首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Degradation of organic contaminants with simultaneous recycling of Ag+ from silver-containing organic wastewater such as photographic effluents is desired. Although photoelectrocatalysis (PEC) technology is a good candidate for this type of wastewater, its reaction kinetics still needs to be improved. Herein, peroxymonosulfate (PMS) was employed to enhance the PEC kinetics for oxidation of phenol (PhOH) at the anode and reduction of Ag+ at the cathode. The degradation efficiency of phenol (PhOH, 0.1 mmol/L) was increased from 42.8% to 96.9% by adding 5 mmol/L PMS at a potential of 0.25 V. Meanwhile, the Ag (by wt%) deposited on the cathode was 28.1% (Ag2O) in PEC process, while that of Ag (by wt%) was 69.7% (Ag0) by adding PMS. According to the electrochemistry analysis, PMS, as photoelectrons acceptor, enhances the separation efficiency of charges and the direct h+ oxidation of PhOH at the photoanode. Meantime, the increasing cathode potential avoided H2 evolution and strongly alkaline at the surface of cathode, thus enabling the deposition of Ag+ in the form of metallic silver with the help of PMS. In addition, PMS combined with PEC process was effective in treating photographic effluents.  相似文献   

2.
The plant root-associated microbiomes, including both the rhizosphere and the root endosphere microbial community, are considered as a critical extension of the plant genome. Comparing to the well-studied rhizosphere microbiome, the understanding of the root endophytic microbiome is still in its infancy. Miscanthus sinensis is a pioneering plant that could thrive on metal contaminated lands and holds the potential for phytoremediation applications. Characterizing its root-associated microbiome, especially the root endophytic microbiome, could provide pivotal knowledge for phytoremediation of mine tailings. In the current study, M. sinensis residing in two Pb/Zn tailings and one uncontaminated site were collected. The results demonstrated that the metal contaminant fractions exposed strong impacts on the microbial community structures. Their influences on the microbial community, however, gradually decreases from the bulk soil through the rhizosphere soil and finally to the endosphere, which resulting in distinct root endophytic microbial community structures compared to both the bulk and rhizosphere soil. Diverse members affiliated with the order Rhizobiales was identified as the core microbiome residing in the root of M. sinensis. In addition, enrichment of plant-growth promoting functions within the root endosphere were predicted, suggesting the root endophytes may provide critical services to the host plant. The current study provides new insights into taxonomy and potential functions of the root-associated microbiomes of the pioneer plant, M. sinensis, which may facilitate future phytoremediation practices.  相似文献   

3.
Generation of hydroxyl radicals (?OH) is the basis of advanced oxidation process (AOP). This study investigates the catalytic activity of microporous carbonaceous structure for in-situ generation of ?OH radicals. Biochar (BC) was selected as a representative of carbon materials with a graphitic structure. The work aims at assessing the impact of BC structure on the activation of H2O2, the reinforcement of the persistent free radicals (PFRs) in BC using heavy metal complexes, and the subsequent AOP. Accordingly, three different biochars (raw, chemically- and physiochemically-activated BCs) were used for adsorption of two metal ions (nickel and lead) and the degradation of phenol (100 mg/L) through AOP. The results demonstrated four outcomes: (1) The structure of carbon material, the identity and the quantity of the metal complexes in the structure play the key roles in the AOP process. (2) the quantity of PFRs on BC significantly increased (by 200%) with structural activation and metal loading. (3) Though the Pb-loaded BC contained a larger quantity of PFRs, Ni-loaded BC exhibited a higher catalytic activity. (4) The degradation efficiency values for phenol by modified biochar in the presence of H2O2 was 80.3%, while the removal efficiency was found to be 17% and 22% in the two control tests, with H2O2 (no BC) and with BC (no H2O2), respectively. Overall, the work proposes a new approach for dual applications of carbonaceous structures; adsorption of metal ions and treatment of organic contaminants through in-situ chemical oxidation (ISCO).  相似文献   

4.
Tri(2-chloroethyl) phosphate(TCEP) with the initial concentration of 5 mg/L was degraded by UV/H2O2 oxidation process. The removal rate of TCEP in the UV/H2O2 system was 89.1% with the production of Cl-and PO43- of 0.23 and 0.64 mg/L. The removal rate of total organic carbon of the reaction was 48.8% and the pH reached 3.3 after the reaction. The oxidative degradation process of TCEP in the UV/H2O2 system ...  相似文献   

5.
High-efficiency photocatalysts are of great significance for the application of photocatalytic technology in water treatment.In this study,N/Cu co-doped ZnS nanosphere photocatalys(N/Cu-ZnS) is synthesized by a hydrothermal method for the first time.After doping,the tex ture of nanosphere becomes loose,the nanometer diameter is reduced,making the specific surface area of catalyst increased from 34.73 to 101.59 m2/g.The characterization results show that more ZnS (111) crystal planes a...  相似文献   

6.
Ferrihydrite is an important sink for the toxic heavy metal ions, such as Cr(VI). As ferrihydrite is thermodynamically unstable and gradually transforms into hematite and goethite, the stability of Cr(VI)-adsorbed ferrihydrite is environmentally significant. This study investigated the phase transformation of Cr(VI)-adsorbed ferrihydrite at different pH in the presence of aqueous Mn(II), as well as the fate of Mn(II) and Cr(VI) in the transformation process of ferrihydrite. Among the ferrihydrite transformation products, hematite was dominant, and goethite was minor. The pre-adsorbed Cr(VI) inhibited the conversion of ferrihydrite to goethite at initial pH 3.0, whereas little amount of adsorbed Mn(II) favored the formation of goethite at initial pH 7.0. After the aging process, Cr species in solid phase existed primarily as Cr(III) in the presence of Mn(II) at initial pH 7.0 and 11.0. The aqueous Mn concentration was predominantly unchanged at initial pH 3.0, whereas the aqueous Mn(II) was adsorbed onto ferrihydrite or form Mn(OH)2 precipitates at initial pH 7.0 and 11.0, promoting the immobilization of Cr(VI). Moreover, the oxidation of Mn(II) occurred at initial pH 7.0 and 11.0, forming Mn(III/IV) (hydr)oxides.  相似文献   

7.
Nanophotocatalysts have shown great potential for degrading poly-and perfluorinated substances (PFAS).In light of the fact that most of these catalysts were studied in pure water,this study was designed to elucidate effects from common environmental factors on decomposing and defluorinating perfluorooctanoic acid (PFOA) by In2O3 nanoparticles.Results from this work demonstrated that among the seven parameters,pH,sulfate,chloride,H2O2,In2O  相似文献   

8.
The presence of toxic mercury (II) in water is an ever-growing problem on earth that has various harmful effect on human health and aquatic living organisms. Therefore, detection of mercury (II) in water is very much crucial and several researches are going on in this topic. Metal-organic frameworks (MOFs) are considered as an effective device for sensing of toxic heavy metal ions in water. The tunable functionalities with large surface area of highly semiconducting MOFs enhance its activity towards fluorescence sensing. In this study, we are reporting one highly selective and sensitive luminescent sensor for the detection of mercury (II) in water. A series of binary MOF composites were synthesized using in-situ solvothermal synthetic technique for fluorescence sensing of Hg2+ in water. The well-distributed graphitic carbon nitride quantum dots on porous zirconium-based MOF improve Hg2+ sensing activity in water owing to their great electronic and optical properties. The binary MOF composite (2) i.e., the sensor exhibited excellent limit of detection (LOD) value of 2.4 nmol/L for Hg2+. The sensor also exhibited excellent performance for mercury (II) detection in real water samples. The characterizations of the synthesized materials were done using various spectroscopic techniques and the fluorescence sensing mechanism was studied.  相似文献   

9.
The retention and fate of Roxarsone (ROX) onto typical reactive soil minerals were crucial for evaluating its potential environmental risk. However, the behavior and molecular-level reaction mechanism of ROX and its substituents with iron (hydr)oxides remains unclear. Herein, the binding behavior of ROX on ferrihydrite (Fh) was investigated through batch experiments and in-situ ATR-FTIR techniques. Our results demonstrated that Fh is an effective geo-sorbent for the retention of ROX. The pseudo-second-order kinetic and the Langmuir model successfully described the sorption process. The driving force for the binding of ROX on Fh was ascribed to the chemical adsorption, and the rate-limiting step is simultaneously dominated by intraparticle and film diffusion. Isotherms results revealed that the sorption of ROX onto Fh appeared in uniformly distributed monolayer adsorption sites. The two-dimensional correlation spectroscopy and XPS results implied that the nitro, hydroxyl, and arsenate moiety of ROX molecules have participated in binding ROX onto Fh, signifying that the predominated mechanisms were attributed to the hydrogen bonding and surface complexation. Our results can help to better understand the ROX-mineral interactions at the molecular level and lay the foundation for exploring the degradation, transformation, and remediation technologies of ROX and structural analog pollutants in the environment.  相似文献   

10.
Antimony (Sb) is a toxic and carcinogenic element that often enters soil in the form of antimony trioxide (Sb2O3) and coexists with manganese (Mn) in weakly alkaline conditions. Mn oxides such as birnessite have been found to promote the oxidative dissolution of Sb2O3, but few researches concerned the co-transformations of Sb2O3 and Mn(II) in environment. This study investigated the mutual effect of abiotic oxidation of Mn(II) and the coupled oxidative dissolution of Sb2O3. The influencing factors, such as Mn(II) concentrations, pH and oxygen were also discussed. Furthermore, their co-transformed mechanism was also explored based on the analysis of Mn(II) oxidation products with or without Sb2O3 using XRD, SEM and XPS. The results showed that the oxidative dissolution of Sb2O3 was enhanced under higher pH and higher Mn(II) loadings. With a lower Mn(II) concentration such as 0.01 mmol/L Mn(II) at pH 9.0, the improved dissolution of Sb2O3 was attributed to the generation of dissolved intermediate Mn(III) species with strong oxidation capacity. However, under higher Mn(II) concentrations, both amorphous Mn(III) oxides and intermediate Mn(III) species were responsible for promoting the oxidative dissolution of Sb2O3. Most released Sb (∼72%) was immobilized by Mn oxides and Sb(V) was dominant in the adsorbed and dissolved total Sb. Meanwhile, the presence of Sb2O3 not only inhibited the removal of Mn(II) by reducing Mn(III) to Mn(II) but also affected the final products of Mn oxides. For example, amorphous Mn oxides were formed instead of crystalline Mn(III) oxides, such as MnOOH. Furthermore, rhodochrosite (MnCO3) was formed with the high Mn(II)/Sb2O3 ratio, but without being observed in the low Mn(II)/Sb2O3 ratio. The results of study could help provide more understanding about the fate of Sb in the environment and the redox transformation of Mn.  相似文献   

11.
Sulfuric anhydrides,generated from the cycloaddition reaction of SO3with carboxylic acids,have been revealed to be potential participants in the nucleation process of new particle formation (NPF).Hence the reaction mechanisms of typical aromatic acids (benzoic acid (BA),phenylacetic acid (PAA),phthalic acid (PA),isophthalic acid (mPA),and terephthalic acid(PTA)) with SO3to generate the corresponding aromatic sulfuric anhydrides were investigated by density functional theory...  相似文献   

12.
Cr(VI) is a common heavy metal ion, which will seriously harm human body and environment. Therefore, the removal of Cr(VI) has become an attractive topic. In this work, cinder was used as a raw material to synthesize a nanoneedle material: γ-([email protected]) (γ[email protected]). The physicochemical properties of γ[email protected] were thoroughly characterized, and its effectiveness as a catalyst for photocatalytic reduction of Cr(VI) was evaluated. The results showed that Cr(VI) could be efficiently reduced by γ[email protected] in the presence of tartaric acid (TA) under visible light. The variable factors on the reaction were investigated in detail, and the results showed that under optimal conditions (γ[email protected] 0.4 g/L, TA 0.6 g/L, pH 2), Cr(VI) was completely reduced within 7 min. Besides, scavenger experiments and EPR proved that O2? — and CO2? — played a significant role in the photocatalytic reduction of Cr(VI). TA acts as a sacrificial agent to trap the holes and generate strong reducing free radicals: CO2? —. Dissolving O2 could react with electrons to generate O2? —. This work discussed the performance and mechanism of photocatalytic reduction of Cr(VI) in detail, which provided a new idea for the resource utilization of solid waste and the treatment of heavy metal sewage.  相似文献   

13.
Effectiveness of pulsed power plasma for the degradation of two toxic volatile organic compounds (VOCs), toluene and methyl isobutyl ketone (MIBK), in aqueous solution was evaluated. The plasma degradation of MIBK has been studied for the first time. The influence of initial concentration of target compound, solution pH and scavengers on percentage degradation was evaluated. 100% removal of 200 mg/L of toluene and MIBK was achieved both in liquid and gaseous phases after 12 and 16 min of plasma treatment, respectively. The first order rate constant of toluene and MIBK degradation (for 200 mg/L each) was 0.421 and 0.319 min?1 respectively when they were treated individually, and these values decreased slightly during degradation of their mixture. MIBK degradation was slower than toluene and it might be due to semi volatile and hydrophilic nature of MIBK. The effect of initial concentration of toluene and MIBK showed different degradation patterns. Highest degradation of both the compounds was obtained in neutral pH and in absence of scavengers. ?OH radical was the major reactive species involved in their degradation. Their degradation in real environmental matrices showed that removal reduced significantly in secondary effluent due to scavenging of reactive species by various ions and organic matter. The total number of degradation intermediates identified in case of toluene and MIBK was 11 and 14 respectively and formate was the one recalcitrant byproduct generated. The degradation pathway of toluene and MIBK involving reactions of reactive oxygen and nitrogen species and reductive species is proposed.  相似文献   

14.
The widespread contamination of water systems with antibiotics and heavy metals has gained much attention. Intimately coupled visible -light-responsive photocatalysis and biodegradation (ICPB) provides a novel approach for removing such mixed pollutants. In ICPB, the photocatalysis products are biodegraded by a protected biofilm, leading to the mineralization of refractory organics. In the present study, the ICPB approach exhibited excellent photocatalytic activity and biodegradation, providing up to ∼1.27 times the degradation rate of sulfamethoxazole (SMX) and 1.16 times the Cr(VI) reduction rate of visible-light-induced photocatalysis . Three-dimensional fluorescence analysis demonstrated the synergistic ICPB effects of photocatalysis and biodegradation for removing SMX and reducing Cr(VI). In addition, the toxicity of the SMX intermediates and Cr(VI) in the ICPB process significantly decreased. The use of MoS2/CoS2 photocatalyst accelerated the separation of electrons and holes, with•O2 and h+ attacking SMX and e reducing Cr(VI), providing an effective means for enhancing the removal and mineralization of these mixed pollutants via the ICPB technique. The microbial community results demonstrate that bacteria that are conducive to pollutant removal are were enriched by the acclimation and ICPB operation processes, thus significantly improving the performance of the ICPB system.  相似文献   

15.
Perfluorooctanoic acid (PFOA), its salts, and related compounds were listed as new persistent organic pollutants by the Stockholm Convention in 2019. In this study, the occurrence of residues of PFOA and other per- and polyfluoroalkyl substances (PFASs) in raw materials and fluoropolymer products from the Chinese fluoropolymer industries are reported for the first time. The PFOA concentrations in raw materials and fluoropolymer products were in the range of 6.7 to 1.1 × 106 ng/g, and <MDL (method detection limit) to 5.3 × 103 ng/g, respectively. Generally, the levels of PFOA in raw materials were higher than in products, implying that PFOA in the emulsion/dispersion resin could be partly removed during the polymerization or post-processing steps. By tracking a company's polytetrafluoroethylene (PTFE) production line, it was found that over a 5 year period, the residual levels of PFOA in emulsion samples declined from 1.1 × 106 to 28.4 ng/g, indicating that the contamination of PFOA in fluoropolymer products from production source gradually decreased after its use had been discontinued. High concentrations of HFPO-TrA (2.7 × 105 to 8.2 × 105 ng/g) were detected in some emulsion samples indicating this alternative has been widely applied in fluoropolymer manufacturing in China.  相似文献   

16.
Recently,more and more attention has been paid to the strong oxidation ability of newly prepared potassium ferrate(NAPF) in sludge reduction process,but less attention has been paid to the change of phosphorus in this process.The feasibility of phosphorus migration and transformation during excess sludge reduction pretre atment using NAPF pre-oxidation combined with anaerobic digestion was investigated.After 70 mg/g suspended solids NAPF pretreatment and 16 days anaerobic digestion,the solid-phase volatile suspended solids decreased by 44.2%,and much organic matter had been released into the liquid-phase and then degraded during digestion by indigenous microorganisms.As the sludge pre-oxidation process was performed,solid-phase organic phosphorus and chemically combined phosphorus also released into the liquid-phase as PO_4~(3-),peaking at 100 mg/L.During anaerobic digestion,the Fe~(3+)in the liquid-phase was gradually reduced to Fe~(2+),and then formed Fe~(2+)-PO_4~(3-) compound crystals and re-migrated to the solid-phase.The concentration of PO_4~(3-) decreased to 17.08± 1.1 mg/L in the liquid-phase after anaerobic digestion.Finally,the phosphorus in the Fe~(2+)-PO_4~(3-) compound accounts for 80% of the total phosphorus in the solid-phase.A large number of vivianite crystals in sludge were observed.Therefore,this technology not only effectively reduces sludge,but also increases the proportion of PO_4~(3-)in the sludge in the form of Vivianite.  相似文献   

17.
PM10 samples were collected from an urban/industrial site nearby Athens, where uncontrolled burning activities occur. PAHs, monocarboxylic, dicarboxylic, hydroxycarboxylic and aromatic acids, tracers from BVOC oxidation, biomass burning tracers and bisphenol A were determined. PAH, monocarboxylic acids, biomass burning tracers and bisphenol A were increased during autumn/winter, while BSOA tracers, dicarboxylic- and hydroxycarboxylic acids during summer. Regarding aromatic acids, different sources and formation mechanisms were indicated as benzoic, phthalic and trimellitic acids were peaked during summer whereas p-toluic, isophthalic and terephthalic were more abundant during autumn/winter. The Benzo[a]pyrene-equivalent carcinogenic power, carcinogenic and mutagenic activities were calculated showing significant (p < 0.05) increases during the colder months. Palmitic, succinic and malic acids were the most abundant monocarboxylic, dicarboxylic and hydrocarboxylic acids during the entire sampling period. Isoprene oxidation was the most significant contributor to BSOA as the isoprene-SOA compounds were two times more abundant than the pinene-SOA (13.4 ± 12.3 and 6.1 ± 2.9 ng/m3, respectively). Ozone has significant impact on the formation of many studied compounds showing significant correlations with: isoprene-SOA (r = 0.77), hydrocarboxylic acids (r = 0.69), pinene-SOA (r = 0.63),dicarboxylic acids (r = 0.58), and the sum of phthalic, benzoic and trimellitic acids (r = 0.44). PCA demonstrated five factors that could explain sources including plastic enriched waste burning (30.8%), oxidation of unsaturated fatty acids (23.0%), vehicle missions and cooking (9.2%), biomass burning (7.7%) and oxidation of VOCs (5.8%). The results highlight the significant contribution of plastic waste uncontrolled burning to the overall air quality degradation.  相似文献   

18.
Simultaneous elimination of As(Ⅲ) and Pb(Ⅱ) from wastewater is still a great challenge.In this work,an iron-sulfur codoped biochar (Fe/S-BC) was successfully fabricated in a simplified way and was applied to the remediate the co-pollution of As(Ⅲ) and Pb(Ⅱ).The positive enthalpy indicated that the adsorption in As-Pb co-pollution was an endothermic reaction.The mechanism of As(Ⅲ) removal could be illustrated by surface complexation,oxidation and precipitation.In addition to precipitation and com...  相似文献   

19.
Low-density polyethylene(LDPE) has been widely used as a sorbent for passive sampling of hydrophobic organic contaminants(HOCs) in aquatic environments.However,it has seen only limited application in passive sampling for measurement of freely dissolved concentrations of parent and substituted PAHs(SPAHs),which are known to be toxic,mutagenic and carcinogenic.Here,the 16 priority PAHs and some typical PAHs were selected as target compounds and were simultaneously determined by gas chromatography–...  相似文献   

20.
Volatile organic compounds (VOCs) have attracted much attention for decades as they are the precursors of photochemical smog and are harmful to the environment and human health. Vacuum ultraviolet (VUV) photodegradation is a simple and effective method to decompose VOCs (ranging from tens to hundreds of ppmV) without additional oxidants or catalysts in the air at atmospheric pressure. In this paper, we review the research progress of VOCs removal via VUV photodegradation. The fundamentals are outlined and the key operation factors for VOCs degradation, such as humidity, oxygen content, VOCs initial concentration, light intensity, and flow rate, are discussed. VUV photodegradation of VOCs mixture is elucidated. The application of VUV photodegradation in combination with ozone-assisted catalytic oxidation (OZCO) and photocatalytic oxidation (PCO) systems, and as the pre-treatment technique for biological purification are illustrated. Based on the summary, we propose the challenges of VUV photodegradation and perspectives for its future development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号