首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The threat-sensitive predator avoidance hypothesis predicts that prey can assess the relative threat posed by a predator and adjust their behaviour to reflect the magnitude of the threat. We tested the ability of larval threespine sticklebacks to adjust their foraging in the presence of predators by exposing them to conspecific predators of various sizes and recording their foraging and predator avoidance behaviours. Larvae (<30 days post-hatch) displayed predator escape behaviours only towards attacking predators. At 3 weeks post-hatch larvae approached the predator after fleeing, a behaviour which may be the precursor to predator inspection. Larvae reduced foraging and spent less time in the proximity of large and medium-sized predators compared to small predators. The reduction in foraging was negatively correlated to the predator/larva size ratio, indicating that larvae increased their foraging as they increased in size relative to the predator. We conclude that larval sticklebacks can assess the threat of predation early in their ontogeny and adjust their behaviour accordingly.Correspondence to: J.A. Brown  相似文献   

2.
Recent investigations have indicated that animals are able to use chemical cues of predators to assess the magnitude of predation risk. One possible source of such cues is predator diet. Chemical cues may also be important in the development of antipredator behaviour, especially in animals that possess chemical alarm substances. Tadpoles of the common toad (Bufo bufo) are unpalatable to most vertebrate predators and have an alarm substance. Tadpoles of the common frog (Rana temporaria) lack both these characters. We experimentally studied how predator diet, previous experience of predators and body size affect antipredator behaviour in these two tadpole species. Late-instar larvae of the dragonfly Aeshna juncea were used as predators. The dragonfly larvae were fed a diet exclusively of insects, R. temporaria tadpoles or B. bufo tadpoles. R. temporaria tadpoles modified their behaviour according to the perceived predation risk. Depending on predator diet, the tadpoles responded with weak antipredatory behaviour (triggered by insect-fed predators) or strong behaviour (triggered by tadpole-fed predators) with distinct spatial avoidance and lowered activity level. The behaviour of B. bufo in predator diet treatments was indistinguishable from that in the control treatment. This lack of antipredator behaviour is probably related to the effective post-encounter defenses and more intense competitive regime experienced by B. bufo. The behaviour of both tadpole species was dependent on body size, but this was not related to predator treatments. Our results also indicate that antipredator behaviour is largely innate in tadpoles of both species and is not modified by a brief exposure to predators. Received: 22 August 1996 / Accepted after revision: 31 January 1997  相似文献   

3.
Flexible time budgets allow individual animals to buffer the effects of variable food availability by allocating more time to foraging when food density decreases. This trait should be especially important for marine predators that forage on patchy and ephemeral food resources. We examined flexible time allocation by a long-lived marine predator, the Common Murre (Uria aalge), using data collected in a five-year study at three colonies in Alaska (USA) with contrasting environmental conditions. Annual hydroacoustic surveys revealed an order-of-magnitude variation in food density among the 15 colony-years of study. We used data on parental time budgets and local prey density to test predictions from two hypotheses: Hypothesis A, the colony attendance of seabirds varies nonlinearly with food density; and Hypothesis B, flexible time allocation of parent murres buffers chicks against variable food availability. Hypothesis A was supported; colony attendance by murres was positively correlated with food over a limited range of poor-to-moderate food densities, but independent of food over a broader range of higher densities. This is the first empirical evidence for a nonlinear response of a marine predator's time budget to changes in prey density. Predictions from Hypothesis B were largely supported: (1) chick-feeding rates were fairly constant over a wide range of densities and only dropped below 3.5 meals per day at the low end of prey density, and (2) there was a nonlinear relationship between chick-feeding rates and time spent at the colony, with chick-feeding rates only declining after time at the colony by the nonbrooding parent was reduced to a minimum. The ability of parents to adjust their foraging time by more than 2 h/d explains why they were able to maintain chick-feeding rates of more than 3.5 meals/d across a 10-fold range in local food density.  相似文献   

4.
Predation risk and foraging behavior of the hoary marmot in Alaska   总被引:2,自引:0,他引:2  
Summary I observed hoary marmots for three field seasons to determine how the distribution of food and the risk of predation influenced marmots' foraging behavior. I quantified the amount of time Marmota caligata foraged in different patches of alpine meadows and assessed the distribution and abundance of vegetation eaten by marmots in these meadows. Because marmots dig burrows and run to them when attacked by predators, marmot-toburrow distance provided an index of predation risk that could be specified for different meadow patches.Patch use correlated positively with food abundance and negatively with predation risk. However, these significant relationships disappeared when partial correlations were calculated because food abundance and risk were intercorrelated. Using multiple regression, 77.0% of the variance in patch use was explained by a combination of food abundance, refuge burrow density, and a patch's distance from the talus where sleeping burrows were located. Variations in vigilance behavior (look-ups to search for predators while feeding) according to marmots' ages, the presence of other conspecifics, and animals' proximity to their sleeping burrows all indicated that predation risk influenced foraging.In a forage-manipulation experiment, the use of forage-enhanced patches increased six-fold, verifying directly the role of food availability on patch used. Concomitant with increased feeding, however, was the intense construction of refuge burrows in experimental patches that presumably reduced the risk of feeding. Thus, I suggest that food and predation risk jointly influence patch use by hoary marmots and that both factors must be considered when modeling the foraging behavior of species that can be predator and prey simultaneously.  相似文献   

5.
Most animals will reduce foraging activity in the presence of a predatory threat. However, little is known about the onset of this decision-making ability during the early life stages of fishes, and how the trade-off between foraging and predator-avoidance may be affected by changes in metabolic demand during ontogeny. To examine these issues, the foraging behaviour of larval shorthorn sculpin Myoxocephalus scorpius was monitored during visual exposure to a predatory threat (juvenile Atlantic cod, Gadus morhua) throughout development at 3°C (March–April, 2004). Larvae did not respond to predatory exposure during the first week post-hatch, but thereafter showed drastic reductions in foraging activity when exposed to predators. During early development, the mass-specific routine metabolism of shorthorn sculpin larvae displayed a triphasic ontogeny and peaked during metamorphosis. This high mass-specific metabolic demand could make reduced foraging under predation threat very costly during this stage of development. To further investigate this possibility, additional experiments were performed (March–April, 2005) where larvae were reared with visual exposure to predators for 6 h day−1 during the feeding period. At 7-week post-hatch, larvae exposed to predators were smaller (wet mass and SL), showed decreased levels of whole-body lipids and certain fatty acids, and experienced higher rates of mortality as compared to control larvae. In environments where abundant predators cause larval fish to reduce their foraging rate, growth and survival of larvae may be negatively affected. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
Antlion larvae are sand-dwelling insect predators, which ambush small arthropod prey while buried in the sand. In some species, the larvae construct conical pits and are considered as sit-and-wait predators which seldom relocate while in other species, they ambush prey without a pit but change their ambush site much more frequently (i.e., sit-and-pursue predators). The ability of antlion larvae to evade some of their predators which hunt them on the sand surface is strongly constrained by the degree of sand stabilization or by sand depth. We studied the effect of predator presence, predator type (active predatory beetle vs. sit-and-pursue wolf spider), and sand depth (shallow vs. deep sand) on the behavioral response of the pit building Myrmeleon hyalinus larvae and the sit-and-pursue Lopezus fedtschenkoi larvae. Predator presence had a negative effect on both antlion species activity. The sit-and-wait M. hyalinus larvae showed reduced pit-building activity, whereas the sit-and-pursue L. fedtschenkoi larvae decreased relocation activity. The proportion of relocating M. hyalinus was negatively affected by sand depth, whereas L. fedtschenkoi was negatively affected also by the predator type. Specifically, the proportion of individual L. fedtschenkoi that relocated in deeper sand was lower when facing the active predator rather than the sit-and-pursue predator. The proportion of M. hyalinus which constructed pits decreased in the presence of a predator, but this pattern was stronger when exposed to the active predator. We suggest that these differences between the two antlion species are strongly linked to their distinct foraging modes and to the foraging mode of their predators. Reut Loria and Inon Scharf contributed equally to the paper.  相似文献   

7.
Summary Juvenile coho salmon (Oncorhynchus kisutch) spend the first year of their lives in their natal streams, where they may often hold feeding territories. They also face significant risk of predation by birds and fish, and should alter their behaviour to reduce risk of mortality when these predators are present. Although there is laboratory evidence that coho react to predator visual stimuli, chemoreception of avian predator presence has not previously been reported. We tested the influence of chemical stimuli of common merganser (Mergus merganser), preying on juvenile coho, on two aspects of coho territorial behaviour, foraging and aggression, in flow-through aquaria. After a mixture of merganser- and coho-conditioned water was introduced into the system, juvenile coho significantly reduced their attack distance on drifting prey. The fish also significantly decreased their aggressive behaviour directed towards mirrors (total number of acts, intensity of acts and time spent) when the same odour was present. They did not change their behaviour in either experiment after control introductions of water treated with fish alone. These results are interpreted within the framework of a trade-off between juvenile growth and mortality.  相似文献   

8.
Summary. Easy bleeding is a phenomenon discovered in some tenthredinid insects which possess a particularly low mechanical resistance of the integument, leading under mechanical stress to haemolymph exudation. It has a defensive effect against ants and wasps through harmful plant compounds which are sequestered in the haemolymph. Here we describe etho-ecological and some chemical aspects of the defence of easy bleeders and specify the range of predators to which easy bleeding might be effective. Beside a high haemolymph deterrence associated with low integument resistance across sawfly species, we also detected toxicity of the haemolymph of some species to workers of the ant Myrmica rubra. The behaviour of easy bleeders is to move slowly and, once disturbed, to become motionless, thereby probably impeding the tendency of a predator to attack. This behaviour had no beneficial effect for easy bleeders when attacked by the predatory bug Podisus maculiventris. Bugs could successfully and without harm prey on sawfly larvae without evoking easy bleeding. For the easy bleeder Athalia rosae, host plants with different secondary metabolite profiles, and, consequently, changes in haemolymph chemistry only slightly affected the feeding behaviour of the bugs. To test the effectiveness of easy bleeding towards a vertebrate predator, easy bleeders were offered to birds, Sturnus vulgaris. The body colouration of the sawfly larvae was of prime importance in determining the predators response when testing birds in a group. It is likely that easy bleeding is a defence strategy directed primarily towards foraging insects with biting-chewing mandibles and that it is much less active towards predatory insects with piercing-sucking mandibles as well as birds. The involvement of chemical and/or physical cues in the strategy is discussed with respect to these types of predators.  相似文献   

9.
Antarctic fur seals Arctocephalus gazella and macaroni penguins Eudyptes chrysolophus are the two main land-based krill Euphausia superba consumers in the northern Scotia Sea. Using a combination of concurrent at-sea (predator observations, net hauls and multi-frequency acoustics), and land-based (animal tracking and diet analysis) techniques, we examined variability in the foraging ecology of these sympatric top predators during the austral summer and autumn of 2004. Krill availability derived from acoustic surveys was low during summer, increasing in autumn. During the breeding season, krill occurred in 80% of fur seal diet samples, with fish remains in 37% of samples. Penguin diets contained the highest proportion of fish in over 20 years of routine monitoring (46% by mass; particularly the myctophid Electrona antarctica), with krill (33%) and amphipods (Themisto gaudichaudii; 21%) also occurring. When constrained by the need to return and feed their offspring both predator species foraged to the northwest of South Georgia, consistent with an area of high macrozooplankton biomass, but fur seals were apparently more successful at exploiting krill. When unconstrained by chick-rearing (during March) penguins foraged close to the Shag Rocks shelf-break, probably exploiting the high daytime biomass of fish in this area. Penguins and seals are able to respond differently to periods of reduced krill abundance (in terms of variability in diet and foraging behaviour), without detriment to the breeding success of either species. This highlights the importance of myctophid fish as an alternative trophic pathway for land-based predators in the Scotia Sea ecosystem.  相似文献   

10.
Animal prey has developed a variety of behavioural strategies to avoid predation. Many fish species form shoals in the open water or seek refuge in structurally complex habitats. Since anti-predator strategies bear costs and are energy-demanding, we hypothesised that the nutritional state of prey should modify the performance level and efficiency of such strategies. In aquaria either containing or lacking a structured refuge habitat, well-fed or food-deprived juvenile roach (Rutilus rutilus) were exposed to an open-water predator (pikeperch, Sander lucioperca). Controls were run without predators. In the presence of the predator, roach enhanced the performance of the anti-predator strategy and increased the use of the refuge habitat whereby food-deprived roach were encountered more often in the structure than well-fed roach. Nonetheless more starved than well-fed roach were fed upon by the predator. In the treatments offering only open-water areas, roach always formed dense shoals in the presence of the predator. The shoal density, however, was lower in starved roach. Starving fish in shoals experienced the highest predation mortality across all experimental treatments. The experiment confirmed the plasticity of the anti-predator behaviour in roach and demonstrated that food deprivation diminished the efficiency of shoaling more strongly than the efficiency of hiding. The findings may be relevant to spatial distribution of prey and predator–prey interactions under natural conditions because when prey are confronted with phases of reduced resource availability, flexible anti-predator strategies may lead to dynamic habitat use patterns.  相似文献   

11.
Individual fish commonly leave the relative safety of the shoal to approach potential predators at a distance. Not all members of a shoal are equally likely to initiate such predator inspection visits. Here, we show for the first time that the current hunger state of individual fish strongly influences their predator inspection behaviour, as well as their foraging rate, in the face of predation hazard. When all members of threespine stickleback (Gasterosteus aculeatus) test shoals were in a similar hunger state, they were equally likely to inspect a trout predator model alone and did not differ in the frequency of their inspection visits or foraging rate. However, when individual sticklebacks in a shoal differed in their hunger state, the food-deprived (i.e. hungrier) member of the shoal fed at a higher rate, was significantly more likely to initiate solitary predator inspection visits, and inspected the predator model significantly more often than its less hungry (i.e. well-fed) shoal mates. Individual fish which inspected the predator model more frequently also tended to have higher feeding rates. The results indicate that the hungrier fish in a shoal are more willing to take greater risks to inspect a potential threat at a distance, compared with their well-fed shoal mates, and suggest that they may gain a foraging benefit in doing so. If marked asymmetries in hunger state exist among members of fish shoals, then mutual cooperation during predator inspection visits may be difficult to achieve because well-fed individuals are not as likely to initiate or participate in inspection visits as are hungry individuals.Correspondence to: J.-G.J. Godin  相似文献   

12.
Benard MF 《Ecology》2006,87(2):340-346
In many organisms, specific predator species induce defensive phenotypes that are qualitatively different from the phenotypes induced by other predator species. This differential induction implies that there is no optimal phenotype that works best against all predators. However, few studies have actually tested the hypothesis that each predator-induced phenotype provides the highest survival rate in encounters with the predator that induced that phenotype. In this experiment, I reared Pacific treefrog (Pseudacris regilla) larvae with chemical cues from two different predators (bluegill sunfish and predaceous diving-beetle larvae), and without predator cues. The Pacific treefrog larvae in the three treatments differed in their morphology and foraging behavior. I then exposed tadpoles from each treatment to free-foraging predaceous diving beetles and bluegill sunfish. Tadpoles survived best when exposed to the predator whose cues they were reared with, and worst when exposed to the other predator. In both predator environments, the tadpoles reared in the nonpredator control treatment had intermediate survival between the two predator-induced groups. Thus, there is no generalized "antipredator" response to these predators; rather, there was a clear trade-off in survival abilities between the predators.  相似文献   

13.
Southern elephant seals are important apex predators in a highly variable and unpredictable marine environment. In the presence of resource limitation, foraging behaviours evolve to reduce intra-specific competition increasing a species’ overall probability of successful foraging. We examined the diet of 141 (aged 1–3 years) juvenile southern elephant seals to test the hypotheses that differences between ages, sexes and seasons in diet structure occur. We described prey species composition for common squid and fish species and the mean size of cephalopod prey items for these age groups. Three cephalopod species dominated the stomach samples, Alluroteuthis antarcticus, Histioteuthis eltaninae and Slosarczykovia circumantarcticus. We found age-related differences in both species composition and size of larger prey species that probably relate to ontogenetic changes in diving ability and haul-out behaviour and prey availability. These changes in foraging behaviour and diet are hypothesised to reduce intra-specific food competition concomitant with the increase in foraging niche of growing juveniles.  相似文献   

14.
Many prey species have a genetic predisposition to recognise and respond to predators and can fine-tune their anti-predator behaviour following appropriate experience. Although the Trinidadian guppy ( Poecilia reticulata) has become a model species for the investigation of adaptive behaviour, the extent to which experience mediates predator recognition remains unclear. In this study, we examined the effects of relaxed predation pressure on patterns of anti-predator behaviour in populations differing in evolutionary history. The anti-predator behaviour of wild- and laboratory-born guppies from high- and low-predation localities in Trinidad were compared using three models resembling Crenicichla alta, a dangerous guppy predator, Aequidens pulcher, a less dangerous piscivore, and a snake. Snakes are not known to prey on guppies in Trinidad. Specifically, the following predictions were tested: (1) wild caught fish from the high-predation localities (where guppies co-occur with C. alta and A. pulcher) would respond to the three models according to their perceived level of threat, whereas guppies from the low-predation site would show a reduced response to all of the predator models; (2) high-predation laboratory-reared fish would display a reduced but qualitatively similar response to their wild counterparts; and (3) there would be no behavioural differences between wild- and laboratory-reared low-predation fish. In accordance with these predictions, the results revealed that wild fish originating from high-predation sites responded more strongly to the models than fish from low-predation sites. When reared in the laboratory, guppies from the high-predation population showed a reduced response compared to their wild-caught counterparts, but there was no difference in the behaviour of wild- and laboratory-reared low-predation fish. Model type affected predator inspection behaviour but not schooling tendency, and both wild- and laboratory-reared guppies were more wary of the fish models than the snake. These results suggest that early experience differentially mediates the anti-predator responses of fish from high-risk localities.  相似文献   

15.
Animals commonly choose between microhabitats that differ in foraging return and mortality hazard. I studied the influence of autotomy, the amputation of a body part, on the way larvae of the damselfly Lestes sponsa deal with the trade-off between foraging or seeking cover. Survival of Lestes larvae when confronted with the odonate predator Aeshna cyanea was higher in a complex than in a simple microhabitat, indicating that this more complex microhabitat was safer. Within the simple microhabitat, larvae without lamellae had a higher risk for mortality by predation than larvae with lamellae, showing a long-term cost of autotomy. When varying the foraging value (food present or absent) and predation risk (encaged predator or no predator) in the simple microhabitat, larvae with and without lamellae responded differentially to the imposed trade-off. All larvae spent more time in the simple microhabitat when food was present than when food was absent. Larvae without lamellae, however, only sporadically left the safe microhabitat, irrespective of the presence of the predator. In contrast, larvae with lamellae shifted more frequently towards the risky microhabitat than those without lamellae, and more often in the absence than in the presence of the predator. These decisions affected the foraging rates of the animals. I show for the first time that refuge use is higher after autotomy and that this is associated with the cost of reduced foraging success. The different microhabitat preferences for larvae with and without lamellae are consistent with their different vulnerabilities to predation and demonstrate the importance of intrinsic factors in establishing trade-offs. Received: 4 June 1999 / Received in revised form: 18 August 1999/ Accepted: 18 August 1999  相似文献   

16.
Summary. The larvae of the hawkmoth species Hyles euphorbiae have a conspicuous aposematic colouration and show gregarious behaviour. It has thus been suggested that they sequester phorbol esters from their food plants which include different species of the genus Euphorbia (Euphorbiaceae) for chemical protection against predators. To test this hypothesis in more detail, we fed larvae an artificial diet with three doses of 12-tetradecanoyl-phorbol-13-acetate (TPA), then examined the faeces and the larval tissues, such as integument, haemolymph and gut of the caterpillars for the presence of TPA. In order to determine the ability of the larvae to detoxify phorbol esters, other larvae were directly injected with a TPA solution and analysed in the same manner. Our study indicates that the larvae of Hyles euphorbiae do not sequester phorbol esters. Upon oral application TPA was not found in the larval integument or the haemolymph. Instead, it was mostly metabolised (about 70–90%). Nevertheless, about 10-30% were retained and recovered in the faeces. The larvae were also able to metabolise and thus detoxify the phorbol ester when TPA was injected directly into the body. These hawkmoth caterpillars are relatively large and have a gut full of plant material, which they regurgitate into the direction of the predator when attacked in nature. Since phorbol esters are very potent toxins and irritants, we postulate that the gut content (and especially the plant slurry disgorged as regurgitant from the anterior gut) alone could be aversive for a potential predator, even if some metabolism has taken place. Thus, although H. euphorbiae caterpillars do not actively sequester phorbol esters, their aposematic colouration appears to be based on chemical defence through phorbol esters retained in the gut.  相似文献   

17.
Kimbro DL 《Ecology》2012,93(2):334-344
Prey perception of predators can dictate how prey behaviorally balance the need to avoid being eaten with the need to consume resources, and this perception and consequent behavior can be strongly influenced by physical processes. Physical factors, however, can also alter the density and diversity of predators that pursue prey. Thus, it remains uncertain to what extent variable risk perception and antipredator behavior vs. variation in predator consumption of prey underlie prey-resource dynamics and give rise to large-scale patterns in natural systems. In an experimental food web where tidal inundation of marsh controls which predators access prey, crab and conch (predators) influenced the survivorship and antipredator behavior of snails (prey) irrespective of whether tidal inundation occurred on a diurnal or mixed semidiurnal schedule. Specifically, cues of either predator caused snails to ascend marsh leaves; snail survivorship was reduced more by unrestrained crabs than by unrestrained conchs; and snail survivorship was lowest with multiple predators than with any single predator despite interference. In contrast to these tidally consistent direct consumptive and nonconsumptive effects, indirect predator effects differed with tidal regime: snail grazing of marsh leaves in the presence of predators increased in the diurnal tide but decreased in the mixed semidiurnal tidal schedule, overwhelming the differences in snail density that resulted from direct predation. In addition, results suggest that snails may increase their foraging to compensate for stress-induced metabolic demand in the presence of predator cues. Patterns from natural marshes spanning a tidal inundation gradient (from diurnal to mixed semidiurnal tides) across 400 km of coastline were consistent with experimental results: despite minimal spatial variation in densities of predators, snails, abiotic stressors, and marsh productivity, snail grazing on marsh plants increased and plant biomass decreased on shorelines exposed to a diurnal tide. Because both the field and experimental results can be explained by tidal-induced variation in risk perception and snail behavior rather than by changes in snail density, this study reinforces the importance of nonconsumptive predator effects in complex natural systems and at large spatial scales.  相似文献   

18.
The apparently maladaptive tendency of fish to approach and inspect potential predators has been explained in terms of useful information gathering or as a signal to the predator that it has been seen. We examined this behaviour in 16 populations of wild-caught stickleback (Gasterosteus aculeatus) from ponds with and without predatory perch (Perca fluviatilis). Three large and three small individuals per population were each exposed to three model predators differing in realism. A final cooperative treatment entailed pairing subjects with a second individual from the same population, but of the alternative size class, during predator presentation. As might be expected, predator inspection behaviour was much greater in the predator-sympatric populations, and only these fish increased their level of inspection as the models became incrementally more realistic. This suggests that reductions occur in the level of costly inspection behaviour in populations without predators. Subject body size had no effect on inspection effort, which suggests a limited role for experience (we assumed larger fish to be older than smaller fish), at least over the relative age differences utilized. However, small predator-sympatric fish were the only subjects to increase inspection significantly when in a cooperative context, perhaps reflecting the inherent value of a relatively larger partner in this context. These results confirm that levels of predator inspection are both population- and situation-dependent, suggesting a trade-off in the potential costs and benefits of this behaviour.Communicated by C. St. Mary  相似文献   

19.
Food limitation is likely to be a source of mortality for fish larvae in the first few weeks after hatching. In the laboratory, we analyzed all aspects of foraging in cod larvae (Gadus morhua Linnaeus) from 5 to 20 d post-hatching using protozoa (Balanion sp.) and copepod nauplii (Pseudodiaptomus sp.) as prey. A camera acquisition system with two orthogonal cameras and a digital image analysis program was used to observe patterns of foraging. Digitization provided three-dimensional speeds, distances, and angles for each foraging event, and determined prey and fish larval head and tail positions. Larval cod swimming speeds, perception distances, angles, and volumes increased with larval fish size. Larval cod swam in a series of short intense bursts interspersed with slower gliding sequences. In 94% of all foraging events prey items were perceived during glides. Larval cod foraging has three possible outcomes: unsuccessful attacks, aborted attacks, and successful attacks. The percentage of successful attacks increased with fish size. In all larval fish size classes, successful attacks had smaller attack distances and faster attack speeds than unsuccessful attacks. Among prey items slowly swimming protozoans were the preferred food of first-feeding cod larvae; larger larvae had higher swimming speeds and captured larger, faster copepod nauplii. Protozoans may be an important prey item for first-feeding larvae providing essential resources for growth to a size at which copepod nauplii are captured. Received: 20 April 1999 / Accepted: 12 January 2000  相似文献   

20.
Summary I studied the foraging behaviour of adults in three different-sized groups of yellow baboons (Papio cynocephalus) at Amboseli National Park in Kenya to assess the relationship between group size and foraging efficiency in this species. Study groups ranged in size from 8 to 44 members; within each group, I collected feeding data for the dominant adult male, the highest ranking pregnant female, and the highest ranking female with a young infant. There were no significant differences between groups during the study in either the mean estimated energy value of the food ingested per day for each individual (385±27 kJ kg-1 day-1) or in the estimated energy expended to obtain that food (114±3 kJ kg-1 day-1). Mean foraging efficiency ratios, which reflect net energy gain per unit of foraging time, also did not vary as a function of the size of the group in which the baboons were living. There was substantial variation between days in the efficiency ratios of all animals; this was the result of large differences in energy intake rather than in the energy expended during foraging itself. The members of the smallest group spent on the average only one-half as much time feeding each day as did individuals in the two larger groups. However, they obtained almost as much energy while foraging, primarily because their rate of food intake while actually eating tended to be higher than the rate in the other groups. The baboons in the small group were observed closer to trees that they could climb to escape ground predators, and they also were more likely to sit in locations elevated above the ground while resting. Such differences would be expected if the members of the small group were less able to detect approaching predators than individuals that lived in the larger groups. The results of this study suggest that predator detection or avoidance, rather than increased foraging efficiency, may be the primary benefit of living in larger groups in this population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号