首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
本研究构建了厌氧膜生物反应器(AnMBR)-部分亚硝化/厌氧氨氧化(PN/Anammox)污水处理工艺,以探究AnMBR-PN/A工艺处理效果最佳的水力停留时间(HRT).AnMBR将厌氧生物处理与膜分离技术相结合实现有机物去除,AnMBR出水NH4+-N通过PN部分转化为NO2--N,最终通过NO2--N氧化剩余NH4+-N去除.实验结果表明:在HRT=11.2 h时,AnMBR-PN/A工艺化学需氧量(COD)去除率稳定在97%以上,COD转化为CH4效率超过77.5%,总氮(TN)去除率为78%,出水COD和TN浓度分别低于14和11 mg·L-1.AnMBR段COD去除率达到95%,平均甲烷产率为0.39 L·L-1·d-1.PN段实现了NO2--N的高效积累,其出水中NO2-/NH4+为0.91±0.11.Anammox段出水中的NO2--N、NH4+-N和NO3--N浓度分别低于1.0、4.9和5.1 mg·L-1.高通量测序结果表明PN段氨氧化菌主要为Nitrosomonas,丰度为7.09%,Anammox段主要微生物为Candidatus Brocadia,丰度高达21.01%.本研究构建的AnMBR-PN/A工艺实现了污水处理过程的高效能源回收和深度自养脱氮,研究成果为工程应用提供了理论支撑.  相似文献   

2.
同步脱氮好氧颗粒污泥的特性及其反应过程   总被引:32,自引:4,他引:28  
厌氧颗粒污泥经过驯化后,成为具有同步硝化与反硝化(SND)功能的好氧颗粒污泥.实验在2L反应器中进行,温度,pH值,溶解氧分别控制在25℃,pH7~8,3~4mg/L.在实验条件下,SND好氧颗粒污泥COD去除率90%,氨氮去除率100%,出水检测不出NO2--N和NO3--N.反应器中SND颗粒污泥粒径在2.0~2.7mm的占全部颗粒污泥的50%,SVI为15~30mL/gTSS;污泥所能承受的最大压力为23.236N;SND好氧颗粒污泥中挥发性固体为9.92mg/mL,占总固体的2/3.采用SND好氧颗粒污泥进行脱氮研究,反应6h后氨氮去除率达100%,废水中检测不到NO2--N,仅残留2mg/L的NO3--N.  相似文献   

3.
补充碳源提取液对人工湿地脱氮作用的影响   总被引:6,自引:1,他引:5  
为了提高人工湿地的脱氮效率,在不同条件下分别对美人蕉、香蒲及稻杆进行稀硫酸水解,以获得相应碳源提取液.正交实验表明,稀硫酸浓度的提高和水解时间的增加都会导致碳源释碳能力的提高,稻杆在5%稀硫酸溶液中水解30 min以上,释碳能力最高.通过观察,前2 d是系统脱氮反应高峰时段.对以NH4+-N和NO3--N为氮源的脱氮过程,随C/N比升高,NO3--N和TN去除率增长明显;而NH4+-N受溶解氧制约,去除有限;随C/N比升高,碳源对系统溶解氧的竞争会进一步抑制硝化反应的彻底进行.而对以NO3--N为氮源的反硝化过程,补充碳源对TN和NO3--N的去除有明显作用;TN去除率由54%提高到95%,NO3--N去除率由48%提高到96%;中间产物NO2--N的积累与NO3--N去除率有关;当NO3--N去除率较高时,NO2--N无积累.此外,基质反硝化强度也随C/N比升高呈上升趋势,湿地填料细沙层的反硝化强度略高于碎石层.  相似文献   

4.
有机碳源条件下厌氧氨氧化ASBR反应器中的主要反应   总被引:10,自引:3,他引:7  
朱静平  胡勇有  闫佳 《环境科学》2006,27(7):1353-1357
采用5个已稳定运行在厌氧氨氧化状态的ASBR反应器,通过COD、氨氮、亚硝酸盐氮、硝酸盐氮、pH等指标的监测和好氧硝化菌、异养反硝化菌的测定,研究了不同有机碳源条件下反应器中发生的主要反应.结果表明,反应器中存在好氧硝化菌、异养反硝化菌和厌氧氨氧化菌.在COD、氨氮、亚硝酸盐氮等存在条件下,可发生好氧硝化、厌氧氨氧化和异养反硝化反应,先是好氧硝化反应、厌氧氨氧化反应和异养反硝化反应共存,其后依次是异养反硝化反应和厌氧氨氧化反应占主导地位.当C/NO2--N在1.7~1.9范围内时,C/NH4+-N为1.7的1号反应器具有最佳的厌氧氨氧化效果,反应结束时其COD去除率、NH4+-N去除率、NO2--N去除率分别为100%、81.7%和74.4%.  相似文献   

5.
为探究深水水库沉积物微生物功能特征及利用价值,于2019年在实验室对小湾水库表层沉积物微生物进行了驯化分离,并分析了其中一株细菌的脱氮效率.结果表明,分离出的细菌XW731经鉴定属于假单胞菌属(Pseudomonas sp.),是一种贫营养型好氧反硝化菌;在分别以NH4+-N、NO3--N和NO2--N为唯一氮源时,该菌对NH4+-N、NO3--N和NO2--N去除率分别为33.6%、68.5%和9.1%;以NH4+-N和NO3--N为氮源时,对NH4+-N和NO3--N去除率分别为66.4%、89.6%,同步硝化反硝化能力更强.将该菌投加到两种城市微污染水体后测试表明,该菌对城市河道水体的NH4+-N和NO3--N去除率分别为38.3%和42.4%,对城市降雨水体的NH4+-N和NO3--N去除率分别为22.2%和7.7%.  相似文献   

6.
采用两种不同形态(固定生物膜和颗粒态)的厌氧氨氧化菌(AnAOB),考察了其对磁分离出水的脱氮性能、氮负荷的差异,同时从分子生物学的角度分析了微生物群落结构的变化.结果表明:采用自模拟污水,35℃恒温、不同水力停留时间(HRT)条件下,两个反应器对NH4+-N和NO2--N的去除率均大于90%.此外,反应器内的微生物群落结构也发生改变,固定生物膜和颗粒反应器中Candidatus Kuenenia菌属消失,Candidatus_BrocadiaCandidatus_Jettenia成为体系厌氧氨氧化优势菌属,相对丰度分别上升至0.89%、0.63%(固定生物膜)和8.79%、2.92%(颗粒).采用磁分离出水,随着HRT的降低,两种形态的厌氧氨氧化菌对NH4+-N和NO2--N去除率均在80%以上.反应器中厌氧氨氧化菌Candidatus_BrocadiaCandidatus_Jettenia的相对丰度明显下降,最终稳定维持在0.7%左右,并伴随异养菌的出现.  相似文献   

7.
一体式部分亚硝化-厌氧氨氧化(CPNA)工艺的脱氮性能常因亚硝酸盐氧化菌(NOB)大量增殖导致的NO3--N积累而恶化.本研究通过连续试验考察长期低剂量投加羟胺(NH2OH)对CPNA工艺原位恢复及其长期运行稳定性的影响.结果表明,低剂量投加NH2OH(1.5 mg·L-1)可快速原位恢复CPNA工艺,TN去除率在45 d内从18.6%恢复至82.2%,ΔNO3--N/ΔNH4+-N比值从0.73±0.05下降至0.13±0.03;以相同方式在100 d内持续投加NH2OH,CPNA工艺的TN去除率长期保持在82.2%±4.9%,ΔNO3--N/ΔNH4+-N比值可长期稳定在0.13±0.03.16S rRNA高通量测序结果表明,羟胺投加期间,脱氮功能菌群变化显著,Nitrospira的丰度从28.22%下降到2.74%,厌氧氨氧化菌Candidatus Kuenenia丰度从初始的3.43%明显增长到22.86%.低剂量投加羟胺可有效促进CPNA工艺的快速原位恢复,并保持其长期稳定运行.  相似文献   

8.
采用SBR-ASBR组合工艺处理实际生活污水,SBR中考察缺氧/好氧时间比及温度对部分亚硝化(partial nitritation,PN)的作用,ASBR中研究COD/NO2--N(C/N)对厌氧氨氧化(anaerobic ammonium oxidation,ANAMMOX)协同反硝化脱氮除碳的影响.①控制温度为25℃,在缺氧/好氧时间比为30 min:30 min,单周期交替3次时,NO2--N积累率(NiAR)于第22 d为98.06%,比亚硝态氮产生速率(SNiPR,以N/VSS计)为0.28g·(g·d)-1,同步硝化反硝化去除的TN和COD分别为12.29 mg·L-1和110.36mg·L-1.②在缺氧/好氧时间比为30 min:30 min下,温度为15℃时,丝状菌大量繁殖,污泥活性和沉降性变差;温度为30℃时,NH4+-N转化为NO2--N比例为86.83%,造成出水NH4+-N浓度过低,不能为厌氧氨氧化提供合适基质浓度;温度为25℃时,出水NH4+-N和NO2--N浓度分别为31.58 mg·L-1和35.04mg·L-1,匹配厌氧氨氧化基质比.③组合工艺脱氮性能良好,出水TN、NH4+-N和COD浓度分别稳定在13.13、4.83和69.96mg·L-1,去除率分别为83.10%、93.64%和75.11%.调节ASBR进水C/N为2.5、2.0和1.5时,C/N为2.0时厌氧氨氧化协同反硝化脱氮除碳性能最佳,出水NH4+-N、NO2--N、NO3--N和COD分别为0.09、0.25、1.04和32.73mg·L-1.  相似文献   

9.
在控制进水TN浓度<50 mg·L-1、水力停留时间为2.0 h和水温为20℃条件下,采用连续流完全混合式反应器对比研究了限NH4+和限NO2-厌氧氨氧化系统的脱氮效能及微生物种群特征.结果表明,尽管两厌氧氨氧化反应器维持了类似的TN去除负荷[0.45~0.5 kg·(m3·d)-1]和TN去除率(70%左右),但限NH4+厌氧氨氧化反应器中ΔNO3-/ΔNH4+呈现更快的上升趋势.批式试验及高通量测序结果表明,限NH4+厌氧氨氧化反应器比限NO2-反应器具有更为显著的功能及微生物种群空间异质性.Candidatus_Brocadia是两反应器中的优势厌氧氨氧化菌属,限NH4+条件下Candidatus_Brocadia在大粒径颗粒污泥中的富集水平(53.9%)显著高于絮体污泥(19.1%);而在限NO2-条件下颗粒污泥与絮体污泥中Candidatus_Brocadia的相对丰度差别不大,分别为28.1%和21.3%.两反应器中均有Nitrospira存在且主要生存于絮体污泥中,对O2的需求应是驱动Nitrospira于絮体污泥中生长的关键因素;此外,限NH4+(即NO2-富余)环境可以促进Nitrospira的生长繁殖.综上,提出了基于选择性排泥的限NH4+厌氧氨氧化系统优化运行策略.  相似文献   

10.
三江平原农田渠系中氮素的时空变化   总被引:6,自引:3,他引:3  
陆琦  马克明  卢涛  张洁瑜  倪红伟 《环境科学》2007,28(7):1560-1566
以三江平原开发强度不同的浓江上游段和别拉洪河中游段的农田排水渠系为研究对象,根据毛、农、斗、支、干5个渠道级别设采样点,分析TN、NH+4-N和NO-3-N在渠系中的时空变化规律及其影响机制.结果表明,别拉洪河中游段渠系中的TN、NH+4-N和NO-3-N浓度大于浓江上游段;TN、NH+4-N、NO-3-N的浓度峰值沿着渠系从低级向高级移动,浓江上游段峰值出现的最高级别是干渠,而别拉洪河中游段是斗渠;多等级的排水渠系对氮素起到了一定的截留作用,且别拉洪河中游段渠系对氮素的截留大于浓江上游段;2个渠系中的TN、NH+4-N的季节变化趋势相一致,6~9月逐月减少,而NO-3-N的季节变化不明显且没有规律;TN与NH+4-N、NO-3-N呈显著性正相关,浓江上游段TN与NH+4-N、NO-3-N之间的关系适合幂函数模型,而别拉洪河中游段适合三次曲线模型;通过多元回归分析得到别拉洪河中游段渠系中的TN浓度与NH+4-N、NO-3-N之间的关系模型可以解释78%的TN浓度.  相似文献   

11.
采用膜生物反应器(MBR)研究了厌氧氨氧化细菌在富集过程中的活性变化,在启动全程自养脱氮(CANON)工艺中以恒定曝气量,通过优化停曝比实现氨氧化细菌(AerAOB)和厌氧氨氧化细菌(AnAOB)协同脱氮并且有效抑制亚硝酸盐氧化菌(NOB)的活性,然后添加有机物(乙酸钠)逐步启动同步亚硝化-厌氧氨氧化耦合异养反硝化(SNAD)工艺.结果表明,在厌氧氨氧化细菌富集过程中,通过不断缩短水力停留时间(HRT)提高进水氮负荷的方式强化厌氧氨氧化细菌活性,其平均活性由0.603mgN/(h·gVSS)提高到了8.1mgN/(h·gVSS);当恒定曝气量为50mL/min,停曝比为4:10(min:min)时,AerAOB和AnAOB对氨氮的去除量分别占总氨氮去除量的58.8%和41.2%,NOB氧化亚硝态氮的量占总硝态氮生成量的15.3%,成功抑制了NOB的活性;当C/N比为0.5,调整停曝比为4:15后,反硝化过程氮去除量占总氮去除率的20.9%,厌氧氨氧化过程氮去除量占总氮去除率的79.1%,实现了AerAOB、AnAOB和反硝化细菌(DNB)协同脱氮的目的.  相似文献   

12.
一体化全程自养脱氮(CANON)工艺的效能及污泥特性   总被引:10,自引:0,他引:10       下载免费PDF全文
在氨氮浓度梯度升高的条件下,通过控制DO等方式在一体化CSTR反应器中实现了一体化全程自养脱氮(CANON—completely autotrophic nitrogen removal over nitrite).结果表明随进水氨氮浓度(76.05~583.93mg/L)的升高,系统的氨氮和总氮去除负荷逐渐提高,试验期间无亚硝态氮的积累,反应器后期在高氨氮进水下最高氨氮去除率84.4%,最高去除负荷0.42kg/(m3·d);最高总氮去除率72.0%,最高去除负荷0.35kg/(m3·d).污泥氧消耗速率实验得出好氧氨氧化菌的耗氧速率为169.46 mgO2/(gVSS·h)、硝酸化细菌的好氧速率为39.63 mgO2/(gVSS·h).采用总氮去除量和硝态氮产生量的比值(△TN /△NO3-)表征硝酸化反应对出水氨氮浓度的影响.试验进一步研究了反应器内污泥形态的变化,得出第102d的污泥粒径(86.36μm)比第30d(54.09μm)增加60%,污泥的SEM分析得出实验后期相对于前期污泥表面丝状菌减少,胞外聚合物增多.以上结果表明该反应器具备良好的造粒功能,有利于自养脱氮工艺的启动与稳定.  相似文献   

13.
严锋  袁林江  王洋  赵嘉琪 《环境科学学报》2017,37(12):4602-4609
在Anammox-UASB反应器中研究了亚硝氮停供及恢复供给后不同进水亚硝氮/氨氮比(R_I)对Anammox系统脱氮的影响,对Anammox系统停供亚硝氮培养后的污泥微生物群落进行了分析.结果表明,Anammox反应器在长期停供亚硝氮培养后,微生物多样性增加,氨氧化菌(Nitrosomonas)和Anammox菌都大量增殖,这两种微生物通过协同作用使得部分氨氮得以去除,NH_4~+-N最大去除速率可达68.77 mg·L~(-1)·d~(-1),出水p H低于进水.反应器恢复亚硝氮供给后,脱氮效果快速恢复.Anammox反应器中存在的氨氮"超量去除"现象是由氨氧化菌作用引起的,氨氧化菌活性易受亚硝氮浓度抑制.氨氮"超量去除"量占氨氮总去除量的百分比与R_I呈负相关关系.当R_I为0.17时,氨氮"超量去除"量占氨氮总去除量的百分比高达68.83%;当R_I增加到1.30∶1后,氨氮"超量去除"现象基本消失.  相似文献   

14.
部分亚硝化-厌氧氨氧化耦合工艺处理污泥脱水液   总被引:16,自引:1,他引:15       下载免费PDF全文
在缺氧滤床+好氧悬浮填料生物膜工艺中实现部分亚硝化,然后进行厌氧氨氧化(ANAMMOX),考察其对高含氮、低C/N污泥脱水液的处理能力.结果表明,亚硝化反应器在15~29℃、DO 6~9mg/L条件下,通过综合调控进水氨氮负荷(ALR)、进水碱度/氨氮、水力停留时间(HRT)等运行参数,可以调节出水(NO2--N)/(NH4+-N)的比率,能够较好地实现部分亚硝化反应以完成厌氧氨氧化.当进水ALR为1.16kg/(m3·d),进水碱度/氨氮为5.1时,出水(NO2--N)/(NH4+-N)在1.2左右,(NO2--N)/(NOx--N)大于90%,进入ANAMMOX反应器的氮物质去除率达到83.8%.  相似文献   

15.
EGSB反应器中耦合厌氧氨氧化与甲烷化反硝化的研究   总被引:19,自引:3,他引:16  
将好氧活性污泥接种于膨胀颗粒污泥床(EGSB)反应器中,经过120 d的启动运行,形成颗粒污泥.在启动好的EGSB反应器进水中添加亚硝酸盐和氨盐,反应器内温度控制在32~35 ℃,pH为7.5~8.3,氧化还原电位为-150~-40 mV;水力停留时间4.2 h,上升流速4.86 m/h,经过270 d运行,逐步富集和耦合产甲烷菌、反硝化菌和厌氧氨氧化菌.在进水ρ(CODCr)为500 mg/L,有机容积负荷速率为4.800 kg/(m3·d)(以CODCr计)和1.152 kg/(m3·d)(以N计)的条件下,出水ρ(CODCr)维持在80 mg/L以下;CODCr,氨氮,亚硝态氮和总氮去除率分别为85%, 35%, 99.9%和67%;其去除速率分别稳定在6.12,0.202,0.575和0.777 kg/(m3·d);其中氨氮和总氮的去除速率分别是传统活性污泥法硝化/反硝化(0.05 kg/(m3·d))的4和15.5倍. pH,温度,溶解氧,氧化还原电位,亚硝酸盐和CODCr对EGSB反应器中厌氧氨氧化与甲烷化反硝化的耦合和颗粒污泥的特性均有影响.   相似文献   

16.
A combined process consisting of a short-cut nitrification (SN) reactor and an anaerobic ammonium oxidation upflow anaerobic sludge bed (ANAMMOX) reactor was developed to treat the diluted effluent from an upflow anaerobic sludge bed (UASB) reactor treating high ammonium municipal landfill leachate.The SN process was performed in an aerated upflow sludge bed (AUSB) reactor (working volume 3.05 L),treating about 50% of the diluted raw wastewater.The ammonium removal efficiency and the ratio of NO 2 N to NOx-N in the effluent were both higher than 80%,at a maximum nitrogen loading rate of 1.47 kg/(m 3 ·day).The ANAMMOX process was performed in an UASB reactor (working volume 8.5 L),using the mix of SN reactor effluent and diluted raw wastewater at a ratio of 1:1.The ammonium and nitrite removal efficiency reached over 93% and 95%,respectively,after 70-day continuous operation,at a maximum total nitrogen loading rate of 0.91 kg/(m 3 ·day),suggesting a successful operation of the combined process.The average nitrogen loading rate of the combined system was 0.56 kg/(m 3 ·day),with an average total inorganic nitrogen removal efficiency 87%.The nitrogen in the effluent was mostly nitrate.The results provided important evidence for the possibility of applying SN-ANAMMOX after UASB reactor to treat municipal landfill leachate.  相似文献   

17.
厌氧氨氧化微生物颗粒化及其脱氮性能的研究   总被引:22,自引:4,他引:18  
利用厌氧颗粒污泥作为种泥,启动SBR反应器,旨在培养厌氧氨氧化颗粒污泥以及研究其脱氮性能.结果表明,水力停留时间(HRT)是富集厌氧氨氧化微生物的1个重要控制因素,以HRT为30 d,第58 d时,SBR反应器就出现厌氧氨氧化现象,与此同时,颗粒污泥由灰黑色变为棕褐色,粒径减小.到第90 d时,成功培养出厌氧氨氧化颗粒污泥,NH+4-N和NO-2-N同时被去除,最大去除速率分别达到14.6 g/(m3·d)和6.67 g/(m3·d).从第110 d开始,逐步降低HRT,以提高基质负荷促进厌氧氨氧化菌生长.到目前t=156 d,HRT降到5 d,氨氮和亚硝酸氮的去除率分别达到60.6%和62.5%,亚硝酸氮/氨氮的比率为1.12.污泥也由棕褐色变为红棕色,形成红棕色的具有高厌氧氨氧化活性颗粒污泥,总氮负荷达到34.3 g/(m3·d).  相似文献   

18.
全程自养脱氮工艺的研究   总被引:5,自引:0,他引:5  
以悬浮填料床作为全程自养脱氮反应器,用不含有机碳的合成氨氮废水进行反应器的启动。系统的氨氮和总氮去除率分别达80%和60%左右。通过批式实验对全程自脱氮做进一步的研究。结果表明,通过控制反应器中DO的浓度,可以控制氨氧化和反硝化的比率;当DO为0.8mg/L时,氨氮几乎完全转化为氮气,氨氧化和反硝化在此时达到了动态平衡;在低DO情况下,氨氮和亚硝氮同时存在,氨氮和总氮的转化率都大幅度的提高,说明氨氮可以亚硝氮为电子受体,在无外加有机碳源的情况下进行反硝化。  相似文献   

19.
李冬  崔雅倩  赵世勋  刘志诚  张杰 《环境科学》2018,39(11):5074-5080
在污水处理厂室外,以A/O除磷工艺出水为基质,启动全程自养脱氮(CANON)生物滤柱反应器.反应器启动成功后,进水中投加葡萄糖作为有机碳源,启动同步短程硝化、厌氧氨氧化耦合反硝化(SNAD)工艺,研究SNAD生物滤柱处理城市生活污水的效果.结果表明,第119~128 d,CANON工艺氨氮去除率大于95%,最大出水总氮浓度为13. 0 mg·L~(-1),超过了北京市地标一级A排放标准.第129 d在进水中投加葡萄糖30 mg·L~(-1)启动SNAD工艺,第133~187 d时SNAD工艺总氮去除率在85%左右,出水总氮浓度为5. 5~7. 3 mg·L~(-1).第195d观察到滤柱出现堵塞现象,在第196 d对反应器进行反冲洗,反冲洗后的30d期间,反应器总氮去除率大于85%,出水总氮浓度维持在6. 2~7. 2 mg·L~(-1).与CANON工艺相比,SNAD工艺提高了总氮去除率,将出水总氮浓度降低了6 mg·L~(-1),使出水氨氮和总氮浓度达到北京市地标一级A标准.  相似文献   

20.
碳源和氮源对异养硝化好氧反硝化菌株Y1脱氮性能的影响   总被引:8,自引:1,他引:7  
从焦化废水活性污泥中筛选到一株高效脱氮细菌,命名为Acinetobacter sp.Y1.本实验对菌株Y1在不同碳源、氮源、碳氮比及底物浓度下的脱氮特性进行了研究,结果表明,菌株Y1可以利用氨氮、亚硝氮和硝氮生长,不能利用羟胺;以氨氮为唯一氮源进行硝化作用时,柠檬酸钠和乙酸钠是最佳碳源,最佳碳氮比为15,菌株Y1可降解高浓度氨氮,在36h内将400 mg·L-1氨氮全部去除,1600 mg·L-1氨氮的去除率可达21.3%,最大降解速率随着初始氨氮浓度的升高而增大.以硝氮或亚硝氮为唯一氮源进行反硝化时,菌株Y1可以适应高浓度氮源但不能完全去除氮源,当碳氮比为20,经36h培养硝氮和亚硝氮的去除率均达到100%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号