首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Soils contaminated with 2,4,6-trinitrotoluene (TNT) and TNT primary reduction products have been found to be toxic to certain soil invertebrates, such as earthworms. The mechanism of toxicity of TNT and of its by-products is still not known. To ascertain if one of the TNT reduction products underlies TNT toxicity, we tested the toxicity and bioaccumulation of TNT reduction products. 2-Amino-4,6-dinitrotoluene (2-ADNT), 4-amino-2,6-dinitrotoluene (4-ADNT), 2,4-diamino-6-nitrotoluene (2,4-DANT) and 2,6-diamino-4-nitrotoluene (2,6-DANT) were tested separately in adult earthworms (Eisenia andrei) following a 14-d exposure to amended sandy loam forest soil. TNT, 4-ADNT, and 2-ADNT were lethal to earthworms (14-d LC(50) were: 580, 531 and 1088 micromol kg(-1), or 132, 105 and 215 mgkg(-1) dry soil, respectively) and gave the following order of toxicity: 4-ADNT>TNT>2-ADNT. Exposure to 2,4-DANT and to 2,6-DANT caused no mortality at 600 micromol kg(-1) or 100 mgkg(-1) dry soil. We found that all four TNT reduction products accumulated in earthworm tissues and 2-ADNT reached the highest levels at 3.0+/-0.3 micromol g(-1) tissue. The 14-d bioaccumulation factors were 5.1, 6.4, 5.1 and 3.2 for 2-ADNT, 4-ADNT, 2,4-DANT and 2,6-DANT, respectively. Results also suggest that some TNT metabolites are at least as toxic as TNT and should be considered when evaluating the overall toxicity of TNT-contaminated soil to earthworms.  相似文献   

2.
A method was developed for studies of the phototransformation at UV irradiation of aqueous solutions of tetrabromobisphenol A (TBBPA), tribromobisphenol A (TriBBPA), tetrachlorobisphenol A (TCBPA), 2,4-dichlorophenol at various pHs as well as 2-chlorophenol, 2-bromophenol, 3,4-dichlorophenol and bisphenol A at pH 11. The absorbance spectra of the compounds and the emission spectra of the light-source were determined and used to calculate disappearance quantum yields of the photochemical reactions that were taking place. No major differences between the disappearance quantum yields of TBBPA and TCBPA were observed at pH 10, while the disappearance quantum yield of TriBBPA was approximately two times higher. The rate of decomposition of TBBPA was six times higher at pH 8 than at pH 6. Identification of the degradation products of TBBPA and TriBBPA, by GC-MS analysis and by comparison to synthesised reference compounds, indicated that TBBPA and TriBBPA decompose via different mechanisms. Three isopropylphenol derivatives; 4-isopropyl-2,6-dibromophenol, 4-isopropylene-2,6-dibromophenol and 4-(2-hydroxyisopropyl)-2,6-dibromophenol, were identified as major degradation products of TBBPA while the major degradation product of TriBBPA was tentatively identified as 2-(2,4-cyclopentadienyl)-2-(3,5-dibromo-4-hydroxyphenyl)propane.  相似文献   

3.
The solubility in pure and saline water at various temperatures was calculated for selected nitro compounds (nitrobenzene, 1,3,5-trinitrobenzene, 2-nitrotoluene, 3-nitrotoluene, 4-nitrotoluene, 2,4-dinitrotoluene, 2,6-dinitrotoluene, 2,3-dinitrotoluene, 3,4-dinitrotoluene, 2,4,6-trinitrotoluene) using the Conductor-like Screening model for Real Solvents (COSMO-RS). The results obtained were compared with experimental values. The COSMO-RS predictions have shown high accuracy in reproducing the trends of aqueous solubilities for both temperature and salinity. The proposed methodology was then applied to predict the aqueous solubilities of 19 nitro compounds in the temperature range of 5-50 °C in saline solutions. The salting-out parameters of the Setschenow equation were also calculated. The predicted salting-out parameters were overestimated when compared to the measured values, but these parameters can still be used for qualitative estimation of the trends.  相似文献   

4.
2-Chlorophenol (2-CP), 4-chlorophenol (4-CP) and 2,4-dichlorophenol (2,4-DCP) at initial concentrations of 10, 20, 50 and 100mg l(-1) were degraded in aqueous media by direct UV photolysis using dielectric barrier discharge XeBr( *) excilamp (283nm) in a flow-through photoreactor. The pseudo-first order rate constants were highest and half-life times were lowest for 4-CP. The rates of photolysis under the experimental conditions increased in the order: 2-CP<2,4-DCP<4-CP. The intermediates of photolysis were identified by GC-MS and HPLC. The evolution of hydroquinone and p-benzoquinone as major intermediates of 4-CP photolysis was monitored.  相似文献   

5.
Six products were formed by reaction of ethynylestradiol (EE2) with sodium hypochlorite in buffered solutions. 4-Chloroethynylestradiol (4-ClEE2) and 2,4-dichloroethynylestradiol (2,4-diClEE2) were identified as the two major reaction products, using preparative HPLC, MS, and NMR. When EE2 reacted with chlorine at different pHs (pH 5, 7, and 9) or chlorine concentrations (0.2, 1, 2, and 5 mmol/l, corresponding to molar ratios to EE2, 1, 5, 10, and 25, respectively), the formation of 4-ClEE2 and 2,4-diClEE2 was observed under the above conditions, and the highest yields were 20 and 52 mol%, respectively. EE2 was consumed almost completely within 5 min of chlorination by addition of chlorine of more than 1 mmol/l (molar ratio to EE2, 5). On the other hand, the two products existed in highly chlorinated solutions after 60 min (4ClEE2, 1-6 mol%; 2,4-diClEE2, 3-25 mol%). The estrogenic activities of 4-ClEE2 by estrogen receptor alpha or beta binding assay were similar to those of the parent EE2, and the activities of 2,4-diClEE2 were lower about 10 times.  相似文献   

6.
《Chemosphere》1986,15(8):1063-1071
The singlet oxygen photolysis of methyl 2-benzimidazolecarbamate (Carbendazim, 1) in aqueous hydrochloric acid has been investigated. 2-Guanidinobenzimidazole 7, benzimidazole 9, 2,4′- (13) and 2,5′-bibenzimidazole 14, were isolated from the reaction products and identified. A comparative study on the singlet oxygen photolysis of Benlate 2 both in MeOH and aqueous hydrochloric acid, was also undertaken.  相似文献   

7.
Nipper M  Qian Y  Carr RS  Miller K 《Chemosphere》2004,56(6):519-530
Bio- and photo-transformation of two munitions and explosives of concern, 2,6-dinitrotoluene (2,6-DNT) and 2,4,6-trinitrophenol (picric acid) were assessed in spiked marine sediments and water. A sandy and a fine-grained sediment, with 0.25% and 1.1% total organic carbon, respectively, were used for biotransformation assessments at 10 and 20 degrees C. Sterilized sediments were used as controls for biotic vs. abiotic transformation. Transformation products were analyzed by HPLC, GC/MS and LC/MS. Biotransformation in sediments started soon after the initial contact of the chemicals with the sediments and proceeded for several months, with rates in the following sequence: fine-grain at 20 degrees C > fine-grain at 10 degrees C > sand at 20 degrees C > sand at 10 degrees C. The biotransformation paths seemed to be similar for all conditions. The major biotransformation product of 2,6-DNT was 2-amino-6-nitrotoluene (2-A-6-NT). 2-Nitrotoluene (2-NT) and other minor components, including N,N-dimethyl-3-nitroaniline, benzene nitrile, methylamino-2-nitrosophenol and diaminophenol, were also identified. After more prolonged incubation these chemicals were replaced by high molecular weight polymers. Several breakdown products of picric acid were identified by GC/MS, including 2,4-dinitrophenol, amino dinitrophenols, 3,4-diamino phenol, amino nitrophenol and nitro diaminophenol. Photo-transformation of 2,6-DNT and picric acid in seawater was assessed under simulated solar radiation (SSR). No significant photolysis of picric acid in seawater was observed for up to 47 days, but photo-transformation of 2,6-DNT began soon after the initial exposure to SSR, with 89% being photo-transformed in 24 h and none remaining after 72 h. High molecular weight chemicals were generated, with mass spectra ranging from molecular weight 200-500 compared to 182 for DNT, and the color of the stock solution changed from clear to orange. Complexity of the mass spectra and mass differences among fragments suggest that multiple polymers were produced and were co-eluting during the LC/MS analyses.  相似文献   

8.
Photolysis of vinclozolin   总被引:1,自引:0,他引:1  
Following photolysis of vinclozolin in methanol five products were detected and identified: 3,5-dichlorophenylisocyanate, 3,5-dichloroaniline, methyl 3,5-dichlorophenylcarbamate, 3-(3-chlorophenyl)-5-methyl-5-vinyl-oxazolidine-2,4-dione and methyl (3,5-dichlorophenyl) (2-hydroxy-2-methyl-1-oxo-buten-3-yl) carbamate. The major component identified from photolysis in benzene solution, 3-(3-chlorobiphenyl)-5-methyl-5-vinyl-oxazolidine-2,4-dione, was produced by replacement of one chlorine atom by a solvent molecule.  相似文献   

9.
Hydrolytic degradation of azimsulfuron, a sulfonylurea herbicide   总被引:1,自引:0,他引:1  
The chemical degradation of the herbicide azimsulfuron was investigated in aqueous solutions at different pH values. The hydrolysis rate, determined by HPLC analyses, was pH dependent and was much faster in acidic than in neutral or weakly basic conditions. The metabolites formed at different pH values were compared with standards when possible or isolated and identified using ESI-LC-MS/MS, (1)H NMR and (13)C NMR. The two main products of hydrolysis in mild acidic solution were identified as 2-amino-4,6-dimethoxy-pyrimidine and 2-methyl-4-(2-methyl-2H-tetrazol-5-yl)-2H-pyrazole-3-sulfonamide, both produced as a result of the sulfonylurea bridge cleavage. Under basic conditions, a new product, a substituted 2-pyrimidinamine, deriving from the contraction of the sulfonylurea bridge, was isolated and completely characterized for the first time.  相似文献   

10.
Bioconcentration factors (BCF) for pentachlorophenol (PCP) and 2,4-dichlorophenol (2,4-DCP) in Japanese medaka (Oryzias latipes) were determined at five different concentrations of the chemicals, between 0.1 and 10 microg/l (PCP), 0.3 and 30 microg/l (2,4-DCP), in the ambient water. Medaka were exposed to each chemicals in a continuous-flow system during the embryonic development period and 60 days after hatching from eggs collected in the laboratory. Both the exposure time and the aqueous concentrations are much more realistic and closer to natural aquatic environments than those used in conventional BCF studies. The BCF values of PCP were from (4.9+/-2.8)x10(3) at the aqueous concentration of 0.074+/-0.028 microg/l to (2.1+/-1.4)x10(3) at 9.70+/-0.56 microg/l. The BCF value of 2,4-DCP were from (3.4+/-3.0)x10(2) at 0.235+/-0.060 microg/l to 92+/-27 at 27.3+/-1.6 microg/l. Generally, BCF values increased as the aqueous concentrations of PCP or 2,4-DCP decreased. This finding suggests that a relatively low and realistic aqueous concentration of these compounds is necessary to more accurately determine their BCF values in natural aquatic environments. Conventional BCF experiments at higher aqueous concentrations may underestimate the BCF values.  相似文献   

11.
Reductive transformation of 2,4-dichlorophenoxyacetic acid (2,4-D) by nanoscale and microscale Fe3O4 was investigated and compared. Disappearance of the parent species and formation of reaction intermediates and products were kinetically analyzed. Results suggest that the transformation of 2,4-D followed a primary pathway of its complete reduction to phenol and a secondary pathway of sequential reductive hydrogenolysis to 2,4-dichlorophenol (2,4-DCP), chlorophenol (2-CP, 4-CP) and phenol. About 65% of 2,4-D with initial concentration of 50 μ M was transformed within 48 h in the presence of 300 mg L?1 nanoscale Fe3O4, and the reaction rates increased with increasing dosage of nanoscale Fe3O4. The decomposition of 2,4-D proceeded rapidly at optimum pH 3.0. Chloride was identified as a reduction product for 2,4-D in the magnetite–water system. Reductive transformation of 2,4-D by microscale Fe3O4 was slower than that by nanoscale Fe3O4. The reactions apparently followed pseudo-first-order kinetics with respect to the 2,4-D transformation. The degradation rate of 2,4-D decreased with the increase of initial 2,4-D concentration. In addition, anions had a significant adverse impact on the degradation efficiency of 2,4-D.  相似文献   

12.
Hwang S  Lee CH  Ahn IS  Park K 《Chemosphere》2008,72(4):572-577
When 4-(4-hydroxy-3-methoxy-phenyl)-2-butanone (vanillylacetone) was tested for manganese peroxidase (MnP)-catalyzed oxidation, it was found to be degraded with the cleavage of an aromatic ring. Among numerous products of vanillylacetone oxidation, four major ones were purified by thin-layer chromatography and identified using mass spectroscopy (MS) and nuclear magnetic resonance (NMR) analysis. Three of them maintained the aromatic ring structure and were identified as 4-[6,2'-dihydroxy-5,3'-dimethoxy-5'-(3-oxo-butyl)-biphenyl]-butan-2-one, 4-(4-hydroxy-3-methoxyphenyl)-3-buten-2-one, and 4-[6,2'-dihydroxy-5,3'-dimethoxy-5'-(3-oxo-butyl)-biphenyl]-3-buten-2-one. Even though the fourth product could not be purified to a single compound, data from infrared spectroscopy showed that it did not have a benzene ring. From MS and NMR analysis, 3-(3-oxo-butyl)-hexa-2,4-dienedioic acid-1-methyl ester was tentatively suggested as the dominant species. The reaction mechanism was suggested on the basis of the structural information of these products. To our knowledge, this paper is the first report on aromatic ring cleavage of the phenolic compound by MnP.  相似文献   

13.

Background, aim, and scope

Phenols are the most common pollutants in industrial wastewaters (particularly from oil refineries, resin manufacture, and coal processing). In the last two decades, it has become common knowledge that they can be effectively destroyed by nonconventional techniques such as power ultrasound (US) and/or microwave (MW) irradiation. Both techniques may strongly promote advanced oxidation processes (AOPs). The present study aimed to shed light on the effect and mechanism of US- and MW-promoted oxidative degradation of chlorophenols; 2,4-dichlorophenoxyacetic acid (2,4-D), a pesticide widespread in the environment, was chosen as the model compound.

Materials and methods

2,4-D degradation by AOPs was carried out either under US (20 and 300 kHz) in aqueous solutions (with and without the addition of Fenton reagent) or solvent-free under MW with sodium percarbonate (SPC). All these reactions were monitored by gas chromatography–mass spectrometry (GC–MS) analysis and compared with the classical Fenton reaction in water under magnetic stirring. The same set of treatments was also applied to 2,4-dichlorophenol (2,4-DCP) and phenol, the first two products that occur a step down in the degradation sequence. Fenton and Fenton-like reagents were employed at the lowest active concentration.

Results

The effects of US and MW irradiation were investigated and compared with those of conventional treatments. Detailed mechanisms of Fenton-type reactions were suggested for 2,4-D, 2,4-DCP, and phenol, underlining the principal degradation products identified. MW-promoted degradation under solvent-free conditions with solid Fenton-like reagents (viz. SPC) is extremely efficient and mainly follows pyrolytic pathways. Power US strongly accelerates the degradation of 2,4-D in water through a rapid generation of highly reactive radicals; it does not lead to the formation of more toxic dimers.

Discussion

We show that US and MW enhance the oxidative degradation of 2,4-D and that a considerable saving of oxidants and cutting down of reaction times is thereby achieved. The results support the interpretation of previously published data and improve the understanding of the factors of direct degradation along different pathways.

Conclusions

Oxidative pathways for 2,4-D, 2,4-DCP, and phenol were proposed by a careful monitoring of the reactions and detection of intermediates by GC–MS.

Recommendations and perspectives

The understanding of the factors that affect chlorophenols degradation along different pathways may facilitate the optimization of the treatment. Type of energy source (US or MW), power, and frequency to be applied could be designed in function of the operative scenario (amount of pollutant in soil, water, or oils).  相似文献   

14.
The fungicide diclobutrazol (2RS,3RS)-1-(2,4-dichlorophenyl)-4,4-dimethyl-2-(1H-1,2,4-triazol-1-yl)pentan-3-ol was irradiated by ultra-violet light in methanol solution using (1) borosilicate glass apparatus and (2) quartz apparatus. The major differences observed were that photodegradation occurred more rapidly in (2) than (1) and more breakdown products were found in the former. Using g.c.-m.s. ten compounds were detected in (1) of which five were identified. In (2) twelve of the eighteen compounds observed were identified and the major component was 1-(4-chlorophenyl)-4,4-dimethyl-2-(1H-1,2,4-triazol-1-yl)pentan-3-one. The compounds reported were formed by oxidation, loss of chlorine or by cyclisation. This previously unreported cyclisation gave the s-triazolo-(5,1a)isoquinoline ring system.  相似文献   

15.
Photocatalytic degradation of the herbicide, pendimethalin (PM) was investigated with BaTiO3/TiO2 UV light system in the presence of peroxide and persulphate species in aqueous medium. The nanoparticles of BaTiO3 and TiO2 were obtained by gel to crystallite conversion method. These photo catalysts are characterized by energy dispersive x-ray analysis (EDX), scanning electron microscope (SEM), x-ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) adsorption isotherm and reflectance spectral studies. The quantum yields for TiO2 and BaTiO3 for the degradation reactions are 3.166 Einstein m(-2) s(-1) and 2.729 Einstein m(-2) s(-1) and catalytic efficiencies are 6.0444 x 10(-7) mg(-2)h(-1)L2 and 5.403 x 10(-7) mg(-2)h(-1)L2, respectively as calculated from experimental results. BaTiO3 exhibited comparable photocatalytic efficiency in the degradation of pendimethalin as the most widely used TiO2 photocatalyst. The persulphate played an important role in enhancing the rate of degradation of pendimethalin when compared to hydrogen peroxide. The degradation process of pendimethalin followed the first-order kinetics and it is in agreement with Langmuir-Hinshelwood model of surface mechanism. The reason for high stability of pendimethalin for UV-degradation even in the presence of catalyst and oxidizing agents were explored. The higher rate of degradation was observed in alkaline medium at pH 11. The degradation process was monitored by spectroscopic techniques such as ultra violet-visible (UV-Vis), infrared (IR) and gas chromatography mass spectroscopy (GC-MS). The major intermediate products identified were: N-propyl-2-nitro-6-amino-3, 4-xylidine, (2, 3-dimethyl-5-nitro-6-hydroxy amine) phenol and N-Propyl-3, 4-dimethyl-2, 6-dinitroaniline by GC-MS analysis and the probable reaction mechanism has been proposed based on these products.  相似文献   

16.
Unusual products of the aqueous chlorination of atenolol   总被引:1,自引:0,他引:1  
The reaction of the drug atenolol with hypochlorite under conditions that simulate wastewater disinfection was investigated. The pharmaceutical reacted in 1h yielding three products that were separated by chromatographic techniques and characterized by spectroscopic features. Two unusual products 2-(4-(3-(chloro(2-chloropropan-2-yl)amino)-2-hydroxypropoxy)phenyl) acetamide and 2-(4-(3-formamido-2-hydroxypropoxy)phenyl) acetamide were obtained along with 2-(4-hydroxyphenyl) acetamide. When the reaction was stopped at shorter times only 2-(4-(3-amino-2-hydroxypropoxy)phenyl) acetamide and the dichlorinated product were detected. Tests performed on the seeds of Lactuca sativa show that chlorinated products have phytotoxic activity.  相似文献   

17.
The degradation of 4-chlorophenoxyacetic acid (4-CPA), 4-chloro-2-methylphenoxyacetic acid (MCPA), 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) as chlorophenoxy herbicides, as well as of 3,6-dichloro-2-methoxybenzoic acid (dicamba) as chlorobenzoic herbicide, has been studied by peroxi-coagulation. This electrochemical method yields a very effective depollution of all compounds in acidic aqueous medium of pH 3.0 working under pH regulation, since they are oxidized with hydroxyl radicals produced from Fenton's reaction between Fe(2+) and H(2)O(2) generated by the corresponding Fe anode and O(2)-diffusion cathode. Their products can then be removed by mineralization or coagulation with the Fe(OH)(3) precipitate formed. Both degradative paths compete at low currents, but coagulation predominates at high currents. The peroxi-coagulation process of dicamba at I>or=300 mA leads to more than 90% of coagulation, being much more efficient than its comparative electro-Fenton treatment with a Pt anode and 1 mM Fe(2+), where only mineralization takes place. For the chlorophenoxy compounds, electro-Fenton gives a slightly lower depollution than peroxi-coagulation, because more easily oxidable products are produced. Oxidation of chlorinated products during peroxi-coagulation is accompanied by the release of chloride ion to the solution. The efficiency of this method decreases with increasing electrolysis time and current. The decay of all herbicides follows a pseudo-first-order reaction, with a similar constant rate for 4-CPA, MCPA, 2,4-D and 2,4,5-T, and a higher value for dicamba.  相似文献   

18.
The chemical decomposition of aqueous solutions of various chlorophenols (4-chlorophenol (4-CP), 2,4-dichlorophenol (2-DCP), 2,4,6-trichlorophenol (2,4,6-TCP) and 2,3,4,6-tetrachlorophenol (2,3,4,6-TeCP)), which are environmental priority pollutants, is studied by means of single oxidants (hydrogen peroxide, UV radiation, Fenton's reagent and ozone at pH 2 and 9), and by the Advanced Oxidation Processes (AOPs) constituted by combinations of these oxidants (UV/H2O2 UV/Fenton's reagent and O3/UV). For all these reactions the degradation rates are evaluated by determining their first-order rate constants and the half-life times. Ozone is more reactive with higher substituted CPs while OH* radicals react faster with those chlorophenols having lower number of chlorine atoms. The improvement in the decomposition levels reached by the combined processes, due to the generation of the very reactive hydroxyl radicals. in relation to the single oxidants is clearly demonstrated and evaluated by kinetic modeling.  相似文献   

19.
Abstract

Bitumen and bitumen impacted soil and water samples were investigated for their relative chemical composition using comprehensive gas chromatography GcxGc – time of flight mass spectrometry (GCxGC-TOFMS). The results reveal the presence of key compounds which could serve as environmental biomarkers for bitumen impacted soils and aquifers. Prominent alkanes such as 3-methylpentane; 2,2,4-trimethylpentane; 1,3,5-trimethyladamantane; 2,6,10-trimethyldodecane; 3-ethyl-2,2-dimethyl pentane were tentatively identified and are likely potent biomarkers in environmental forensic assessment of bitumen contamination while the presence of some aromatic compounds: 1,2-benzenedicarboxylic acid, 1,2-dimethyl-3-propylbenzene; 3,4-bis(methoxycarbonyl)benzoic acid; 1,3-bezenedicarboxylic acid, 1,2-benzenediol; 1,3-dimethylbenzene; 1,2-2-(2-ethylhexoxycarbonyl)benzoic acid; (4-methylpentan-2-yl)benzene; 2,4-dimethyl benzo(H)quinolone will further confirm the bitumen contamination in an area under investigation. A host of additional compounds were tentatively identified, mainly in the bitumen samples. The results obtained in this study provides baseline data for effective monitoring, and source apportionment of oil/oil products spills.  相似文献   

20.
A two-phase partitioning bioreactor (TPPB) consisting of an aqueous phase containing a bacterial consortium and a polymeric phase of silicone rubber pellets (solid volume fraction 0.1) was used to treat a gaseous waste stream containing benzene, toluene, ethylbenzene and o-xylene (BTEX). The function of the solid polymer phase was to absorb/desorb the gaseous volatile organic compounds providing a buffering effect to protect the cells from high transient loadings and to sequester the BTEX for subsequent degradation. The TPPB was subjected to high and fluctuating inlet loadings of BTEX in the form of 4h step changes of 2, 4, 6 and 10 times the nominal inlet loading of 60 gm(-3) h(-1) total BTEX in approximately equal amounts, and removal efficiencies and elimination capacities were determined. It was found that overall removal efficiencies of greater than 95% can be achieved while obtaining overall elimination capacities of up to 282 gm(-3) h(-1) during transient operation and TPPB operation succumbs to toxic substrate levels between step changes of 6 and 10 times the nominal loading value (360-600 gm(-3) h(-1)). BTEX concentrations in the aqueous phase and the polymer phase of the TPPB were monitored throughout the imposed step changes to determine the extent to which the sequestering phase can buffer the aqueous phase from BTEX. With the polymer phase comprising only 10% of the total working volume of the reactor, the polymer beads accounted for up to 93%, 91% and 70% of the total BTEX present in the working volume for step changes of 2, 4 and 6 times the nominal loading, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号