首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis of the BONUS+ research is introduced. The HELCOM Baltic Sea Action Plan is examined as a case to illustrate the potentials and challenges in building the science–policymaking interface on a macroregional level. The projects address environmental challenges in the Baltic Sea as defined by the Baltic Sea Action Plan, or consider the environmental governance and decision making within the Baltic Sea context in general. Eutrophication, biodiversity, hazardous substances, maritime activities, and the environment governance are addressed, as are crosscutting issues, such as the impact of climate change, maritime spatial planning and impacts of future development on ecosystem services. The projects contributed to relevant policy developments: 37 consultations carried out at EU level, 49 modifications to policy documents and action plans, 153 suggestions for the efficacy of pertinent public policies and governance, and in 570 occasions, scientists working in BONUS+ projects served as members or observers in scientific and stakeholder committees.  相似文献   

2.
Jönsson AM 《Ambio》2011,40(2):121-132
Scientific complexity and uncertainty is a key challenge for environmental risk governance and to understand how risks are framed and communicated is of utmost importance. The Baltic Sea ecosystem is stressed and exposed to different risks like eutrophication, overfishing, and hazardous chemicals. Based on an analysis of the Swedish newspaper Dagens Nyheter, this study discusses media representations of these risks. The results show that the reporting on the Baltic Sea has been fairly stable since the beginning of the 1990s. Many articles acknowledge several risks, but eutrophication receives the most attention and is also considered the biggest threat. Authorities, experts, organizations, and politicians are the dominating actors, while citizens and industry representatives are more or less invisible. Eutrophication is not framed in terms of uncertainty concerning the risk and consequences, but rather in terms of main causes.  相似文献   

3.
This article focuses on the governing system of the mitigation of eutrophication in the Baltic Sea. Policies and measures of the Baltic Sea coastal countries, the macro--regional (HELCOM) level, and the level of the European Union are described and governance challenges explicated. We found that the main challenges at different governance levels include: differences between coastal countries in terms of environmental conditions including environmental awareness, overlaps of policies between different levels, the lack of adequate spatial and temporal specification of policies, and the lack of policy integration. To help to meet these challenges, we suggest closer involvement of stakeholders and the public, the improvement of the interplay of institutions, and the introduction of a “primus motor” for the governance of the mitigation of eutrophication in the Baltic Sea.  相似文献   

4.
The environmental targets of the recently agreed Baltic Sea Action Plan (BSAP) targets are likely associated with a considerable cost, which motivates a search for low-cost policies. The following review shows there is a substantial literature on cost-efficient nutrient reduction strategies, including suggestions regarding low-cost abatement, but actual policies at international and national scale tend to be considerably more expensive due to lack of instruments that ensure a cost-efficient allocation of abatement across countries and sectors. Economic research on the costs of reducing hazardous substances and oil spill damages in the Baltic Sea is not available, but lessons from the international literature suggest that resources could be used more efficiently if appropriate analysis is undertaken. Common to these pollution problems is the need to ensure that all countries in the region are provided with positive incentives to implement international agreements.  相似文献   

5.
Selin H  VanDeveer SD 《Ambio》2004,33(3):153-160
The introduction into the Baltic Sea of hazardous substances that are persistent, bioaccumulate, and are toxic is an important environmental and human health problem. Multilateral efforts to address this problem have primarily been taken under the Helsinki Commission (HELCOM). This article examines past HELCOM efforts on hazardous substances, and discusses future challenges regarding their management. The article finds that past actions on hazardous substances have had a positive effect on improving Baltic environmental quality and reducing human health risks, although there are remaining issues and difficulties that need to be addressed. In particular, four related future challenges for HELCOM management of hazardous substances are identified and discussed: i) the need to engender further implementation and building public and private sector capacities; ii) the need to improve data availability, quality and comparability across the region and international fora; iii) the need to strengthen existing regulations and incorporate new issues; and iv) the need to effectively coordinate HELCOM activities with efforts on hazardous substances in other international fora.  相似文献   

6.
Assmuth T 《Ambio》2011,40(2):158-169
Policy and research issues in the framing and qualities of uncertainties in risks are analyzed, based on the assessments of dioxin-like compounds (DLCs) and other ingredients in Baltic Sea fish, a high-profile case of governance. Risks are framed broadly, to then focus on dioxins and beneficial fatty acids, fish consumption, human health, and science-management links. Hierarchies of uncertainty (data, model, decision rule, and epistemic) and ambiguity (of values) are used to identify issues of scientific and policy contestation and opportunities for resolving them. The associated complexity of risks is illustrated by risk–benefit analyses of fish consumption and by evaluations of guideline values, highlighting value contents and policy factors in presumably scientific decision criteria, and arguments used in multi-dimensional risk and benefit comparisons. These comparisons pose challenges to narrow assessments centered, for e.g., on toxicants or on food benefits, and to more many-sided and balanced risk communication and management. It is shown that structured and contextualized treatment of uncertainties and ambiguities in a reflexive approach can inform balances between wide and narrow focus, detail and generality, and evidence and precaution.  相似文献   

7.
Joas M  Kern K  Sandberg S 《Ambio》2007,36(2-3):237-242
Policymaking within and among states is under pressure for change. One feature of this change is empirically observed as an activation of different network structures in the Baltic Sea Region, especially since the collapse of the Iron Curtain, the initiation of the Rio process, and the enlargement of the European Union. The contemporary theoretical debates about governance highlight the changing conditions for policymaking and implementation on all societal levels. This process of change, especially evident concerning environmental policies, includes new types of networks crossing state borders both at the supranational and the subnational levels. This article illuminates this process of change with empirical data from the project "Governing a Common Sea" (GOVCOM) within the Baltic Sea Research Program (BIREME).  相似文献   

8.
Ecosystem-based management requires understanding of food webs. Consequently, assessment of food web status is mandatory according to the European Union’s Marine Strategy Framework Directive (MSFD) for EU Member States. However, how to best monitor and assess food webs in practise has proven a challenging question. Here, we review and assess the current status of food web indicators and food web models, and discuss whether the models can help addressing current shortcomings of indicator-based food web assessments, using the Baltic Sea as an example region. We show that although the MSFD food web assessment was designed to use food web indicators alone, they are currently poorly fit for the purpose, because they lack interconnectivity of trophic guilds. We then argue that the multiple food web models published for this region have a high potential to provide additional coherence to the definition of good environmental status, the evaluation of uncertainties, and estimates for unsampled indicator values, but we also identify current limitations that stand in the way of more formal implementation of this approach. We close with a discussion of which current models have the best capacity for this purpose in the Baltic Sea, and of the way forward towards the combination of measurable indicators and modelling approaches in food web assessments. Supplementary InformationThe online version contains supplementary material available at 10.1007/s13280-021-01692-x.  相似文献   

9.
10.
Severe environmental problems documented in the Baltic Sea in the 1960s led to the 1974 creation of the Helsinki Convention for the Protection of the Marine Environment of the Baltic Sea Area. We introduce this special issue by briefly summarizing successes and failures of Baltic environmental management in the following 40 years. The loads of many polluting substances have been greatly reduced, but legacy pollution slows recovery. Top predator populations have recovered, and human exposure to potential toxins has been reduced. The cod stock has partially recovered. Nutrient loads are decreasing, but deep-water anoxia and cyanobacterial blooms remain extensive, and climate change threatens the advances made. Ecosystem-based management is the agreed principle, but in practice the various environmental problems are still handled separately, since we still lack both basic ecological knowledge and appropriate governance structures for managing them together, in a true ecosystem approach.  相似文献   

11.
Pihlajamäki M  Tynkkynen N 《Ambio》2011,40(2):191-199
This article examines the views of scientists on intricacies of scientific knowledge that affect science–policy interface in the Baltic Sea eutrophication governance in Finland. The analysis demonstrates that these intricacies can be divided into five categories: (1) uncertainty of knowledge concerning ecological processes, (2) heterogeneity of knowledge, (3) societal and political call for (certain) knowledge, (4) contingency of the knowledge that ends up taken as a baseline for decision making and further research, and (5) linkages of knowledge production, processing, and communication to particular characteristics of individual researchers and research societies. By explicating these aspects, this article illustrates the ways in which scientific knowledge concerning eutrophication is human-bound and susceptible to interpretation, thus adding on to the uncertainty of the Baltic Sea environmental governance. The aim is, then, to open up perspectives on how ambiguities related to science–policy interface could be coped with.  相似文献   

12.
The purpose of this paper is to discuss the role of law in the management of the Baltic Sea, with focus on eutrophication. It aims to identify legal instruments or structures realizing an ecosystem approach. This also includes a discussion of the prerequisites of law as contributor to ecosystem-based management (EBM), as well as evaluation of current legal instruments. While ecosystem approach to environmental management is central to contemporary environmental management policy, it is still unclear what such an approach entails in concrete legal terms. The scope of the analysis stretches from international and EU legal regimes, to implementation and regulation within the national legal systems. A conclusion is that the management structures need further development to properly realize EBM, for example, through concretization of management measures, and clarification of duties and responsibilities for their realization.  相似文献   

13.
Dippner JW  Kornilovs G  Junker K 《Ambio》2012,41(7):699-708
Since 2001/2002, the correlation between North Atlantic Oscillation index and biological variables in the North Sea and Baltic Sea fails, which might be addressed to a global climate regime shift. To understand inter-annual and inter-decadal variability in environmental variables, a new multivariate index for the Baltic Sea is developed and presented here. The multivariate Baltic Sea Environmental (BSE) index is defined as the 1st principal component score of four z-transformed time series: the Arctic Oscillation index, the salinity between 120 and 200 m in the Gotland Sea, the integrated river runoff of all rivers draining into the Baltic Sea, and the relative vorticity of geostrophic wind over the Baltic Sea area. A statistical downscaling technique has been applied to project different climate indices to the sea surface temperature in the Gotland, to the Landsort gauge, and the sea ice extent. The new BSE index shows a better performance than all other climate indices and is equivalent to the Chen index for physical properties. An application of the new index to zooplankton time series from the central Baltic Sea (Latvian EEZ) shows an excellent skill in potential predictability of environmental time series.  相似文献   

14.
Johannesson K  Smolarz K  Grahn M  André C 《Ambio》2011,40(2):179-190
Environmental change challenges local and global survival of populations and species. In a species-poor environment like the Baltic Sea this is particularly critical as major ecosystem functions may be upheld by single species. A complex interplay between demographic and genetic characteristics of species and populations determines risks of local extinction, chances of re-establishment of lost populations, and tolerance to environmental changes by evolution of new adaptations. Recent studies show that Baltic populations of dominant marine species are locally adapted, have lost genetic variation and are relatively isolated. In addition, some have evolved unusually high degrees of clonality and others are representatives of endemic (unique) evolutionary lineages. We here suggest that a consequence of local adaptation, isolation and genetic endemism is an increased risk of failure in restoring extinct Baltic populations. Additionally, restricted availability of genetic variation owing to lost variation and isolation may negatively impact the potential for evolutionary rescue following environmental change.  相似文献   

15.
Integrated sediment multiproxy studies and modeling were used to reconstruct past changes in the Baltic Sea ecosystem. Results of natural changes over the past 6000 years in the Baltic Sea ecosystem suggest that forecasted climate warming might enhance environmental problems of the Baltic Sea. Integrated modeling and sediment proxy studies reveal increased sea surface temperatures and expanded seafloor anoxia (in deep basins) during earlier natural warm climate phases, such as the Medieval Climate Anomaly. Under future IPCC scenarios of global warming, there is likely no improvement of bottom water conditions in the Baltic Sea. Thus, the measures already designed to produce a healthier Baltic Sea are insufficient in the long term. The interactions between climate change and anthropogenic impacts on the Baltic Sea should be considered in management, implementation of policy strategies in the Baltic Sea environmental issues, and adaptation to future climate change.  相似文献   

16.
International regulation of the emission of acidic sulphur and nitrogen oxides from commercial shipping has focused on the risks to human health, with little attention paid to the consequences for the marine environment. The introduction of stricter regulations in northern Europe has led to substantial investment in scrubbers that absorb the sulphur oxides in a counterflow of seawater. This paper examines the consequences of smokestack and scrubber release of acidic oxides in the Baltic Sea according to a range of scenarios for the coming decades. While shipping is projected to become a major source of strong acid deposition to the Baltic Sea by 2050, the long-term effect on the pH and alkalinity is projected to be significantly smaller than estimated from previous scoping studies. A significant contribution to this difference is the efficient export of surface water acidification to the North Sea on a timescale of 15–20 years.  相似文献   

17.
Metagenomics refers to the analysis of DNA from a whole community. Metagenomic sequencing of environmental DNA has greatly improved our knowledge of the identity and function of microorganisms in aquatic, terrestrial, and human biomes. Although open oceans have been the primary focus of studies on aquatic microbes, coastal and brackish ecosystems are now being surveyed. Here, we review so far published studies on microbes in the Baltic Sea, one of the world’s largest brackish water bodies, using high throughput sequencing of environmental DNA and RNA. Collectively the data illustrate that Baltic Sea microbes are unique and highly diverse, and well adapted to this brackish-water ecosystem, findings that represent a novel base-line knowledge necessary for monitoring purposes and a sustainable management. More specifically, the data relate to environmental drivers for microbial community composition and function, assessments of the microbial biodiversity, adaptations and role of microbes in the nitrogen cycle, and microbial genome assembly from metagenomic sequences. With these discoveries as background, prospects of using metagenomics for Baltic Sea environmental monitoring are discussed.  相似文献   

18.
The ever increasing impact of the marine industry and transport on vulnerable sea areas puts the marine environment under exceptional pressure and calls for inspired methods for mitigating the impact of the related risks. We describe a method for preventive reduction of remote environmental risks caused by the shipping and maritime industry that are transported by surface currents and wind impact to the coasts. This method is based on characterizing systematically the damaging potential of the offshore areas in terms of potential transport to vulnerable regions of an oil spill or other pollution that has occurred in a particular area. The resulting maps of probabilities of pollution to be transported to the nearshore and the time it takes for the pollution to reach the nearshore are used to design environmentally optimized fairways for the Gulf of Finland, Baltic Proper, and south-western Baltic Sea.  相似文献   

19.
In this article we summarize the current knowledge of Baltic Sea cyanobacteria, focusing on diversity, toxicity, and nitrogen fixation in the filamentous heterocystous taxa. We also review the recent results of our microbial diversity studies in planktonic and benthic habitats in the Baltic Sea. Based on molecular analyses, we have improved the understanding of cyanobacterial population structure by assessing genetic diversity within species that are morphologically inseparable. Moreover, we have studied microbial functions such as toxin production and nitrogen fixation in situ under different environmental conditions. Phosphorus limitation of bloom-forming, nitrogen-fixing cyanobacteria was clearly verified, emphasizing the importance of continuous efforts to reduce this element in the Baltic Sea. We have designed a rapid and reliable detection method for the toxic cyanobacterium Nodularia spumigena, which can be used to study bloom formation of this important toxin producer.  相似文献   

20.
The need to develop biological effects monitoring to facilitate a reliable assessment of hazardous substances has been emphasized in the Baltic Sea Action Plan of the Helsinki Commission. An integrated chemical–biological approach is vitally important for the understanding and proper assessment of anthropogenic pressures and their effects on the Baltic Sea. Such an approach is also necessary for prudent management aiming at safeguarding the sustainable use of ecosystem goods and Services. The BEAST project (Biological Effects of Anthropogenic Chemical Stress: Tools for the Assessment of Ecosystem Health) set out to address this topic within the BONUS Programme. BEAST generated a large amount of quality-assured data on several biological effects parameters (biomarkers) in various marine species in different sub-regions of the Baltic Sea. New indicators (biological response measurement methods) and management tools (integrated indices) with regard to the integrated monitoring approach were suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号