首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
合流制排水管道雨季出流污染负荷研究   总被引:5,自引:0,他引:5  
针对北京城区合流制排水管道雨季溢流及雨后河道水质恶化等问题,研究了3场降雨期间合流制排水系统不同来源的污染物特性及污染贡献.通过对2012年雨季几场降雨的降雨量数据监测与统计发现,护城河沿岸合流制排水系统累积雨量约10 mm时发生溢流.特大暴雨情况下,溢流水质的污染物平均浓度高于排水系统旱流污水的污染物浓度,溢流水质差,污染物浓度范围为:TN 5.11 ~ 16.36 mg·L-1,TP 4.34 ~10.52 mg·L-1,氨氮1.88~12.73 mg·L-1,COD 134~250 mg·L-1,SS 120 ~155 mg·L-1.管道沉积物在降雨期间对出流水质的污染贡献率分别为:TN 20.9% ~44.6%,TP 35.76%~47.3%,COD 46.2% ~48.8%,SS 35.7% ~79.7%.控制合流制排水管道沉积物的沉积和冲刷对排水系统的正常运行及削减雨季出流污染负荷具有重要意义.  相似文献   

2.
北运河上游合流制管网溢流污染特性研究   总被引:8,自引:7,他引:1  
以北运河沙河水库周边合流制管网为研究对象,选取浊度为主要指示指标,通过监测典型溢流排口,考察了2019年4次合流制管网溢流污染物的变化过程,研究了降雨事件之间的干旱天数和降雨强度对溢流污染的影响,并分析浊度和典型污染物之间的相关性.结果表明,汛期降雨强度较大、历时较长,是溢流事件发生的主要时期.当单场次累积降雨量达到15 mm和单场次平均降雨强度达到1.4 mm·h-1时,溢流开始发生.其中,4月24日(第一次溢流)和汛期7月22日(干旱天数为23 d,降雨强度最强)的初期溢流污染最为严重,这两次溢流污水中TN、TP、TCOD都与浊度显著相关(p<0.01);5月26日(非汛期典型降雨)的溢流污染物与浊度相关性不显著(p>0.05),污染负荷较低.这说明北运河上游沙河水库周边合流制管网溢流污染主要受降雨强度和干旱天数的影响.因此,以年总溢流污染负荷为控制目标时,应优先控制年度初次溢流和主汛期初次溢流的初期溢流污染.  相似文献   

3.
在北运河源头区沙河水库选取4个典型溢流排口进行合流制溢流污染监测,分析沙河水库附近管网溢流水量水质变化特征.结果表明:由于TBD再生水厂尚未建成运行,沙河水库周边管网处于满负荷运行状态,0.5~3 mm降雨即可导致溢流发生,溢流水量与场次降雨量呈正相关,同时也受降雨历时、降雨强度等多种因素作用;溢流污染水平与排口性质以...  相似文献   

4.
合流制排水系统雨天溢流污染CMB法源解析   总被引:4,自引:1,他引:3  
戴梅红  李田  张伟 《环境科学》2013,34(11):4226-4230
对上海市某合流制排水系统服务范围内的地表径流、旱流污水和管道沉积物的污染物特性进行检测分析,通过对比不同污染源的污染特征,确定Zn、NH+4-N、P的含量分别在地表径流、旱流污水和管道沉积物中具有特异性且相对稳定,提出以Zn/P、NH+4-N/Zn、P/K这3个无量纲比值作为上述3个排放源各自的特征参数,据此探讨了CMB法在合流制雨天溢流污染源解析中的应用,结果表明,地表径流、旱流污水和管道沉积物对溢流污染的平均贡献率分别为42.8%、12.2%、23.8%,解析结果可基本反映CSO污染的构成情况.研究方法与结果为合流制系统雨天溢流污染源解析提供了参考.  相似文献   

5.
合流制面源污染传输过程与污染源解析   总被引:4,自引:3,他引:1  
科学认识和全面理解合流制面源污染发生路径和污染贡献源对于治理和改善城市水环境至关重要.本研究以珠海市典型老城区的合流制小排水区为例,分析了污染物在地表与管道中的累积-冲刷过程,并运用质量守恒法解析了污染物的贡献源.结果表明,地表街尘累积量为(28. 81±10. 69) g·m~(-2),多场降雨事件中地表街尘冲刷量为(19. 27±10. 90) g·m~(-2),冲刷率为(52. 69±13. 3)%,其冲刷形成的地表径流中SS场降雨浓度为52~109 mg·L~(-1),管道径流中SS的浓度为68~158mg·L~(-1);地表径流对SS的贡献率为39%~72%,旱流污水对SS的贡献率20%,管道沉积物再悬浮对SS的贡献率为13%~56%;管道沉积物的厚度在小雨和中雨时增加1~14 cm,大雨和暴雨时,减少7~17 cm;降雨特征影响了污染源贡献比率,其中地表径流对各污染物的贡献范围为2%~52%,旱流污水对各污染物的贡献率范围为9%~65%,管道沉积物对各污染物的贡献范围为8%~81%.基于上述研究结果,为合流制面源污染提出控制措施,以期为我国城市受纳水体污染的解决提供参考.  相似文献   

6.
降雨期间合流制管道内流量超过其承载能力就会发生雨污水溢流,使城市水体受到污染,因此研究城镇合流制溢流污染对于城市水体污染控制具有重要意义。采用文献计量学方法分析了国内外合流制排水系统溢流污染的有关文献,发现溢流污染特征及控制措施为主要研究热点。在此基础上,解析了合流制排水系统溢流污染的成因、水质水量特征及变化规律,从降低溢流污染发生频率和控制溢流污染2个方面对多种措施进行了论述,最后对我国合流制排水系统溢流污染控制技术发展进行了展望。  相似文献   

7.
为了解合流制管网溢流污染特征,在镇江黎明河溢流口采集水样进行水质检测,并对检测结果变化规律与相关性进行分析.结果表明:随降雨历时,SS的浓度变化范围为112~286 mg/L与1430~4320 mg/L,COD的浓度变化范围为61~121 mg/L与178~728 mg/L,且均会出现初期冲刷现象;二者的线性相关系数...  相似文献   

8.
合流制排水系统降雨径流污染物的特性及来源   总被引:23,自引:2,他引:21  
在昆明市典型合流制排水小区对降雨径流进出水水量、水质进行了研究,旨在揭示城市区域合流制排水系统中降雨径漉不同来源的污染物特性及各个污染源的比倒.分别监测了合流制排水系统日常污水以及4场降雨期间小区出口断面、街道、屋顶、庭院降雨径流的水量、水质.结果表明,人为干扰是影响城市径流污染物输出强度的主要因素,城市下垫面降雨径流污染物输出浓度顺序为:道路>庭院>屋顶,道路是城市面源污染的关键源区;道路次降雨径流量约25%,却产出了40%~80%的污染物,而屋顶次降雨径流量约50%,却仅有4%~30%的污染物负荷.合流制排水系统中管道沉积物在降雨期间的迁移是重要的污染源,4场降雨中管道沉积物的TN、TP、SS、COD和BOD5的污染贡献率在30%以上.降雨强度是影响管道沉积物输出的重要因素,在高强度降雨下,管道沉积物污染贡献率高50%以上.在不同的降雨特性条件下,合流制排水系统主导污染源有所不同.  相似文献   

9.
为探明管道沉积物的断面污染物分布特征,揭示梯度冲刷强度下沉积物的分层冲刷起动规律及其污染贡献特性,通过建立一套污水管道沉积物冲刷模拟装置,基于管道沉积物分层分布理论,揭示了沉积物不同断面颗粒粒径以及碳、氮、磷等污染物的含量变化规律.此外,根据无黏性沉积物初始运动的临界剪应力公式进行计算,结果表明,随粒径的增大,不同分层颗粒下理论临界剪切应力从0.038N/m2增加0.261N/m2;随设计水流剪切力从0.1N/m2增加到0.3N/m2时,沉积物对污水的TCOD贡献率从6.4%增加到46.3%,TN贡献率从25.3%增加到40.6%,而TP从42.9%降低到25.1%,且在各类污染物的附着含量对比下,随水流强度增大,冲刷起动的悬浮物为有机类污染物的占比最高.据此可知,粒径大小对污染物的污染负荷分布具有较大影响,且污染负荷分布对水流冲刷的溢流污染物浓度变化具有相关性.因此,明确管道沉积物分层冲刷水流强度及溢流污染物浓度变化有助于有效控制水体污染情况.  相似文献   

10.
合流制管网溢流(Combined Sewer Overflows,CSOs)是我国城镇地表水环境日益突出的瞬时污染源,明确其重要污染物溶解性有机质(Dissolved Organic Matter,DOM)的组分和来源对CSOs污染控制具有导向性意义.本研究以北运河上游沙河水库流域为对象,连续采集CSOs过程的样品,通过峰值法、特征参数法和平行因子法等解析CSOs中DOM的三维荧光光谱特征,发现CSOs中DOM主要有类色氨酸(S、T)、类富里酸(A)和类酪氨酸(D),代表内源输入的类色氨酸(S、T)和类酪氨酸(D)占比超过4/5.特征参数法和平行因子法的结果均表明DOM的腐殖化程度较低,生物活性较强,主要为微生物降解生成的和沉积物自身在冲刷和水力输运作用下释放的内源污染,建议CSOs污染控制主要应从内源输入的角度进行,着重控制管道沉积物中污染物的释放.  相似文献   

11.
Toxic effects of two agrochemicals on nifH gene in agricultural black soil were investigated using denaturing gradient gel electrophoresis (DGGE) and sequencing approaches in a microcosm experiment. Changes of soil nifH gene diversity and composition were examined following the application of acetochlor, methamidophos and their combination. Acetochlor reduced the nifH gene diversity (both in gene richness and diversity index values) and caused changes in the nifH gene composition. The effects of acetochlor on nifH gene were strengthened as the concentration of acetochlor increased. Cluster analysis of DGGE banding patterns showed that nifH gene composition which had been affected by low concentration of acetochlor (50 mg/kg) recovered firstly. Methamidophos reduced nifH gene richness that except at 4 weeks. The medium concentration of methamidophos (150 mg/kg) caused the most apparent changes in nifH gene diversity at the first week while the high concentration of methamidophos (250 mg/kg) produced prominent effects on nifH gene diversity in the following weeks. Cluster analysis showed that minimal changes of nifH gene composition were found at 1 week and maximal changes at 4 weeks. Toxic effects of acetochlor and methamidophos combination on nifH gene were also apparent. Different nifH genes (bands) responded differently to the impact of agrochemicals: four individual bands were eliminated by the application of the agrochemicals, five bands became predominant by the stimulation of the agrochemicals, and four bands showed strong resistance to the influence of the agrochemicals. Fifteen prominent bands were partially sequenced, yielding 15 different nifH sequences, which were used for phylogenetic reconstructions. All sequences were affiliated with the alpha- and beta-proteobacteria, showing higher similarity to eight different diazotrophic genera.  相似文献   

12.
The effects of arbuscular mycorrhizal (AM) fungus (Glomus mosseae) and phosphorus (P) addition (100 mg/kg soil) on arsenic (As) uptake by maize plants (Zea mays L.) from an As-contaminated soil were examined in a glasshouse experiment.Non-mycorrhizal and zero-P addition controls were included.Plant biomass and concentrations and uptake of As,P,and other nutrients,AM colonization,root lengths,and hyphal length densities were determined.The results indicated that addition of P significantly inhibited root colonization and development of extraradical mycelium.Root length and dry weight both increased markedly with mycorrhizal colonization under the zero-P treatments,but shoot and root biomass of AM plants was depressed by P application.AM fungal inoculation decreased shoot As concentrations when no P was added,and shoot and root As concentrations of AM plants increased 2.6 and 1.4 times with P addition,respectively.Shoot and root uptake of P,Mn,Cu,and Zn increased,but shoot Fe uptake decreased by 44.6%,with inoculation, when P was added.P addition reduced shoot P,Fe,Mn,Cu,and Zn uptake of AM plants,but increased root Fe and Mn uptake of the nonmycorrhizal ones.AM colonization therefore appeared to enhance plant tolerance to As in low P soil,and have some potential for the phytostabilization of As-contaminated soil,however,P application may introduce additional environmental risk by increasing soil As mobility.  相似文献   

13.
Several main metabolites of benzo[a]pyrene (BaP) formed by Penicillium chrysogenum, Benzo[a]pyrene-1,6-quinone (BP 1,6- quinone), trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene (BP 7,8-diol), 3-hydroxybenzo[a]pyrene (3-OHBP), were identified by high-performance liquid chromatography (HPLC). The three metabolites were liable to be accumulated and were hardly further metabolized because of their toxicity to microorganisms. However, their further degradation was essential for the complete degradation of BaP. To enhance their degradation, two methods, degradation by coupling Penicillium chrysogenum with KMnO4 and degradation only by Penicillium chrysogenum, were compared; Meanwhile, the parameters of degradation in the superior method were optimized. The results showed that (1) the method of coupling Penicillium chrysogenum with KMnO4 was better and was the first method to be used in the degradation of BaP and its metabolites; (2) the metabolite, BP 1,6-quinone was the most liable to be accumulated in pure cultures; (3) the effect of degradation was the best when the concentration of KMnO4 in the cultures was 0.01% (w/v), concentration of the three compounds was 5 mg/L and pH was 6.2. Based on the experimental results, a novel concept with regard to the bioremediation of BaP-contaminated environment was discussed, considering the influence on environmental toxicity of the accumulated metabolites.  相似文献   

14.
Sorption of chlorotoluron in ammonium sulfate, urea and atrazine multi-solutes system was investigated by batch experiments. The results showed application of nitrogen fertilizers to the soil could affect the behavior of chlorotoluron. At the same concentration of N, sorption of chlorotoluron decreased as the concentration of atrazine increased on the day 0 and 6 in soil, respectively. The sorption of chlorotoluron increased from 0 to 6 d when soils were preincubated with deionized water, ammonium sulfate and urea solution for 6 d. That indicated incubation time was one of the most important factors for the sorption of chlorotoluron in nitrogen fertilizers treatments. The individual sorption isotherms of chlorotoluron in rubbery polymer and silica were strictly linear in single solute system, but there were competition sorption between pesticides or between pesticides and nitrogen fertilizers. That indicated the sorption taken place by concurrent solid-phase dissolution mechanism and sorption on the interface of water-organic matter or water-mineral matter.  相似文献   

15.
In this study an effort has been made to use plant polyphenol oxidases; potato (Solanum tuberosum) and brinjal (Solanum melongena), for the treatment of various important dyes used in textile and other industries. The ammonium sulphate fractionated enzyme preparations were used to treat a number of dyes under various experimental conditions. Majority of the treated dyes were maximally decolorized at pH 3.0. Some of the dyes were quickly decolorized whereas others were marginally decolorized. The initial first hour was sufficient for the maximum decolorization of dyes. The rate of decolorization was quite slow on long treatment of dyes. Enhancement in the dye decolorization was noticed on increasing the concentration of enzymes. The complex mixtures of dyes were treated with both preparations of polyphenol oxidases in the buffers of varying pH values. Potato polyphenol oxidase was significantly more effective in decolorizing the dyes to higher extent as compared to the enzyme obtained from brinjal polyphenol oxidase. Decolorization of dyes and their mixtures, followed by the formation of an insoluble precipitate, which could be easily removed simply by centrifugation.  相似文献   

16.
RemovalofheavymetalsfromsewagesludgebylowcostingchemicalmethodandrecyclinginagricultureWuQitang,NyirandegePascasie,MoCehuiF...  相似文献   

17.
Single and joint effects of pesticides and mercury on soil urease   总被引:6,自引:3,他引:3  
The influence of two pesticides including chlorimuron-ethyl and furadan and mercury (Hg) on urease activity in 4 soils (meadow burozem and phaeozem) was investigated. The soils were exposed to various concentrations of the two pesticides and Hg individually and simultaneously. Results showed that there was a close relationship between urease activity and organic matter content in soil. Chlorimuron-ethyl and furadan could both activate urease in the 4 soils. The maximum increment of urease activity by chlorimuronethyl was up to 14%-18%. There was almost an equal increase (up to 13%-21%) in the urease activity by furadan. On the contrary, Hg markedly inhibited soil urease activity. A logarithmic equation was used to describe the relationship (P〈0.05) between the concentration of Hg and the activity of soil urease in the 4 tested soils. Semi-effect dose (ED50) values by the stress of Hg based on the inhibition of soil urease in the 4 soils were 88, 5.5, 24 and 20 mg/kg, respectively, according to the calculation of the corresponding equations. The interactive effect of chlorimuron-ethyl or furadan with metal Hg on soil urease was mainly synergic at the highest tested concentrations.  相似文献   

18.
A study was conducted to compare the diversity of 2-, 3-, and 4-chlorobenzoate degraders in two pristine soils and one contaminated sewage sludge. These samples contained strikingly different populations of mono-chlorobenzoate degraders. Although fewer cultures were isolated in the uncontaminated soils than contaminated one, the ability of microbial populations to mineralize chlorobenzoate was widespread. The 3- and 4-chlorobenzoate degraders were more diverse than the 2-chlorobenzoate degraders. One of the strains isolated from the sewage sludge was obtained. Based on its phenotype, chemotaxonomic properties and 16S rRNA gene, the organism S-7 was classified as Rhodococcus erythropolis. The strain can grow at temperature from 4 to 37℃. It can utilize several (halo)aromatic compounds. Moreover, strain S-7 can grow and use 3-chlorobenzoate as sole carbon source in a temperatures range of 10-30℃ with stoichiometric release of chloride ions. The psychrotolerant ability was significant for bioremediation in low temperature regions. Catechol and chlorocatechol 1,2-dioxygenase activities were present in cell free extracts of the strain, but no (chloro)catechol 2,3- dioxygenase activities was detected. Spectral conversion assays with extracts from R. erythropolis S-7 showed accumulation of a compound with a similar UV spectrum as chloro-cis,cis-muconate from 3-chlorobenzoate. On the basis of these results, we proposed that S-7 degraded 3-chlorobenzoate through the modified ortho-cleave pathway.  相似文献   

19.
A field study was conducted in the Taihu Lake region, China in 2004 to reveal the organochlorine pesticide concentrations in soils after the ban of these substances in the year 1983. Thirteen organochlorine pesticides (OCPs) were analyzed in soils from paddy field, tree land and fallow land. Total organochlorine pesticide residues were higher in agricultural soils than in uncultivated fallow land soils. Among all the pesticides, ΣDDX (DDD, DDE and DDT) had the highest concentration for all the soil samples, ranging from 3.10 ng/g to 166.55 ng/g with a mean value of 57.04 ng/g and followed by ΣHCH, ranging from 0.73 ng/g to 60.97 ng/g with a mean value of 24.06 ng/g. Dieldrin, endrin, HCB and α-endosulfan were also found in soils with less than 15 ng/g. Ratios of p,p'-(DDD DDE)/DDT in soils under three land usages were: paddy field > tree land > fallow land, indicating that land usage inlfuenced the degradation of DDT in soils. Ratios of p,p'-(DDD DDE)/DDT >1, showing aged residues of DDTs in soils of the Taihu Lake region. The results were discussed with data from a former study that showed very low actual concentrations of HCH and DDT in soils in the Taihu Lake region, but according to the chemical half-lives and their concentrations in soils in 1980s, the concentration of DDT in soils seemed to be underestimated. In any case our data show that the ban on the use of HCH and DDT resulted in a tremendous reduction of these pesticide residues in soils, but there are still high amounts of pesticide residues in soils, which need more remediation processes.  相似文献   

20.
The contribution of aliphatic-rich plant biopolymer to sorption of hydrophobic organic compounds is significantly important because of their preservation and accumulation in the soil environment,but sorption mechanism is still not fully understood.In this study, sorption of 1-naphthol by plant cuticular fractions was examined to better understand the contributions of respective fraction.Toward this end,cuticular materials were isolated from the fruits of tomato by chemical method.The tomato cuticle sheet consisted of waxes (6.5 wt%),cuticular monomer (69.5 wt%),and polysaccharide (24.0 wt%).Isotherms of l-naphthol to the cuticular fractions were nonlinear (N value (0.82-0.90)) at the whole tested concentration ranges.The KodKow ratios for bulk cuticle (TC1),dewaxed cuticle (TC2),cutin (TC4),and desugared cuticle (TC5) were larger than unity,suggested that tomato bulk cuticle and cutin are much powerful solption medium.Sorption capability of cutin (TC4) was 2.4 times higher than the nonsaponifiable fraction (TC3).The 1-naphthol interactions with tomato cuticular materials were governed by both hydrophobic-type interactions and polar (H-bonding) interactions. Removal of the wax and polysaccharide materials from the bulk tomato cuticle caused a significant increase in the sorption ability of the cuticular material.There was a linear negative trend between K_(oc) values and the amount of polysaccharides or fraction's polarities ((N O)/C);while a linear positive relationship between K_(oc) values and the content of cutin monomer (linear R~2=0.993) was observed for present in the cuticular fractions.Predominant sorbent of the hydrophobic organic compounds (HOCs) in the plant cuticular fraction was the cutin monomer,contributing to 91.7% of the total sorption of tomato bulk cuticle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号