hillslopes. Relatively clear water, entering the channels, caused degradation in the tributaries that delivered the sediment into the main stream at El Oso Creek. Due to high water infiltration by immense volumes of sediment deposits in the middle reach, the sediment from the tributaries was deposited as in-channel fans. In contrast, the upper reach of El Oso Creek behaved similarly to the tributaries. It aggraded after the fire and was followed by degradation. The low reach of El Oso Creek is degrading because it is still adjusting base level to the incision of the master stream. Implications of this study are that land managers, concerned to avoid severe erosion and sedimentation following disturbance, should concentrate on the establishment and enhancement of vegetation buffer strips along channel banks.  相似文献   

19.
We evaluated the cumulative effects of land use disturbance resulting from forest harvesting, and exploration and extraction of oil and gas resources on the occurrence and structure of stream fish assemblages in the Kakwa and Simonette watersheds in Alberta, Canada. Logistic regression models showed that the occurrence of numerically dominant species in both watersheds was related to two metrics defining industrial activity (i.e., percent disturbance and road density), in addition to stream wetted width, elevation, reach slope, and percent fines. Occurrences of bull trout, slimy sculpin, and white sucker were negatively related to percent disturbance and that of Arctic grayling, and mountain whitefish were positively related to percent disturbance and road density. Assessments of individual sites showed that 76% of the 74 and 46 test sites in the Kakwa and Simonette watersheds were possibly impaired or impaired. Impaired sites in the Kakwa Watershed supported lower densities of bull trout, mountain whitefish, and rainbow trout, but higher densities of Arctic grayling compared to appropriate reference sites. Impaired sites in the Simonette Watershed supported lower densities of bull trout, but higher densities of lake chub compared to reference sites. Our data suggest that current levels of land use disturbance alters the occurrence and structure of stream fish assemblages.  相似文献   

20.
ABSTRACT: Timber harvest best management practices (BMPs) in Washington State were evaluated to determine their effectiveness at achieving water quality standards pertaining to sediment related effects. A weight‐of‐evidence approach was used to determine BMP effectiveness based on assessment of erosion with sediment delivery to streams, physical disturbance of stream channels, and aquatic habitat conditions during the first two years following harvest. Stream buffers were effective at preventing chronic sediment delivery to streams and physical disturbance of stream channels. Practices for ground‐based harvest and cable yarding in the vicinity of small streams without buffers were ineffective or only partially effective at preventing water quality impacts. The primary operational factors influencing BMP effectiveness were: the proximity of ground disturbing activities to streams; presence or absence of designated stream buffers; the use of special timber falling and yarding practices intended to minimize physical disturbance of stream channels; and timing of harvest to occur during snow cover or frozen ground conditions. Important site factors included the density of small streams at harvest sites and the steepness of inner stream valley slopes. Recommendations are given for practices that provide a high confidence of achieving water quality standards by preventing chronic sediment delivery and avoiding direct stream channel disturbance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号