首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
为探究如东沿海经济开发区夏季大气中的O3污染成因,基于2022年6月园区大气超级站的监测数据,较为全面地分析了O3污染来源、水平及二次生成潜势等。结果表明:2022年6月园区O3超标天数占比为34.5%,共计10 d,污染严重程度为2018—2022年同期最高水平(151 μg/m3);分析4个污染过程发现,高温低湿、静稳天气易诱发O3污染事件,结合污染天气象条件发现,当温度>25℃且相对湿度< 75%时极易发生O3污染;污染天VOCs组分贡献率主要受芳香烃、烯烃及烷烃影响,其中邻二甲苯、甲苯、间-对二甲苯是O3管控的关键活性物种;后向轨迹聚类分析显示,园区O3污染主要受到上海、江西和苏南本地气团输送的影响,主导轨迹出现概率分别为30%、27%和24%,其余小部分时段可能受到来自中国北部和东部的下沉气流影响。为科学管控园区夏季O3污染,应加强监测并协同管控本地关键VOCs物种。  相似文献   

2.
综合利用环境空气质量常规监测、挥发性有机物(VOCs)在线监测,以及后向轨迹聚类分析、权重潜在源区分析和正交矩阵因子分解法等多种监测分析方法,基于合肥市经历的一次典型臭氧(O3)污染过程(2020年9月1—10日),系统分析了合肥市O3污染的典型特征及成因。结果显示,此次污染过程的O3小时平均浓度高达96 μg/m3,且O3浓度波动较大,在9月6日13:00达到了224 μg/m3,呈现出快速生成、快速消耗的污染特征,并在夜间呈现出非典型的二次峰值过程。污染期间,合肥市基本处于VOCs控制区,芳香烃对O3生成潜势的贡献最大(45.2%),其次是烷烃(31.8%)和烯烃(21.5%);污染阶段的VOCs主要来自机动车排放源(44.1%)、燃烧源(21.3%)、工业源(15.3%)、溶剂使用源(12.4%)和天然源(6.9%),累积阶段和污染阶段均受机动车尾气排放和溶剂使用的影响较大。此外,台风外围下沉气流和高温、低湿、低风速等气象条件是引发此次O3污染过程的主要外因,而合肥市周边的高污染区域则是此次O3污染过程的潜在外部源区。  相似文献   

3.
利用实时监测数据分析2017—2021年邯郸市及周边区县PM2.5和O3污染特征。研究发现:2017—2021年各地区PM2.5年均质量浓度持续降低,轻度及轻度以上污染逐渐减少;2017—2019年O3污染加剧,2020年起O3年均质量浓度逐年下降,污染天不断减少。PM2.5和O3-8 h分别在1月(平均浓度为127.3 μg/m3,平均超标22d)和6月(平均浓度为233.4 μg/m3,平均超标22 d)污染最严重。结合气象参数分析来看,PM2.5与温度、风速和降水量呈显著负相关,与相对湿度呈显著正相关;O3-8h与温度呈显著正相关,而与风速、湿度和降水量的相关性较弱。后向轨迹和潜在源分析表明:邯郸地区PM2.5典型污染月受山西省中部地区污染传输影响最大,O3典型污染月受河南省东部污染传输影响最大。  相似文献   

4.
山东省2015年PM2.5和O3污染时空分布特征   总被引:1,自引:0,他引:1  
利用中国环境监测总站的城市空气质量自动监测数据,分析了2015年山东省细颗粒物(PM2.5)和臭氧(O3)污染的时空分布特征,并初步探讨了其与气象要素的相互关系。研究发现:山东省PM2.5年均质量浓度和年超标天数的空间分布均呈现由东部向西部递增的趋势,半岛地区的浓度最低,其他地区浓度均较高,年均质量浓度最大值出现在德州(101 μg/m3)。各城市PM2.5的月均质量浓度均呈现出季节性变化,冬季最高,夏季最低。O3-8h年均值和O3年超标天数的空间分布与PM2.5不同,半岛地区污染天数最少,其次为南部地区,中部地区和西北部地区污染最为严重并且各区域的城市之间O3污染情况存在较大差异,具有明显的局地性特征。O3质量浓度在春末夏初最高,超标现象主要出现在5—8月。分析各城市PM2.5污染和O3污染的协同性与差异性发现,虽然不同城市之间两者污染情况存在一定差异,但整体上看,山东省大气复合污染特征明显,全年有10个城市的PM2.5和O3同时超标天数都在20 d以上,并且该现象主要发生在夏季。夏季高温低湿的大陆气团控制更有利于O3和PM2.5叠加共存形成复合型污染。温度≥26℃时,O3-8 h与PM2.5日均质量浓度的相关系数为0.63,相对湿度≤60%时,两者相关系数为0.69。此外,当在大陆气团的控制下发生O3污染时,相对湿度的提高更有利于PM2.5浓度的增加。  相似文献   

5.
利用手工及自动监测数据,结合最大增量反应活性(MIR)系数法,对广州市大气挥发性有机物(VOCs)污染特征及臭氧生成潜势(OFP)进行了研究。结果表明:广州市大气VOCs总体积分数为73.85×10-9,其中,丙烷、甲醛、乙酸乙酯的体积分数最高,分别为5.59×10-9、4.87×10-9、4.25×10-9。组成特征分析结果显示,含氧挥发性有机物(OVOCs)和烷烃为主要污染物种类,分别贡献了总VOCs的34.32%和32.34%。在空间分布上,各站点VOCs体积分数自南向北不断降低,番禺市桥站(南部,76.16×10-9)>公园前站(中部,75.58×10-9)>花都梯面站(北部,69.80×10-9)。广州市大气中甲醛和乙醛的比值为1.22,表明本地排放对广州市醛酮类化合物的贡献较大;乙苯和间/对-二甲苯的比值为0.35,表明广州市气团老化程度低,VOCs主要受本地排放影响;甲苯和苯的比值显示,公园前站苯系物主要受机...  相似文献   

6.
为了解宜都市PM2.5与O3的污染特征及潜在来源,利用宜都市2020年3月至2022年2月在线监测数据及气象数据,对宜都市PM2.5与O3质量浓度变化特征、气象影响因素及潜在源区进行了分析,结果表明:宜都市PM2.5质量浓度冬高夏低,日变化呈双峰特征,O3质量浓度夏高冬低,日变化呈单峰特征。高湿、静稳的气象条件以及较强偏北风作用下的区域污染传输对PM2.5污染有重要影响,高温以及中湿度对O3污染过程有重要作用。春、夏、秋季偏南方向气流轨迹占主导,且携带较高的污染物浓度,冬季来自湖北东北及西南方向的气流占比较高且携带的PM2.5浓度较高;宜都市PM2.5、O3的潜在源区具有季节性差异,总体来看,主要分布在河南南部、湖北东部及湖南的北部区域。  相似文献   

7.
成都市O3浓度的时间变化特征及相关因子分析   总被引:1,自引:7,他引:1  
为深入认知成都市O_3浓度的时间变化规律及其影响因子,基于2013年1月1日—12月31日市区站点O_3、NO、NO_2、NO_x的逐时监测资料以及成都市气象站的气象数据逐时观测资料,据此对O3的季变化、日变化、"周末效应"、"节假日效应"进行了讨论,并对其浓度影响因子进行分析。结果表明:成都市O_3浓度季变化呈现明显夏高冬低的特征,浓度最大值出现在8月。O_3浓度日变化为单峰型,夏季峰值出现在15:00,冬季峰值出现在16:00。市区存在"周末效应",即周末O_3浓度总体比工作日高;"节假日效应"则表现出复杂多变性,受气象条件以及人为活动等多种随机因素的影响。O_3日平均浓度与NO、NO_2、NO_x、相对湿度呈明显负相关,与温度、风速呈明显正相关。  相似文献   

8.
利用2018—2021年安徽省空气质量监测数据分析了PM2.5和O3时空分布特征及其引发的健康风险。结果表明:从时间分布来看,2018—2021年安徽省PM2.5年均值下降25.5%,而O3-8 h年均值则保持持平;PM2.5和O3-8 h月均值具有明显的季节变化特征,PM2.5月均质量浓度和超标天数均在冬季达到最大值,O3-8 h月均值和超标天数则在夏季达到最大值。从空间分布来看,PM2.5、O3-8 h年均值和超标天数均为皖北最高,其次为皖中,最后为皖南。夏季O3是主要的健康风险因子,冬季PM2.5是主要的健康风险因子。当PM2.5超标时,除2021年皖北地区外(PM10是主要的健康风险因子),PM2.5均是主要的健康风险因子;当O3-8 h超标时,O3是主要的健康风险因子。  相似文献   

9.
利用2017—2018年全国7个区域10个典型城市环境空气O3和PM2.5浓度数据,统计污染物累积速率,进而采用回归方法拟合污染物浓度及其累积速率的时间序列模型,分析不同区域污染物时序变化特征差异。结果表明:不同区域O3浓度时序曲线拟合程度总体高于PM2.5,石家庄O3拟合程度最高,西安PM2.5拟合程度最高。以07:00、14:00分别作为O3、PM2.5模拟起点是24 h中的最优模型。不同城市夏季O3小时浓度时序变化曲线均为单峰形态,O3浓度及累积速率峰值出现时间可能由城市所处经度决定,太原O3累积最快,西安O3消解最快。各城市间冬季PM2.5小时浓度及其累积速率时序变化曲线形态差异较大,沈阳PM2.5累积和消解均最快。与浓度相比,城市环境空气O3和PM2.5累积速率与光照、扩散条件等有更好的时间相关性。  相似文献   

10.
基于漯河市大气灰霾站在线观测数据,分析2022年10月12—19日PM2.5-O3复合污染过程中VOCs的污染特征及来源,以期判别复合污染过程中需要优先管控的VOCs物种及来源,为PM2.5和O3协同管控提供依据。结果表明:污染期间VOCs平均质量浓度(96.7μg/m3)显著高于污染前(49.4μg/m3)和污染后(54.8μg/m3),以烷烃和卤代烃占比较高;整个污染过程中质量浓度较高的物种包括乙醛、乙烷、丙烷、异戊烷、氟利昂-12、二氯甲烷、甲苯、苯、一氯甲烷、氟利昂-11、正丁烷和1,2-二氯乙烷;污染期间正丁烷、异戊烷、丙烷、二氯甲烷、一氯甲烷和苯的质量浓度增幅均超过100%。漯河市VOCs的O3生成潜势(OFP)以OVOC和烯烃占比较高,二次有机气溶胶生成潜势(SOAp)以芳香烃占比最高。OFP贡献较高物种为乙醛、乙烯、甲苯和丙烯,SOAp贡献较高物种为甲苯、苯、间、对二甲苯、乙苯和邻二甲苯;污染期间...  相似文献   

11.
在石家庄臭氧(O3)污染较重的7月,开展连续10 d(2018年7月6—15日),8次/d的加密监测,获得大气挥发性有机物(VOCs)苏玛罐样品数据及O3在线监测数据,分析了采样期间O3污染特征、VOCs组成及O3生成潜势(OFP)特征,并对VOCs来源进行了研究。结果表明,采样期间O3-3 h浓度最高为243 μg/m3,与相对湿度存在明显的反相关关系,与温度和风速存在良好的正相关关系。VOCs平均体积分数为(75.28±5.81)×10-9,各组分浓度所占比例为OVOCs>烷烃>卤代烃>烯炔烃>芳香烃>其他组分。各类VOCs中,OVOCs对OFP的贡献最大,占64.12%。作为光化学反应的中间产物,OVOCs的一次来源较少,表明二次污染物对石家庄大气O3生成有重要贡献。从具体组分来看,OFP值排名前十的组分以OVOCs为主,其中最高的为甲基丙烯酸甲酯。采样期间,VOCs一次来源主要为汽油车和柴油车尾气排放,贡献率分别为38%与32%;溶剂使用、汽油挥发、生物排放分别占13%、11%、6%。VOCs主要受本地排放影响。  相似文献   

12.
成都市夏季近地面臭氧污染气象特征   总被引:9,自引:3,他引:6  
利用2016年7月成都市8个环境监测站点的臭氧、NO_2的监测资料以及成都市国家基准气象站和基本气象站的观测资料,对成都市夏季臭氧、NO_2浓度和气象要素的日变化特征和臭氧污染过程进行了分析。研究结果表明:成都市臭氧污染受综合气象条件和NO_2浓度的影响,高温、低湿、强辐射有利于臭氧大量生成,NO_2浓度高低决定了臭氧浓度的峰值大小;在污染期间,大气边界层高度远高于本地平均水平,数值约为平均水平的2~3倍;成都市臭氧污染的主要影响因子存在地区差异,成都市区的臭氧主要来自于自身的光化学反应,而灵岩寺地区的臭氧来自于VOCs和大气水平输送。  相似文献   

13.
嘉善夏季典型时段大气VOCs的臭氧生成潜势及来源解析   总被引:2,自引:0,他引:2  
2016年8—9月对长三角南部区域嘉善的大气中挥发性有机化合物(VOCs)变化特征、臭氧生成潜势、臭氧生成控制敏感性和来源进行了研究。结果表明,观测期间VOCs总平均值为27.3×10-9,表现为烷烃卤代烃含氧有机物芳香烃烯烃炔烃;VOCs浓度变化较大,早晚出现峰值,与风速呈负相关的关系,与温度没有明显相关性。VOCs的臭氧生成潜势表现为芳香烃烯烃烷烃含氧有机物卤代烃炔烃。甲苯等10种物质对臭氧生成潜势的贡献达到63%。夏季典型时段臭氧生成对VOCs较敏感,属于VOCs控制区。观测期间测得对VOCs浓度贡献较大的物种来源于溶剂涂料和工业排放。  相似文献   

14.
以京津冀及周边"2+26"城市之一濮阳为例,对环境空气VOCs的污染特征及其臭氧生成潜势进行分析。研究表明:濮阳市的臭氧生成对VOCs浓度比较敏感,VOCs各组分的平均浓度表现为含氧有机物>烷烃>芳香烃>烯烃>炔烃,乙烯和丙酮是浓度水平最高的2种物质,对VOCs浓度贡献分别为11. 3%和10. 5%; VOCs各组分的臭氧生成潜势量表现为含氧有机物>芳香烃>烯烃>烷烃>炔烃。OFP排名前三位的是乙醛、乙烯和甲苯,其对臭氧生成的贡献量超过了总量的三分之一;制定关键物质选取原则,筛选出濮阳市VOCs的关键种类; VOCs及其关键种类与气温和风向存在一定的相关关系;濮阳市VOCs关键种类的污染主要来源于化石燃料燃烧、石油化工生产和溶剂涂料挥发等工业生产和机动车尾气排放等。  相似文献   

15.
对2020年4月—2021年3月北京市建成区挥发性有机物(VOCs)的化学特征、污染来源及其对臭氧(O3)污染的影响进行了研究。结果显示:O3日最大8 h滑动平均值在臭氧季(4—9月)均值为134μg/m3,是非臭氧季(10月至次年3月)均值(59.6μg/m3)的2.2倍。臭氧季VOCs体积浓度均值为14.3×10-9,明显低于非臭氧季(21.1×10-9),可能与光化学反应速率和VOCs来源的季节性差异有关。臭氧生成潜势(OFP)贡献率排名前10位的物种在臭氧季和非臭氧季相似,均包括间/对-二甲苯、甲苯、乙烯、邻二甲苯、异戊烷、正丁烷、丙烯、反式-2-丁烯和1,2,4-三甲基苯,但排名有所差异,燃煤源特征明显的乙烯等物种在非臭氧季上升明显,与溶剂使用、油气挥发相关的间/对二甲苯、甲苯、异戊烷和正丁烷等物种在臭氧季上升明显。甲苯/苯的值和异戊烷/正戊烷的值在臭氧季明显高于非臭氧季,反映出机动车排放和油气挥发等在臭氧季影响突出,非臭氧季是燃煤影响显著。基于...  相似文献   

16.
2015年8月22日至9月26日利用在线GC-MS/FID和离线Canister-GCMS/FID采样并分析了重庆城区7个监测点位的96种VOCs,结果表明,城区总挥发性有机化合物平均体积分数为42.43×10-9,且空间分布特征为"中心城区高,周边低"。重庆本地高乙烷、高乙烯和高乙炔浓度呈区域污染现象,且城市监测点位主要受交通源、工业排放和溶剂挥发的影响,缙云山站则主要以生物源排放为主。重庆市城区气团的OH自由基反应速率平均值为8.86×10-12cm3/(mol·s),最大反应增量活性平均值为4.08 mol/mol,与乙烯相当,说明本地大气化学反应活性较强。重庆城区对OH自由基损耗速率贡献最大的组分是烯/炔烃(35%),对臭氧生成潜势贡献最大的组分是芳香烃(39%)。乙醛、乙烯和甲苯等物质是VOCs的关键活性组分。  相似文献   

17.
2020年7月对兰州市城区大气挥发性有机物进行连续24 h测定,研究其污染特征和臭氧生成潜势等,并进行来源解析。结果表明:兰州超级站点 VOCs的平均质量浓度为99.59 μg/m3,各类挥发性有机物中烷烃占比最大,占总挥发性有机物浓度的33.81%;对挥发性有机物进行臭氧生成潜势分析,排名靠前的物种为甲苯、乙烯、乙酸乙烯酯;利用PMF模型对挥发性有机物进行源解析,结果显示VOCs来源贡献为机动车源(31.30%)、油气挥发或泄漏(24.10%)、溶剂使用源(18.60%)、燃烧和化工工艺源(17.20%)、天然源(8.80%)。建议将控制机动车排放、油气挥发和泄漏、溶剂使用等作为消减城市大气挥发性有机物和臭氧污染的重点。  相似文献   

18.
通过研究某市城区4—9月臭氧污染较严重时间段71种挥发性有机物的手工监测数据和臭氧浓度自动监测数据,分析了该市挥发性有机物在典型时段的污染特征及其与臭氧浓度变化的相关性。为该市通过控制挥发性有机物排放来精准防控臭氧污染提供参考。研究结果显示:该市挥发性有机物浓度水平与活性水平变化趋势总体一致,污染物种类在不同时间段的浓度和活性有差异,从浓度和活性角度分析得到的关键物种在不同时间段有差异,挥发性有机物的污染变化与臭氧浓度变化的相关性有时显著,有时不显著。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号