首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The biodegradabilities of various plastics by anaerobic digested sludge were measured and compared with the biodegradabilities under simulated landfill conditions. Bacterial poly(3-hydroxy-butyrate-co-3-hydroxyvalerate) (PHB/HV; 92/8, w/w), a natural aliphatic polyester, degraded nearly to completion within 20 days of cultivation by anaerobic digested sludge, while synthetic aliphatic polyesters such as poly-lactic acid, poly(butylene succinate), and poly (butylene succinate-co-ethylene succinate) did not degrade at all in 100 days. Cellophane, which was used as a control material, exhibited a similar degradation behavior to PHB/HV. Under simulated landfill conditions, PHB/HV degraded quite well within 6 months. Synthetic aliphatic polyesters also showed significant weight losses through 1 year of cultivation. The acidic environment inside simulators generated by the degradation of biodegradable food wastes which comprised 34 % of municipal solid waste seems to cause the weight loss of synthetic aliphatic polyesters.  相似文献   

2.
A series of miscible blends consisting of cellulose acetate propionate (CAP) and poly(ethylene glutarate) (PEG) or poly(tetramethylene glutarate) (PTG) were evaluated in a static bench-scale simulated municipal compost environment. Samples were removed from the compost at different intervals, and the weight loss was determined before evaluation by gel permeation chromatography, scanning electron microscopy, and1H NMR. The type of polyester (PEG versus PTG) in the blend made no difference in composting rates. At fixed CAP degree of substitution (DS), when the content of polyester in the blend was increased, the rate of composting and the weight loss due to composting increased. When the CAP was highly substituted, little degradation was observed within 30 days and almost all of the weight loss was ascribed to loss of polyester. Although the polyester was still observed to degrade faster, when the CAP DS was below approximately 2.0, both components are observed to degrade. The data suggests that initial degradation of the polyester is by chemical hydrolysis and the rate of this hydrolysis is very dependent upon the temperature profile of the compost and upon the DS of the CAP.  相似文献   

3.
The present work mainly dedicated to fungal degradation of poly(butylene adipate-co-terephthalate) [PBAT], to enclose the role of fungi in a real process of biodegradation, the degree of degradation, and to understand the kinetics of PBAT biodegradation. Respirometer tests were realized in soil at 30 °C, and in compost at 30 and 58 °C. Results have shown that temperature is one of the essential parameters governing the fungal degradation of PBAT. Moreover, the final rates of PBAT biodegradation in an inoculated compost with fungi and in a real compost were found comparable, which means that the selected fungi were efficient as much as a mixture of bacteria and fungi. The curves of PBAT biodegradation were modeled by Hill sigmoid. Fungal degradation was completed by investigating the physical and the chemical properties of the polymer during the process of degradation using several analytical methods such as matrix assisted laser desorption ionization-time of fly spectroscopy, size exclusion chromatography, and differential scanning calorimetry. These experiments led to a better understanding of the various stages of fungal degradation of PBAT: hydrolysis as well as mineralization. Furthermore, the analysis of metabolizing products was investigated also.  相似文献   

4.
Biodegradability and Biodegradation of Polyesters   总被引:4,自引:0,他引:4  
A variety of biodegradable plastics have been developed in order to obtain useful materials that do not cause harm to the environment. Among the biodegradable plastics, aliphatic polyesters such as: poly(3-hydroxybutyrate) (PHB), poly(ε-caprolactone) (PCL), poly(butylene succinate) (PBS), and poly(l-lactide) (PLA) have become the focus of interest because of their inherent biodegradability. However, before their widespread applications, comprehensive studies on the biodegradability and biodegradation mechanisms of these polyesters are necessary. Thus, this paper describes the degradation mechanisms and the effects of various factors on the degradation of polyesters. The distribution of polymer-degrading microorganisms in the environment, different microorganisms and enzymes involved in the degradation of various polyesters are also discussed.  相似文献   

5.
Commercial poly(lactide) degradation was studied in an inert solid medium simulating compost conditions, with the aim to achieve a complete carbon balance of the polymer degradation. The mineralisation rate at the end of the test was compared to those obtained for poly(lactide) degradation in compost. It was shown that the mineralisation rate after 45 days of degradation was quite lower in inert solid medium than in compost but the standard deviation of data was enhanced. A protocol for both extraction and quantification of the carbon included in the different degradation by-products was proposed and the carbon balance of the polymer degradation was followed during the test with a satisfactory accuracy. The non-degraded PLA material was recovered during the test, hence the evolution of the glass transition temperature and the molecular weight was followed. A two-step degradation mechanism was highlighted in inert solid medium, showing the fundamental role of abiotic reactions for PLA degradation in compost.  相似文献   

6.
In this research, the thermal properties and crystallization behavior of novel poly(hexamethylene succinate-co-6 mol% butylene succinate) (PHBS) and its homopolymer poly(hexamethylene succinate) (PHS) were extensively studied. With respect to PHS, the introduction of a small content of butylene succinate (BS) unit slightly reduces the melting point and equilibrium melting point but hardly influences the glass transition temperature of PHBS. Despite crystallization temperature, PHS and PHBS crystallize through the same crystallization mechanism. At the same crystallization temperature, PHBS crystallizes more slowly than PHS; furthermore, lowering crystallization temperature enhances the crystallization rates of PHBS and PHS. The spherulites morphologies were observed for both of them, with the spherulites nucleation density of the copolymer being smaller than that of the homopolymer. PHBS and PHS share the same crystal structures, indicative of the location of BS unit in the amorphous region.  相似文献   

7.
Novel biodegradable thermoplastic elastomer based on epoxidized natural rubber (ENR) and poly(butylene succinate) (PBS) blend was prepared by a simple blend technique. Influence of blend ratios of ENR and PBS on morphological, mechanical, thermal and biodegradable properties were investigated. In addition, chemical interaction between ENR and PBS molecules was evaluated by means of the rheological properties and infrared spectroscopy. Furthermore, the phase inversion behavior of ENR/PBS blend was predicted by different empirical and semi-empirical models including Utracki, Paul and Barlow, Steinmann and Gergen models. It was found that the co-continuous phase morphology was observed in the blend with ENR/PBS about 58/42 wt% which is in good agreement with the model of Steinmann. This correlates well to morphological and mechanical properties together with degree of crystallinity of PBS in the blends. In addition, the biodegradability was characterized by soil burial test after 1, 3 and 9 months and found that the biodegradable ENR/PBS blends with optimum mechanical and biodegradability were successfully prepared.  相似文献   

8.
Returnable cups made of poly(lactic acid) (PLA) are employed as an example of products made of biodegradable plastics. Two kinds of PLA samples plates and powders with different shapes were prepared from PLA cups. The plates were cut from a cup using nippers. Powders were prepared using a rotation mechanical mixer for 45 min. PLA powders were separated by sieves with 60 meshes (250 μm) into a size ranging from 0 to 250 μm. An average diameter of powders separated by a sieve is 169 μm. Biodegradation tests of PLA plates, PLA powders and cellulose powders in controlled compost at 58 °C were performed using a Microbial Oxidative Degradation Analyzer (MODA) instrument according to ISO 14855-2. PLA powders showed almost the same biodegradation curve as that of cellulose powders. PLA plates biodegraded at a slower rate than PLA powders.  相似文献   

9.
Fungal Degradation of Poly(l-lactide) in Soil and in Compost   总被引:1,自引:1,他引:0  
The biodegradability of polymers by microorganisms is generally studied in a real environment that contains a natural mixture of fungi and bacteria. The present research mainly focused on the purely fungal degradation of poly(l-lactide), PLLA, to enclose the part of fungi in a real process of biodegradation and to understand the kinetics of biodegradation. Respirometric tests were realized in soil at 30?°C, and in compost at 30?and 58?°C. Results indicated that temperature is the predominant parameter governing the fungal degradation of PLLA. Moreover, in real compost, the biodegradation kinetics of the PLLA revealed a synergy between bacteria and fungi. The curves of PLLA and cellulose biodegradation were modeled by Hill sigmo?d. Fungal degradation was completed by investigating the physical and the chemical properties of the polymer during the process of degradation using several analytical methods such as matrix assisted laser desorption ionization-time of fly spectroscopy, infrared spectroscopy, size exclusion chromatography, and differential scanning calorimetry. These experiments led to a better understanding of the various stages of fungal degradation of PLLA: hydrolysis as well as mineralization. Furthermore, metabolizing products (by-products) of PLLA was investigated also.  相似文献   

10.
Seeds of red pepper and tomato were sowed and cultivated in a soil blended with powdery poly(l-lactide) (PLLA), and poly(butylene succinate) (PBS). PBS depressed the growth of the two plants significantly even at a concentration as low as 5%, whereas PLLA up to 35% affected negligibly or even boosted the growth of the two plants. pH and number of microbial cells in the soil after 80 days of cultivation were almost the same independently whether the soil was blended with the two polymers or not. In contrast, the molecular weight of PBS decreased much faster than that of PLLA. Because succinic acid and 1,4-butane diol, from which PBS was synthesized, exhibited toxicity to both plant and animal cells to retard the germination rate of young radish seeds and to deform the morphology of HeLa cells significantly [1], the monomers and the oligomers produced from the PBS degradation should have a detrimental influence on the growth of the two plants.  相似文献   

11.
An epoxy-based thermoplastic polyester, poly(hydroxy ester ether), was incubated under aerobic conditions in a laboratory-scale compost system for 168 days to evaluate its potential for biodegradation. Radiolabeled test polymer [uniformly 14C ring-labeled, poly(hydroxy ester ether)] was incorporated into a mature compost and a sludge-amended compost at a loading of 3 mg test polymer/g compost. 14C-Cellulose was used as the positive control and a biologically inhibited control reactor was used to assess abiotic degradation of the test polymer. Degradation of the test polymer was assessed by measuring the amount of 14C-CO2 from each of the test reactors. In addition, at selected time intervals subsamples of the compost were collected and serially extracted with water, methanol, and dimethylformamide to monitor degradation of the 14C-test polymer and provide a partial characterization of the degradation intermediates. Extensive degradation of 14C-poly(hydroxy ester ether) was observed in the test reactors with degradation half-life of the parent polymer (t 1/2) of approximately 32 days. By the end of the study, only 2% of the total 14C activity in the test reactors was attributed to intact polymer, with most of the measurable 14C activity converted to either 14C-CO2 (26% of total 14C activity) or nonextractable products (accounting for 60% of the total activity). In contrast to the test reactors, only 3% of the 14C-poly(hydroxy ester ether) added to the biologically inhibited control reactor was mineralized to 14C-CO2. The results obtained from the microbially active and biologically inhibited compost systems indicate that the poly(hydroxy ester ether) polymer was degraded, at least in part, by a biologically mediated process.  相似文献   

12.
High polymer blends of Polymethyl methacrylate (PMMA) with cellulose acetate (CA) and Cellulose acetate phthalate (CAP) of varying blend compositions have been prepared to study their biodegradation behavior and blend miscibility. Films of PMMA–CA, and PMMA–CAP blends have been prepared by solution casting using Acetone and Dimethyl formamide(DMF) as solvents respectively. Biodegradability of these blends has been studied by four different methods namely, soil burial test, enzymatic degradation, and degradation in phosphate buffer and activated sludge degradation followed by water absorption tests to support the degradation studies. Degradation analysis was done by weight loss method. The results of all the tests showed sufficient biodegradability of these blends. Degradability increased with the increase in CA and CAP content in the blend compositions. The miscibility of PMMA–CA and PMMA–CAP blends have been studied by solution viscometric and ultrasonic methods. The results obtained reveal that PMMA forms miscible blends with either CA or CAP in the entire composition range. Miscibility of the blends may be due to the formation of hydrogen bond between the carbonyl group of PMMA and the free hydroxyl group of CA and CAP.  相似文献   

13.
The biodegradability and the biodegradation rate of two kinds biodegradable polymers; poly(caprolactone) (PCL)-starch blend and poly(butylene succinate) (PBS), were investigated under both aerobic and anaerobic conditions. PCL-starch blend was easily degraded, with 88% biodegradability in 44 days under aerobic conditions, and showed a biodegradation rate of 0.07 day−1, whereas the biodegradability of PBS was only 31% in 80 days under the same conditions, with a biodegradation rate of 0.01 day−1. Anaerobic bacteria degraded well PCL-starch blend (i.e., 83% biodegradability for 139 days); however, its biodegradation rate was relatively slow (6.1 mL CH4/g-VS day) compared to that of cellulose (13.5 mL CH4/g-VS day), which was used as a reference material. The PBS was barely degraded under anaerobic conditions, with only 2% biodegradability in 100 days. These results were consistent with the visual changes and FE-SEM images of the two biodegradable polymers after the landfill burial test, showing that only PCL-starch blend had various sized pinholes on the surface due to attack by microorganisms. This result may be use in deciding suitable final disposal approaches of different types of biodegradable polymers in the future.  相似文献   

14.
Currently, cellulose microfibrils are being investigated as nanofillers for polymers to increase their biodegradability. However, until now there has been no report on their degradability by microorganisms. In this work the anaerobic degradation of cellulose microfibril films extracted from banana and plantain plant rachis residues has been studied. Samples were exposed to burial tests in nature compost during 14?days. Changes due to the degradation process were investigated by techniques as optical microscopy, tensile tests, viscosity measurements, ATR-FTIR spectroscopy, X-ray diffraction and thermogravimetric analysis. Biodegradability was higher for cellulose microfibril films extracted from banana (BCMF) than plantain films (PCMF). Growth of microorganism colonies on BCMF films and just yellowing on PCMF films was observed by microscopic analysis. New bands characteristic of aldehyde functional groups due to the breaking of ??-(1,4)-glycosidic bonds were observed in infrared spectra. This breakage was also responsible for the fall-down of mechanical properties and polymerization degree. X-ray diffraction and thermogravimetric analysis showed that BCMF films were at the first stage of degradation for the used burial test times because the microorganisms only attacked the amorphous cellulose leading to a slight increase in crystallinity. In the case of PCMF films this variation remained practically invariant.  相似文献   

15.
Three kinds of poly(butylene succinate)s (PBS) with different molecular weight were irradiated with electron beams in the presence of inorganic material. Fourteen kinds of inorganic materials were used in this work. The presence of inorganic material inside cross-linked PBS samples enhances the yield of gel formation. The heat stabilities of PBS samples were checked; it was found that silicon dioxide and carbon black significantly improve these properties. Enzymatic and soil burial tests were performed; the presence of these inorganic materials in cross-linked PBS accelerates the rate of biodegradation.  相似文献   

16.
Polycaprolactone (PCL) powders were prepared from PCL pellets using a rotation mechanical mixer. PCL powders were separated by sieves with 60 and 120 meshes into four classes; 0–125 μm, 125–250 μm, 0–250 μm and 250–500 μm. Biodegradation tests of PCL powders and cellulose powders in an aqueous solution at 25°C were performed using the coulometer according to ISO 14851. Biodegradation tests of PCL powders and cellulose powders in controlled compost at 58°C were performed by the Mitsui Chemical Analysis and Consulting Service, Inc. according to ISO 14855-1 and by using the Microbial Oxidative Degradation Analyzer (MODA) instrument according to ISO/DIS 14855-2. PCL powders were faster biodegraded than cellulose powders. The reproducibility of biodegradation of PCL powders is excellent. Differences in the biodegradation of PCL powders with different class were not observed by the ISO 14851 and ISO/DIS 14855-2. An enzymatic degradation test of PCL powders with different class was studied using an enzyme of Amano Lipase PS. PCL with smaller particle size was faster degraded by the enzyme. PCL powders with regulated sizes from 125 μm to 250 μm are proposed as a reference material for the biodegradation test.  相似文献   

17.
Degradation of Cellulose Acetate-Based Materials: A Review   总被引:1,自引:0,他引:1  
Cellulose acetate polymer is used to make a variety of consumer products including textiles, plastic films, and cigarette filters. A review of degradation mechanisms, and the possible approaches to diminish the environmental persistence of these materials, will clarify the current and potential degradation rates of these products after disposal. Various studies have been conducted on the biodegradability of cellulose acetate, but no review has been compiled which includes biological, chemical, and photo chemical degradation mechanisms. Cellulose acetate is prepared by acetylating cellulose, the most abundant natural polymer. Cellulose is readily biodegraded by organisms that utilize cellulase enzymes, but due to the additional acetyl groups cellulose acetate requires the presence of esterases for the first step in biodegradation. Once partial deacetylation has been accomplished either by enzymes, or by partial chemical hydrolysis, the polymer’s cellulose backbone is readily biodegraded. Cellulose acetate is photo chemically degraded by UV wavelengths shorter than 280 nm, but has limited photo degradability in sunlight due to the lack of chromophores for absorbing ultraviolet light. Photo degradability can be significantly enhanced by the addition of titanium dioxide, which is used as a whitening agent in many consumer products. Photo degradation with TiO2 causes surface pitting, thus increasing a material’s surface area which enhances biodegradation. The combination of both photo and biodegradation allows a synergy that enhances the overall degradation rate. The physical design of a consumer product can also facilitate enhanced degradation rate, since rates are highly influenced by the exposure to environmental conditions. The patent literature contains an abundance of ideas for designing consumer products that are less persistent in the outdoors environment, and this review will include insights into enhanced degradability designs.  相似文献   

18.
The effect of processing conditions (casting and extrusion) and plasticization on the disintegrability in compost of organically modified clay poly(3-hydroxybutyrate) nanocomposites was studied. Tributylhexadecylphosphonium bromide (TBHP) was used as organic modifier. As revealed by WAXS and TEM observations, intercalated nanobiocomposites with clay stacks and some individually dispersed platelets were obtained. The melting temperature of the neat PHB diminished with the addition of plasticizer, thus broadening the processing window. Biodegradation test revealed that while the clay slows down the degradation rate, the plasticizer increases the degradation of the samples, reaching a similar final percentage of disintegrability when both plasticizer and clay were added in the formulation.  相似文献   

19.
A simple and rapid in vitro test was designed for the assessment of the biodegradation of polyester-based plastics by selected biodegrading bacterial strains. Variovorax paradoxus LMG 16137 was used for the degradation of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and Acidovorax avenae subsp. avenae LMG 17238 fo the synthetic-based polyesters poly(-caprolactone) (PCL), poly(butylene succinate-co-butylene adipate), and a starch-PCL blend. Degradation by the bacteria was studied in liquid medium with the plastics (films, granules, and injection-molded test bars) as sole sources of carbon. Degradation was followed through gravimetry, growth of the culture, and tensile testing. The effects of incubation time, inoculum density, aeration, incubation temperature, and pH of the medium on the mass loss were investigated and conditions optimized. The test allowed to obtain reproducible results on the mass loss of plastic samples in less than 3 weeks and yielded excellent partially degraded samples for further analysis.  相似文献   

20.
Two biodegradable polyesters, poly(butylene adipate-co-terephthalate) (PBAT) and poly(butylene succinate) (PBS) were melt-compounded in a twin screw extruder to fabricate a novel PBS/PBAT blend. The compatibility of the blend was attributed to the transesterification reaction that was confirmed by Fourier transform infrared spectroscopy. The Gibbs free energy equation was applied to explain the miscibility of the resulting blend. Dynamic mechanical analysis of the blends exhibits an intermediate tanδ peak compared to the individual components which suggests that the blend achieved compatibility. One of the key findings is that the tensile strength of the optimized blend is higher than each of the blended partner. Rheological properties revealed a strong shear-thinning tendency of the blend by the addition of PBAT into PBS. The phase morphology of the blends was observed through scanning electron microscopy, which revealed that phase separation occurred in the blends. The spherulite growth in the blends was highly influenced by the crystallization temperature and composition. In addition, the presence of a dispersed amorphous phase was found to be a hindrance to the spherulite growth, which was confirmed by polarizing optical microscopy. Furthermore, the increased crystallization ability of PBAT in the blend systems gives the blend a balanced thermal resistance property.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号