首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 922 毫秒
1.
目的采用ZrC和SiC复相陶瓷对C/C复合材料进行改性,研究改性后的复合材料受到颗粒冲蚀破坏的烧蚀行为。方法采用注射法将ZrC和SiC复相陶瓷前驱体引入到等温化学气相渗透法(ICVI)制备的低密度C/C复合材料中,再通过高温热处理、ICVI的方法制备出ZrC和SiC复相陶瓷改性的C/C(C/C-ZrC-SiC)复合材料,随后对制备的复合材料进行高速颗粒冲击实验破坏,并对破坏后的试样进行氧乙炔火焰烧蚀,研究其烧蚀行为。结果改性后的复合材料线冲蚀率和质量冲蚀率分别为253.1μm/s和79.8 mg/s,相较于同孔隙率的C/C复合材料分别降低了49.2%和61%。颗粒冲蚀破坏后C/C-ZrC-SiC复合材料的线烧蚀率和质量烧蚀率分别为4.26μm/s和1.44 mg/s,相比于同孔隙率的C/C复合材料,分别降低了37%和39%。结论由于引入的ZrC和SiC陶瓷相的硬度大于碳基体,C/C-ZrC-SiC复合材料在受到高速颗粒的冲击时,能通过硬质陶瓷相起到抗冲击作用,使得改性后的复合材料抗冲蚀性能大幅度提高。受到颗粒冲蚀破坏后的C/C-ZrC-SiC复合材料内部仍存在超高温陶瓷相,烧蚀过程中能够形成ZrO2骨架结构和SiO2球形颗粒,进而有效保护碳纤维和热解碳基体。  相似文献   

2.
金属基复合材料进入实际应用的过程中,颗粒增强铝基复合材料成为重要的发展方向。本文从制备及组织性能的影响因素方面对碳化硅颗粒增强铝基复合材料方面做如下综述和展望。  相似文献   

3.
目的研究材料的应力腐蚀断裂时间。方法应用环境作用动力学理论,求解材料的应力腐蚀断裂时间函数。结果从环境作用动力学理论得到了材料的应力腐蚀断裂时间函数,并对AZ61和AZ80镁合金进行了试验验证。结论环境作用动力学理论可以描述镁合金材料应力腐蚀断裂时间;AZ61镁合金抗应力腐蚀性能优于AZ80镁合金。  相似文献   

4.
开展了SiC颗粒增强铝合金基复合材料挤压成形的实验研究.分析了其挤压成形的力能变化规律.结果表明:该材料的挤压载荷随着变形温度的提高而显著降低;在一定温度下.随着挤压位移的增加而呈现出明显的阶段性变化的特点.  相似文献   

5.
目的分析陶瓷基复合材料的结构强度。方法围绕C/SiC陶瓷基复合材料连接结构失效分析问题,提出模量突降和渐进损伤两种分析方法,基于Abaqus软件平台编写UMAT有限元分析子程序,结合试验数据分析多种不同失效准则在陶瓷基复合材料结构强度分析中的适用性。结果基于改进三维Hashin失效准则,针对典型C/SiC复合材料连接结构进行了失效行为计算,获得结构的失效模式与试验结果规律一致,破坏载荷的预测误差在10%以内。结论通过与试验结果的对比分析,验证了两种方法的有效性,研究方法能够为高超声速飞行器、天地往返飞行器复合材料热结构的强度分析提供技术支撑。  相似文献   

6.
目的研究一类硬质泡沫塑料弹架结构的贮存特性和本构关系。方法首先对结构试件进行高温压缩蠕变试验,然后对压缩后试件蠕变性能进行分析,得到材料高温压缩蠕变曲线,在此基础上用WLF方程对试件的贮存寿命进行评估,推算出试件达到特定蠕变量所需时间。结果基于试验所得材料应力-应变曲线,用数值拟合的方法建立了试件材料的压缩本构关系。结论证实了在高温压缩蠕变试验过程中材料本构关系未发生变化,研究结果可为后续型号结构试件寿命评估和失效机理研究提供参考。  相似文献   

7.
目的研究AZ61镁合金中合金元素成分分析过程中的不确定度因素,以提高分析结果的准确性。方法采用微波消解仪消解样品,以电感耦合等离子体发射光谱仪(ICP-OES)测定AZ61镁合金中锌、锰、铝元素的含量。分析测试过程中产生不确定度的因素,并且进行评定和计算。结果采用微波消解-ICP-OES法测定镁合金中锌、锰、铝元素的含量时,测量不确定度主要由样品溶液稀释、移液枪、标准曲线以及测试的重复性引起,AZ61镁合金主要的合金成分为锌(1.1270%±0.0433%)、锰(0.1797%±0.0064%);铝(6.4468%±0.2029%)。结论对分析过程中产生的不确定度因素进行分析及评定,可以确保分析结果的可靠性以及准确性,从而更好地控制镁合金的性能,提高镁合金的装备环境适应性。  相似文献   

8.
目的研究C/C-SiC-ZrB_2复合材料表面SiC/ZrB_2-SiC/SiC涂层的制备、抗氧化烧蚀性能与机理。方法选择ZrB_2和SiC改性的C/C复合材料为基体,通过包埋-刷涂法在C/C-SiC-ZrB_2复合材料表面制备了SiC/ZrB_2-SiC/SiC多重抗氧化涂层,并对复合材料的微结构、抗氧化烧蚀性能与机理进行分析和研究。结果制备了一种三层结构的SiC/ZrB_2-SiC/SiC超高温陶瓷复合涂层,获得了风洞考核试验下的复合材料微结构变化、线烧蚀率等试验数据,并得到了C/C-SiC-ZrB_2复合材料的氧化烧蚀机理。结论 SiC/ZrB_2-SiC/SiC涂层对C/C-SiC-ZrB_2复合材料的抗氧化和耐烧蚀性能具有明显提升,有效提高了C/C-SiC-ZrB_2复合材料的综合热防护性能。  相似文献   

9.
目的制备并表征在柔性石墨纸基体上化学气相沉积(CVD)的多层SiC涂层,及其界面结构、界面处的元素分布等。方法以柔性石墨纸为基体、甲基三氯硅烷(MTS)为硅源、H2为载气和还原剂、Ar为稀释气,在1030~1070℃温度区间通过真空感应高温炉在石墨基体上分5次制备了多层SiC涂层。通过SEM和EDS表征并分析该涂层的表面结构和切面结构,以及涂层与基体界面处的元素分布。结果在石墨基体上有效制得了多层SiC涂层,获得的SiC涂层具有明显的两级颗粒结构。经EDS分析确认,在不同沉积层,C与Si的比例的不同。结论实验证实SiC与基体石墨具有良好化学相容性。SiC涂层表面表观致密,纳米尺度堆积颗粒表观致密,但在微米尺度的堆积颗粒间存在空隙。多层涂层间具有1~3μm的不致密SiC间隙。涂层一侧距界面10μm处的元素分布显示,Si和C元素化学计量比趋近于1︰1,可以认为是涂层的过渡层。  相似文献   

10.
以短切碳纤维增韧陶瓷基复合材料、连续碳纤维增韧陶瓷基复合材料、碳化硅纤维增韧陶瓷基复合材料为对象,综述了近年来关于界面层对FTCMCs破坏模式影响的实验研究工作。从微观力学模型建立、多尺度损伤分析两方面总结归纳了考虑界面层的FTCMCs力学性能模拟分析方法,提出建立切合实际的物理模型以及开发更先进的多尺度分析方法,是解决复杂服役环境下FTCMCs性能表征难题的有效途径。通过多场耦合多尺度建模分析方法来表征和优化FTCMCs的复杂服役环境下性能,系统揭示界面层等微观结构与宏观复合材料性能的对应关系,进而指导工艺设计,均是未来纤维增韧陶瓷基复合材料界面层的重点研究方向。  相似文献   

11.
新型三维编织碳/碳化硅复合材料存在较强的各向异性,而各个方向的性能数据积累不足,复合材料的强度计算方法尚不完善,为了发现新型三维编织碳/碳化硅复合材料在冲压发动机喷管中应用可能遇到的问题,并找到相应地解决措施,开展了这种复合材料应用于冲压发动机喷管的承压强度计算和承压实验研究。对承压实验中出现的低压破坏情况进行了分析,分析了低压破裂的原因,提出了改进措施。分析结果表明:C/SiC喷管喉部密度较低,导致强度较低,承载能力下降,是首次强度验证实验过程中该局部破坏的原因;为提高喷管强度,需要通过其形状设计并控制沉积流场,保证其喉部的沉积密度达到1.9g/cm3以上。对改进后的喷管进行了实验验证,实验结果与计算结果基本一致,满足要求。因此,在实际应用中应对喷管喉部和纵向密度的分布进行工业CT无损检测,确保喷管密度的分布均匀。   相似文献   

12.
研究了喷射共沉积方法制备的7075 Al / SiCp复合材料挤压及轧制过程中SiC颗粒的分布.通过拉伸实验、微观组织的金相及拉伸断口SEM观察分析了SiCp颗粒尺寸对材料组织和性能的影响.实验表明,SiCp在挤压过程中沿厚度方向形成分层分布,SiCp的尺寸及粒度分布对于聚集有较大的影响;轧制过程对挤压时形成的SiCp分层分布有一定的减弱作用,但改善程度和SiCp的尺寸有关;SiCp颗粒尺寸对复合材料的力学性能及断裂机制有很大的影响.  相似文献   

13.
目的 研究沉积温度对SiC界面涂层微观形貌、结构和成分的影响,探讨SiC界面涂层的沉积动力学和沉积机理.方法 采用Factsage软件计算MTS-H2反应物体系热力学平衡后产物组成,采用化学气相渗透法(CVI)在碳化硅纤维上制备SiC界面涂层,采用SEM、TEM、XRD等分析测试技术对SiC涂层形貌、结构和成分进行分析.结果 在860~1060℃温度范围内,MTS-H2体系平衡后的主要产物有SiC、C等,并在该温度范围采用CVI工艺制备出了SiC界面涂层.结论 在860~1060℃温度范围内,提高沉积温度有利于增加SiC的产率.温度低于960℃时,制备的SiC界面涂层表面光滑;高于1060℃时,得到了表面具有团簇结构的涂层,并且随着沉积温度的升高,涂层的结晶度提高.沉积动力学计算结果表明,温度低于1060℃时,SiC的沉积过程受表面反应控制;温度高于1060℃时,沉积过程受扩散控制.采用CVI工艺制备出了单一立方相的SiC界面涂层,并且(111)晶面为SiC颗粒的优先生长晶面.  相似文献   

14.
目的研究沉积温度对SiC界面涂层微观形貌、结构和成分的影响,探讨SiC界面涂层的沉积动力学和沉积机理。方法采用Factsage软件计算MTS-H_2反应物体系热力学平衡后产物组成,采用化学气相渗透法(CVI)在碳化硅纤维上制备SiC界面涂层,采用SEM、TEM、XRD等分析测试技术对SiC涂层形貌、结构和成分进行分析。结果在860~1060℃温度范围内,MTS-H_2体系平衡后的主要产物有SiC、C等,并在该温度范围采用CVI工艺制备出了SiC界面涂层。结论在860~1060℃温度范围内,提高沉积温度有利于增加SiC的产率。温度低于960℃时,制备的SiC界面涂层表面光滑;高于1060℃时,得到了表面具有团簇结构的涂层,并且随着沉积温度的升高,涂层的结晶度提高。沉积动力学计算结果表明,温度低于1060℃时,SiC的沉积过程受表面反应控制;温度高于1060℃时,沉积过程受扩散控制。采用CVI工艺制备出了单一立方相的SiC界面涂层,并且(111)晶面为SiC颗粒的优先生长晶面。  相似文献   

15.
为发展低耗和环境友好的有机物降解技术,采用光催化还原制备微米级碳化硅(SiC)/石墨烯复合材料,XRD、FTIR、Raman光谱、XPS和SEM等手段表征其物相组成和形貌结构,并以罗丹明B(RhB)为模拟污染物,研究了复合材料在可见光照射下的光催化活性和稳定性;通过活性物种捕获实验初步探讨了RhB的光催化降解机制.结果表明,SiC与石墨烯复合延长了光生电子和光生空穴的寿命,提高了材料的光催化活性与稳定性.当SiC/石墨烯配比为1∶0. 8时,光照60 min时RhB的降解率可以达到92. 7%,降解过程符合一级反应动力学方程.光催化降解RhB过程中,主要活性物种的贡献依次为:光生空穴(h~+)超氧阴离子自由基(·O_2~-)光生电子(e~-)羟基自由基(·OH).  相似文献   

16.
目的 研究一类硬质泡沫弹架结构的蠕变特性和贮存寿命评估方法.方法 通过测定贮存恒定应力水平下该型硬质泡沫弹架的温度加速蠕变性能数据,建立泡沫弹架材料的蠕变本构关系,研究泡沫弹架材料的蠕变时温等效规律.在此基础上,开展泡沫弹架的高温加速贮存试验与评估方法研究.结果 在高温蠕变试验后,该型硬质泡沫材料的本构关系及压缩特性均...  相似文献   

17.
颗粒或晶须增强铝基复合材料具有优良的性能。目前其制备工艺主要采用粉末冶金法和挤压铸造法。这类铝基复合材料已经有许多应用实例。铝基复合材料超塑性是近年来开发的新技术,可解决其成形性差的加工难题,扩大其应用领域。  相似文献   

18.
目的研究高温-真空环境对新型X2101双马树脂基复合材料结构及性能的影响。方法采用管式炉分别在330,350,370,400℃等高温/真空耦合条件下对X2101双马树脂基复合材料层合板进行热老化处理,利用称重法、傅里叶红外光谱仪(FTIR)、万能试验机和动态热机械分析仪(DMA)等测试手段表征分析老化条件对复合材料的质损率、化学结构、力学性能、动态力学行为的影响。结果复合材料的最高质损率低于4%。在350℃以下,热老化对基体树脂化学结构的影响较小,随着老化温度的升高,储能模量呈现出先增大后减小的趋势;350℃热老化10 h后复合材料的力学性能保持率在65%以上。结论 X2101双马树脂基复合材料是一种性能优良的耐高温结构材料,可用于制造在300℃高温下服役的航空航天结构件。  相似文献   

19.
分析并建立了具有动态再结晶型金属的本构方程模型,用Gleeble-1500D热/力模拟仪对AZ31镁合金进行圆柱体单向热压缩试验,并根据实验结果分析计算了本构方程模型中的各参数,获得了完整的AZ31镁合金高温本构方程。用本构方程计算了实验条件下的流变应力,计算值与实验值能较好地吻合,误差在8%以内。可为制订AZ31镁合金的热加工工艺提供理论与数据。  相似文献   

20.
近年来,纳米零价铁(nZVI)因具有比表面积大、还原能力强、成本低的特点被用于去除环境中的六价铬〔Cr(Ⅵ)〕,然而由于高表面能、固有磁力等因素的影响,nZVI具有易团聚、易氧化和不稳定的缺点,限制了其广泛应用. 鉴于此,本文以碳材料作为支持材料改性nZVI,比较了制备碳基nZVI复合材料的方法,分析了不同碳基nZVI复合材料去除Cr(Ⅵ)的反应效能,阐述了影响复合材料去除Cr(Ⅵ)的因素. 结果表明:①湿化学法合成的复合材料有利于提高nZVI的分散性,减少团聚. 热转化法合成的复合材料有利于节约成本,提高碳材料和nZVI的结合性. ②不同碳材料负载nZVI能有效提高nZVI的分散性、稳定性和抗氧化性. ③碳基材料负载nZVI能有效降低环境因素对nZVI的负面影响. ④碳基nZVI复合材料能提高对Cr(Ⅵ)的去除能力,其对Cr(Ⅵ)的最大吸附容量比nZVI高1.2~20倍. 本文旨在深入了解碳基nZVI复合材料的合成方法,提高碳基nZVI复合材料的性能,以期为开发高效稳定的碳基nZVI复合材料修复环境中的Cr(Ⅵ)提供一些启示.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号