首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Renewable resource-based composites were prepared with acorn powder and Thermoplastic resin poly(lactic acid) (PLA) by twin-screw extrusion followed by injection molding processing or hot-compression molding processing. The study of the composites microstructure showed poor adhesion between acorn powder and PLA matrix. The hygroscopicity, mechanical properties and melt flow property of composites were promising even though the composites had a 70 wt% content of acorn powder. Silane coupling agent, 4,4′-Methylenebis (phenyl isocyanate) and PLA grafted with maleic anhydride did not show obvious effect on mechanical properties of composites. The impact resistance strength of reinforced composites with steel fiber webs were improved greatly in comparison with those having no steel fiber webs. Thermal properties results of DSC and DMA showed that the presence of acorn powder significantly affected the crystallinity, crystallization temperature (Tc), glass transition temperature (Tg) and melting temperature (Tm) of PLA matrix. The study results proved that composites had superior mechanical properties, enough to partially replace the conventional thermoplastic plastics.  相似文献   

2.
This study focused on improving the material properties of pea thermoplastic starch (TPS) with polycaprolactone (PCL) and flax fiber. Accordingly, composites of glycerol-plasticized pea starch, polycaprolactone, and flax fiber were prepared through solid-phase compounding and compression-molding. The specimens were characterized through scanning electron microscopy, tensile test, moisture absorption test, and differential scanning calorimetry. Morphological studies of the tensile fracture surfaces revealed poor TPS-PCL interfacial interaction and limited TPS-flax fiber interfacial bonding. The composites showed significant improvements in tensile strength with reduced moisture absorption capability essentially due to the hydrophobicity of PCL. Individual components of the composites retained their respective thermal properties, an indication of thermodynamic immiscibility.  相似文献   

3.
Green composites obtained from biodegradable renewable resources have gained much attention due to environmental problems resulting from conventionally synthetic plastics and a global increasing demand for alternatives to fossil resources. In this work we used different cellulose fibers from used office paper and newspaper as reinforcement for thermoplastic starch (TPS) in order to improve their poor mechanical, thermal and water resistance properties. These composites were prepared by using tapioca starch plasticized by glycerol (30 % wt/wt of glycerol to starch) as matrix reinforced by the extracted cellulose fibers with the contents ranging from 0 to 8 % (wt/wt of fibers to matrix). Properties of composites were determined by mechanical tensile tests, differential scanning calorimetry, thermogravimetric analysis, water absorption measurements, scanning electron microscopy, and soil burial tests. The results showed that the introduction of either office paper or newspaper cellulose fibers caused the improvement of tensile strength and elastic modulus, thermal stability, and water resistance for composites when compared to the non-reinforced TPS. Scanning electron microscopy showed a good adhesion between matrix and fibers. Moreover, the composites biological degraded completely after 8 weeks but required a longer time compared to the non-reinforced TPS. The results indicated that these green composites could be utilized as commodity plastics being strong, inexpensive, plentiful and recyclable.  相似文献   

4.
Sisal fibers bleached with sodium-hydroxide followed by hydrogen peroxide treatment were incorporated in a thermoplastic starch/ε-polycaprolactone (TPS/PCL) blend via extrusion processing. These samples with smooth and homogenous surfaces were examined for their property, biodegradability and water absorption. Scanning electron microscopy revealed that the fibers were well dispersed in the matrix. In addition, it was found that the fibers and matrices interacted strongly. Blends with 20 % (dry weight-basis) fiber content showed some fiber agglomeration. Whereas blends with 10 % fibers showed increased crystallinity and lower water absorption capacity. The CO2 evolution study showed that the thermoplastic starch samples without any additives had the highest rate and extent of degradation whereas the neat PCL samples had the lowest degradation rate. Addition of fiber to the TPS/PCL blend exhibited the degradation rates and extents that were somewhere in between the pure TPS and neat PCL. This work demonstrates that TPS/PCL composites reinforced with bleached sisal has superior structural characteristics and water resistance and thus, can be used as polymeric engineering composites for different applications.  相似文献   

5.
A novel biodegradable polymer based on glycerol, succinic anhydride and maleic anhydride, poly(glycerol succinate-co-maleate), poly(GlySAMA), was synthesized by melt polycondensation and tested as a matrix for composites with nanocrystalline cellulose. This glycerol-based polymer is thermally stable as a consequence of its targeted cross-linked structure. To broaden its range of properties, it was specifically formulated with nanocrystalline cellulose (NCC) at concentrations of 1, 2 and 4 wt%, and showed improved mechanical properties with NCC. Specifically, the effect of reinforcement on mechanical properties, thermal stability, structure, and biodegradability was evaluated, respectively, by tensile tests and thermogravimetric analyses, X-ray diffraction and respirometry. The neat poly(GlySAMA) polymer proved flexible, exhibiting an elongation-to-break of 8.8 % while the addition of nanowhiskers (at 4 wt%) caused tensile strength and Young’s modulus to increase, 20 and 40 %, respectively. Stiffness improved without significantly decreasing thermal stability as measured by thermogravimetric analysis. Biodegradation tests indicated that all samples were degradable but NCC reduced the rate of biodegradation.  相似文献   

6.
Polylactic acid (PLA) composites comprising up to 25 wt% cotton linter (CL) or up to 50 % maple wood fibre (WF) were prepared by compounding and injection moulding. A reduction of crystallinity in the PLA matrix was observed as a result of the thermal processing method. These PLACL and PLAWF composites provided excellent improvements in both stiffness (with increases in tensile and flexural modulus) and toughness (increases in notched impact strength) properties over the neat PLA resin, while the tensile and flexural strengths of the composites were generally unchanged, while the strain at break values were reduced in comparison to the neat PLA. DMA results indicated incorporating these fibres caused the mechanical loss factor (tan δ) to decrease, suggesting better damping capabilities were achieved with the composites. SEM analysis of the impact fractured surfaces of the PLACL composites showed debonding-cavitation at the matrix-fibre interface while the PLAWF composites showed good wetting along its matrix-fibre interface. The composting of these composites up to 90 days showed that the degradation onset time was increased when increasing the fibre loadings, but the maximum degree of degradation and the maximum daily rates of degradation were decreased compared to neat PLA. On a weight basis of fibre loading, the PLACL composites had a quicker onset of biodegradation, a higher maximum daily rate of biodegradation and, overall, a higher degree of biodegradation at 90 days than the PLAWF composites, possibly due to the quicker thermal hydrolysis observed in the PLA matrix of the PLACL composites during processing and composting.  相似文献   

7.
Poly(vinyl chloride) (PVC) and natural fiber composites were prepared by melt compounding and compression molding. The influence of fiber type (i.e., bagasse, rice straw, rice husk, and pine fiber) and loading level of styrene-ethylene-butylene-styrene (SEBS) block copolymer on composite properties was investigated. Mechanical analysis showed that storage modulus and tensile strength increased with fiber loading at the 30% level for all composites, but there was little difference in both properties among the composites from various fiber types. The use of SEBS decreased storage moduli, but enhanced tensile strength of the composites. The addition of fiber impaired impact strength of the composites, and the use of SEBS led to little change of the property for most of the composites. The addition of fiber to PVC matrix increased glass transition temperature (Tg), but lowered degradation temperature (Td) and thermal activation energy (Ea). After being immersed in water for four weeks, PVC/rice husk composites presented relatively smaller water absorption (WA) and thickness swelling (TS) rate compared with other composites. The results of the study demonstrate that PVC composites filled with agricultural fibers had properties comparable with those of PVC/wood composite.  相似文献   

8.
In this study, engineering thermoplastic composites were prepared from microcrystalline cellulose (MCC)-filled nylon 6. MCC were added to nylon 6 using melt mixing to produce compounded pellets. The MCC-filled nylon 6 composites with varying concentrations of MCC (from 2.5 to 30 wt%) were prepared by injection molding. The tensile and flexural properties of the nylon 6 composites were increased significantly with the addition of MCC. The maximum strength and modulus of elasticity for the nylon 6 composites were achieved at a MCC weight fraction of 20 %. The Izod impact strength of composites decreased with the incorporation of MCC without any surface treatments and coupling agent. This observation is quite expected for filled polymer systems and has been commonly observed. There was a strong correlation between density and tensile (r = 0.94) and flexural modulus of elasticity (r = 0.9). MCC filled composites manufactured by injection method had highly uniform density distribution through their thickness. The higher mechanical results with lower density demonstrate that MCC can be used as a sufficient reinforcing material for low cost, eco-friendly composites in the automotive industry especially for under-the-hood applications (engine covers, intake manifolds and radiator end tanks) as well as in other applications such as the building and construction industries, packaging, consumer products etc.  相似文献   

9.
Hybrid composites of thermoplastic biofiber reinforced with waste newspaper fiber (NF) and poplar wood flour (WF) were prepared. The weight ratio of the lignocellulosic materials to polymer was 30:70 (w:w). Polypropylene (PP) and maleic anhydride grafted polypropylene (MAPP) were also used as the polymer matrix and coupling agent, respectively. The mechanical properties, morphology and thermal properties were investigated. The obtained results showed that tensile and flexural modulus of the composites were significantly enhanced with addition of biofibers in both types (fiber and flour), as compared with pure PP. However, the increasing in WF content substantially reduced the tensile, flexural and impact modulus, but improved the thermal stability. This effect is explained by variations in fiber morphological properties and thermal degradation. Increasing fiber aspect ratio improved mechanical properties. The effect of fiber size on impact was minimal compared to the effects of fiber content. Scanning electron microscopy has shown that the composite, with coupling agent, promotes better fiber–matrix interaction. The largest improvement on the thermal stability of hybrid composites was achieved when WF was added more. In all cases, the degradation temperatures shifted to higher values after addition of MAPP. This work clearly showed that biofiber materials in both forms of fiber and flour could be effectively used as reinforcing elements in thermoplastic PP matrix.  相似文献   

10.
In the first part of this work, composites based on polypropylene (PP) and maple wood flour (MF) were prepared by melt compounding using twin-screw extrusion followed by compression molding. The morphological and mechanical properties of the composites were analyzed for three samples: PP, MF/PP and MF/PP containing maleic anhydride grafted polypropylene (MAPP) as coupling agent. The results showed that MF/PP composites have improved mechanical properties, especially tensile modulus (+33 %), with only 8 % increase in density. The addition of MAPP further improved the mechanical properties, in particular tensile modulus (up to 51 %), which could be related to better fiber/matrix adhesion. In the second step, nano crystalline cellulose (NCC) was added to all samples to produce NCC-MF/PP hybrid composites. From the mechanical analysis performed, the hybrid composites with MAPP have improved properties, especially tensile (+53 %) and flexural (+40 %) moduli. These results confirmed that multi-scale hybrid NCC-MF composites can substantially improve the mechanical properties of polyolefins with limited increase in density (14 %) leading to high specific properties.  相似文献   

11.
Dimensional stability and mechanical performance of polypropylene thermoplastic composites filled with sunflower stalk (SS) flour at 30, 40, 50, and 60 wt% contents of the SS flour were investigated. The thickness swelling and water absorption of the specimens increased with increasing SS flour content. The modulus in the flexural and tensile improved with increasing SS flour content while the tensile and flexural strengths of the specimens decreased. The use of maleic anhydride polypropylene (3 wt%) had a positive effect on the dimensional stability and mechanical properties of the polypropylene thermoplastic composites filled with SS flour. The melting temperature of polypropylene decreased with increasing content of the SS flour. The degree of crystallinity of filled polypropylene composites between fibre loading of 0–30 % by weight was higher than that of unfilled polypropylene composites. However, further increment in the filler content decreased the degree of crystallinity. The obtained results showed that SS flour could be potentially suitable raw material in the manufacture of polypropylene composites.  相似文献   

12.
This paper reports the effect of glycerol on thermal, mechanical and morphology of the wheat-flour based thermoplastic sheets (<3 mm) fabricated using single screw extrusion followed by compression molding. The amount of glycerol (plasticizer) added during the formulation varies from 20 to 35 % w/w (20, 23, 25, 30 and 35 % w/w). Results indicate that increase in the amount of glycerol in the starch based thermoplastic sheets, lowers its hardness and tensile properties while an increase in the melt flow index. Variation in the glycerol content from 20 to 25 % w/w increases the impact strength of the thermoplastic sheets beyond this limit it decreases. The contact angle analysis shows that glycerol has effect on the surface energy and work of adhesion of the thermoplastic sheets. However, the presence of glycerol has no significant influence on the thermal stability of thermoplastic sheets above 200 °C.  相似文献   

13.
Bloodmeal is a low value meat industry product and can be converted into a thermoplastic material. These novel thermoplastics often have inferior mechanical properties and require some degree of reinforcement. Reinforcement using octadecylamine (OAmine) modified bentonite have shown an increase in tensile strength from 7.69 to 9.26 MPa by using 2 parts clay per hundred parts bloodmeal. Unmodified clay did not lead to the same increase in strength. High shear during extrusion was not sufficient to prevent agglomeration at higher clay content leading to modified clay composites showing reduced tensile strength. Particle size of unmodified clay composites was small enough to lead to dispersion reinforcement, whereas modified clay composites showed even greater agglomeration, leading to a decrease in strength. It was concluded that the physical nature of the thermoplastic protein requires careful consideration as to the level of clay modification required.  相似文献   

14.
Wheat gluten based bioplastics with shrimp shell waste filler were prepared using compression molding. The effects of various amounts (0, 2.5, 5.0, 7.5 and 10 wt%) of shrimp shell powder and calcined shrimp shell powder on the tensile, morphological, thermal properties, and degradation of wheat gluten composites were investigated. The addition of shrimp shell powder improved the tensile properties of the wheat gluten composites. The tensile strength of the wheat gluten composite with 2.5 wt% of shrimp shell powder increased twofold compared to the wheat gluten based-bioplastic without shrimp shell loading. A comparison of the performance of the wheat gluten composites made with different shrimp shell types revealed that composites with calcined shrimp shell powder had better tensile, morphological and thermal properties due to the altered layer structure and higher mineral content resulting from calcination. Moreover, calcined shrimp shell powder had a significant influence on the degradation process of the wheat gluten composite.  相似文献   

15.
Polylactide (PLA) composites with 10–30 wt% of commercial fine grain filler of native cellulose were prepared by melt-mixing, and examined. The composite films had esthetic appearance, glossy surface, creamy color and density close to that of neat PLA. Good dispersion of the filler in PLA matrix was achieved. The composites were stiffer than neat PLA; in the glassy region the storage modulus increased by approx. 30 %. The tensile strength of the composite materials in the temperature range from 25 to 45 °C was similar to that of neat PLA. No marked decrease in molar mass of PLA in the composites occurred during processing in comparison to neat PLA. Moreover, thermogravimetry experiments demonstrated good thermal stability of the composites; 5 % weight loss occurred well above 300 °C.  相似文献   

16.
Biodegradable polymer was prepared as thermoplastic starch (TPS) using rice and waxy rice starches. In order to increase mechanical properties and reduce water absorption of the TPS, cotton fiber was incorporated as the fiber reinforcement into the TPS matrix. The effect of cotton fiber contents and lengths on properties of the TPS was examined. Internal mixer and compression molding machine were used to mix and shape the samples. It was found that the thermoplastic rice starch (TPRS) showed higher stress at maximum load and Young’s modulus but lower strain at maximum load than the thermoplastic waxy rice starch (TPWRS). In addition, stress at maximum load and Young’s modulus of both TPRS and TPWRS increased significantly with the addition of the cotton fiber. Cotton fiber contents and lengths also affected mechanical properties of the TPRS and TPWRS composites. Moreover, water absorption of the TPRS and TPWRS composites decreased by the use of the cotton fibers. FT-IR and XRD techniques were used to study a change in functional group and crystallinity of the thermoplastic starch composites. Morphological, thermal and biodegradable properties of different thermoplastic starch composites were also investigated.  相似文献   

17.
The aim of this study was to determine thermal and mechanical properties and applicability of ground chestnut shell waste as a filler for poly(lactic acid) composites. The used amount of filler was ranging from 2.5 to 30 wt%. Spectroscopic analysis of composites and its ingredients was conducted by means of FT-IR method. The mechanical and thermal properties of the composites were determined in the course of static tensile test, Dynstat impact strength test, DMTA analysis, and DSC method. The fractured surface morphology of biocomposites was evaluated by SEM analysis. Incorporation of the filler influenced the overall mechanical properties of the composites characterized by high stiffness and lowered impact resistance. Fabricated composites with different amounts of non-reactive natural waste filler exhibited acceptable mechanical and thermal properties. Therefore, these composites can be used as eco-friendly, biodegradable materials for low-demanding applications.  相似文献   

18.
This paper is an investigation of the polymer degradation process in two types of seawater (with and without microorganisms) sourced from the Baltic Sea. The chosen polymeric materials were polycaprolactone modified with either thermoplastic starch (PCL/TPS?>?85%) or calcium carbonate (60% PCL/40% CaCO3) compared directly against unmodified polycaprolactone. All samples were incubated for 28?weeks in seawater with and without microorganisms under laboratory conditions and analysed before and after the degradation process. Weight loss analysis, microscopic observations of polymer surfaces and tensile strength tests were used to determine the progress of polymer degradation. The experimental results obtained indicated, that in each of the experiments, degradation of tested polymeric samples occured. The process was more effective in seawater with microorganisms compared against systems without added microorganisms. The experiment in seawater demonstrated that modification of PCL with calcium carbonate did not encourage the degradation process; and in some circumstances inhibited it.  相似文献   

19.
In this work, rigid polyisocyanurate foams were prepared at partial substitution (0–70 wt%) of commercially available petrochemical polyol, with previously synthesized biopolyol based on crude glycerol and castor oil. Influence of the biopolyol content on morphology, chemical structure, static and dynamic mechanical properties, thermal insulation properties, thermal stability and flammability was investigated. Incorporation of 35 wt% of crude glycerol-based polyol had reduced average cell size by more than 30% and slightly increased closed cell content, simultaneously reducing thermal conductivity coefficient of foam by 12% and inhibiting their thermal aging. Applied modifications showed also positive impact on the mechanical performance of rigid foams. Increase of crosslink density resulted in enhancement of compressive strength by more than 100%. Incorporation of prepared biopolyol resulted in enhancement of thermal stability and changes in degradation pathway. Up to 35 wt% share of crude glycerol-based polyol, foams showed similar flammability as reference sample, which can be considered very beneficial from the environmental point of view.  相似文献   

20.
The aim of this study was to investigate the application of grapeseed oil, a waste product from the wine industry, as a renewable feedstock to make polyesters and to compare the properties of these materials with those derived from soybean and rapeseed oils. All three oils were epoxidized to give renewable epoxy monomers containing between 3.8 and 4.7 epoxides per molecule. Polymerisation was achieved with cyclic anhydrides catalysed by 4-methyl imidazole at 170 and 210 °C. Polymers produced from methyl tetrahydrophthalic anhydride (Aradur917®) had greater tensile strength and Young’s Modulus (tensile strength = 12.8 MPa, Young’s Modulus = 1005 MPa for grapeseed) than methyl nadic anhydride (MNA) derived materials (5.6 and 468 MPa for grapeseed) due to increased volume of MNA decreasing crosslink density. Soybean and grapeseed oils produced materials with higher tensile strength (5.6–29.3 MPa) than rapeseed derived polyesters (2.5–3.9 MPa) due to a higher epoxide functionality increasing crosslinking. T g’s of the polyesters ranged from ?36 to 62 °C and mirrored the trend in epoxide functionality with grapeseed producing higher T g polymers (?17 to 17 °C) than soybean (?25 to 6 °C) and rapeseed (?36 to ?27 °C). Grapeseed oil showed similar properties to soybean oil in terms of T g, thermal degradation and Young’s Modulus but produced polymers of lower tensile strength. Therefore grapeseed oil would only be a viable substitute for soybean for low stress applications or where thermal properties are more important.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号