首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper we present a hierarchical Bayesian analysis for a predator–prey model applied to ecology considering the use of Markov Chain Monte Carlo methods. We consider the introduction of a random effect in the model and the presence of a covariate vector. An application to ecology is considered using a data set related to the plankton dynamics of lake Geneva for the year 1990. We also discuss some aspects of discrimination of the proposed models.  相似文献   

2.
Zero-inflated models with application to spatial count data   总被引:1,自引:2,他引:1  
Count data arises in many contexts. Here our concern is with spatial count data which exhibit an excessive number of zeros. Using the class of zero-inflated count models provides a flexible way to address this problem. Available covariate information suggests formulation of such modeling within a regression framework. We employ zero-inflated Poisson regression models. Spatial association is introduced through suitable random effects yielding a hierarchical model. We propose fitting this model within a Bayesian framework considering issues of posterior propriety, informative prior specification and well-behaved simulation based model fitting. Finally, we illustrate the model fitting with a data set involving counts of isopod nest burrows for 1649 pixels over a portion of the Negev desert in Israel.  相似文献   

3.
Estimating the age of individuals in wild populations can be of fundamental importance for answering ecological questions, modeling population demographics, and managing exploited or threatened species. Significant effort has been devoted to determining age through the use of growth annuli, secondary physical characteristics related to age, and growth models. Many species, however, either do not exhibit physical characteristics useful for independent age validation or are too rare to justify sacrificing a large number of individuals to establish the relationship between size and age. Length-at-age models are well represented in the fisheries and other wildlife management literature. Many of these models overlook variation in growth rates of individuals and consider growth parameters as population parameters. More recent models have taken advantage of hierarchical structuring of parameters and Bayesian inference methods to allow for variation among individuals as functions of environmental covariates or individual-specific random effects. Here, we describe hierarchical models in which growth curves vary as individual-specific stochastic processes, and we show how these models can be fit using capture-recapture data for animals of unknown age along with data for animals of known age. We combine these independent data sources in a Bayesian analysis, distinguishing natural variation (among and within individuals) from measurement error. We illustrate using data for African dwarf crocodiles, comparing von Bertalanffy and logistic growth models. The analysis provides the means of predicting crocodile age, given a single measurement of head length. The von Bertalanffy was much better supported than the logistic growth model and predicted that dwarf crocodiles grow from 19.4 cm total length at birth to 32.9 cm in the first year and 45.3 cm by the end of their second year. Based on the minimum size of females observed with hatchlings, reproductive maturity was estimated to be at nine years. These size benchmarks are believed to represent thresholds for important demographic parameters; improved estimates of age, therefore, will increase the precision of population projection models. The modeling approach that we present can be applied to other species and offers significant advantages when multiple sources of data are available and traditional aging techniques are not practical.  相似文献   

4.
Recently, public health professionals and other geostatistical researchers have shown increasing interest in boundary analysis, the detection or testing of zones or boundaries that reveal sharp changes in the values of spatially oriented variables. For areal data (i.e., data which consist only of sums or averages over geopolitical regions), Lu and Carlin (Geogr Anal 37: 265–285, 2005) suggested a fully model-based framework for areal wombling using Bayesian hierarchical models with posterior summaries computed using Markov chain Monte Carlo (MCMC) methods, and showed the approach to have advantages over existing non-stochastic alternatives. In this paper, we develop Bayesian areal boundary analysis methods that estimate the spatial neighborhood structure using the value of the process in each region and other variables that indicate how similar two regions are. Boundaries may then be determined by the posterior distribution of either this estimated neighborhood structure or the regional mean response differences themselves. Our methods do require several assumptions (including an appropriate prior distribution, a normal spatial random effect distribution, and a Bernoulli distribution for a set of spatial weights), but also deliver more in terms of full posterior inference for the boundary segments (e.g., direct probability statements regarding the probability that a particular border segment is part of the boundary). We illustrate three different remedies for the computing difficulties encountered in implementing our method. We use simulation to compare among existing purely algorithmic approaches, the Lu and Carlin (2005) method, and our new adjacency modeling methods. We also illustrate more practical modeling issues (e.g., covariate selection) in the context of a breast cancer late detection data set collected at the county level in the state of Minnesota.  相似文献   

5.
Appropriate inference for stocks or species with low-quality data (poor data) or limited data (data poor) is extremely important. Hierarchical Bayesian methods are especially applicable to small-area, small-sample-size estimation problems because they allow poor-data species to borrow strength from species with good-quality data. We used a hammerhead shark complex as an example to investigate the advantages of using hierarchical Bayesian models in assessing the status of poor-data and data-poor exploited species. The hammerhead shark complex (Sphyrna spp.) along the Atlantic and Gulf of Mexico coasts of the United States is composed of three species: the scalloped hammerhead (S. lewini), the great hammerhead (S. mokarran), and the smooth hammerhead (S. zygaena) sharks. The scalloped hammerhead comprises 70-80% of the catch and has catch and relative abundance data of good quality, whereas great and smooth hammerheads have relative abundance indices that are both limited and of low quality presumably because of low stock density and limited sampling. Four hierarchical Bayesian state-space surplus production models were developed to simulate variability in population growth rates, carrying capacity, and catchability of the species. The results from the hierarchical Bayesian models were considerably more robust than those of the nonhierarchical models. The hierarchical Bayesian approach represents an intermediate strategy between traditional models that assume different population parameters for each species and those that assume all species share identical parameters. Use of the hierarchical Bayesian approach is suggested for future hammerhead shark stock assessments and for modeling fish complexes with species-specific data, because the poor-data species can borrow strength from the species with good data, making the estimation more stable and robust.  相似文献   

6.
Models of the geographic distributions of species have wide application in ecology. But the nonspatial, single-level, regression models that ecologists have often employed do not deal with problems of irregular sampling intensity or spatial dependence, and do not adequately quantify uncertainty. We show here how to build statistical models that can handle these features of spatial prediction and provide richer, more powerful inference about species niche relations, distributions, and the effects of human disturbance. We begin with a familiar generalized linear model and build in additional features, including spatial random effects and hierarchical levels. Since these models are fully specified statistical models, we show that it is possible to add complexity without sacrificing interpretability. This step-by-step approach, together with attached code that implements a simple, spatially explicit, regression model, is structured to facilitate self-teaching. All models are developed in a Bayesian framework. We assess the performance of the models by using them to predict the distributions of two plant species (Proteaceae) from South Africa's Cape Floristic Region. We demonstrate that making distribution models spatially explicit can be essential for accurately characterizing the environmental response of species, predicting their probability of occurrence, and assessing uncertainty in the model results. Adding hierarchical levels to the models has further advantages in allowing human transformation of the landscape to be taken into account, as well as additional features of the sampling process.  相似文献   

7.
Space-time data are ubiquitous in the environmental sciences. Often, as is the case with atmo- spheric and oceanographic processes, these data contain many different scales of spatial and temporal variability. Such data are often non-stationary in space and time and may involve many observation/prediction locations. These factors can limit the effectiveness of traditional space- time statistical models and methods. In this article, we propose the use of hierarchical space-time models to achieve more flexible models and methods for the analysis of environmental data distributed in space and time. The first stage of the hierarchical model specifies a measurement- error process for the observational data in terms of some 'state' process. The second stage allows for site-specific time series models for this state variable. This stage includes large-scale (e.g. seasonal) variability plus a space-time dynamic process for the anomalies'. Much of our interest is with this anomaly proc ess. In the third stage, the parameters of these time series models, which are distributed in space, are themselves given a joint distribution with spatial dependence (Markov random fields). The Bayesian formulation is completed in the last two stages by speci- fying priors on parameters. We implement the model in a Markov chain Monte Carlo framework and apply it to an atmospheric data set of monthly maximum temperature.  相似文献   

8.
In monitoring studies at wind farms, the estimation of bird and bat mortality caused by collision must take into account carcass removal by scavengers or decomposition. In this paper we propose the use of survival analysis techniques to model the time of carcass removal. The proposed method is applied to data collected in ten Portuguese wind farms. We present and compare results obtained from semiparametric and parametric models assuming four main competing lifetime distributions (exponential, Weibull, log-logistic and log-normal). Both homogeneous parametric models and accelerated failure time models were used. The fitted models enabled the estimation of the carcass persistence rates and the calculation of a scavenging correction factor for avian mortality estimation. Additionally, we discuss the impact that the distributional assumption can have on parameter estimation. The proposed methodology integrates the survival probability estimation problem with the analysis of covariate effects. Estimation is based on the most suitable model while simultaneously accounting for censored observations, diminishing scavenging rate estimation bias. Additionally, the method establishes a standardized statistical procedure for the analysis of carcass removal time in subsequent studies.  相似文献   

9.
Damgaard C 《Ecology》2012,93(6):1269-1274
The use of state-space models for analyzing longitudinal hierarchical pin-point plant cover data is demonstrated. The main advantages of using a state-space model are (1) that the observed variance is separated into sampling variance and the more interesting structural variance which are needed for quantifying prediction uncertainty, (2) that missing values or an unbalanced sampling design readily may be accounted for, and (3) that the structural equation easily may be expanded and made as complex as necessary for modeling longitudinal pin-point cover data, thus allowing the incorporation of the most important ecological processes in the state-space model without technical difficulties. Typically, there is considerable spatial variation in plant abundance, and this variation is modeled using the Pólya-Eggenberger distribution (a generalization of the beta-binomial distribution). To illustrate this method, longitudinal hierarchical pin-point data of Erica tetralix in wet Danish heathlands were analyzed, including and excluding autocorrelation and an environmental covariable in the state-space model. The pin-point plant cover data showed a significant decrease in the plant cover of E. tetralix in the period from 2004 to 2009, with an annual decrease of about 10% in the logit-transformed cover. The distribution of predicted plant cover at a given site the following year was calculated, including and excluding the information of an environmental covariable.  相似文献   

10.
Ecological regression studies are widely used in geographical epidemiology to assess the relationships between health hazard and putative risk factors. Very often, health data are measured at an aggregate level because of confidentiality restrictions, while putative risk factors are measured on a different grid, i.e., independent (exposure) variable and response (counts) variable are spatially misaligned. To perform a regression of risk on exposure, one needs to realign the spatial support of the variables. Bayesian hierarchical models constitute a natural approach to the problem because of their ability to model the exposure field and the relationship between exposure and relative risk at different levels of the hierarchy, taking proper account of the variability induced by the covariate estimation. In the current paper, we propose two fully Bayesian solutions to the problem. The first one is based on the kernel-smoothing technique, while the second one is built on the tessellation of the study region. We illustrate our methods by assessing the relationship between exposure to uranium in drinkable waters and cancer incidence, in South Carolina (USA).  相似文献   

11.
The incidence function model (IFM) uses area and connectivity to predict metapopulation dynamics. However, false absences and missing data can lead to underestimates of the number of sites contributing to connectivity, resulting in overestimates of dispersal ability and turnovers (extinctions plus colonizations). We extend estimation methods for the IFM by using a hierarchical Bayesian model to account both for false absences due to imperfect detection and for missing data due to sites not surveyed in some years. We compare parameter estimates, measures of metapopulation dynamics, and forecasts using stochastic patch occupancy models (SPOMs) among three IFM models: (1) a Bayesian formulation assuming no false absences and omitting site-year combinations with missing data; (2) a hierarchical Bayesian formulation assuming no false absences but incorporating missing data; and (3) a hierarchical Bayesian formulation allowing for imperfect detection and incorporating missing data. We fit the models to multiyear data sets of occupancy for two bird species that differ in body size and presumed dispersal ability but inhabit the same network of sites: the small Black Rail (Laterallus jamaicensis) and the medium-sized Virginia Rail (Rallus limicola). Incorporating missing data affected colonization parameters and led to lower estimates of dispersal ability for the Black Rail. Detection rates were high for the Black Rail in most years but moderate for the Virginia Rail. Incorporating imperfect detection resulted in higher occupancy and lower turnover rates for both species, with largest effects for the Virginia Rail. Forecasts using SPOMs were sensitive to both missing data and false absences; persistence in models assuming no false absences was more optimistic than from robust models. Our results suggest that incorporating false absences and missing data into the IFM can improve (1) estimates of dispersal ability and the effect of connectivity on colonization, (2) the scaling of extinction risk with patch area, and (3) forecasts of occupancy and turnover rates.  相似文献   

12.
《Ecological modelling》2005,185(1):105-131
Establishing cause–effect relationships for deforestation at various scales has proven difficult even when rates of deforestation appear well documented. There is a need for better explanatory models, which also provide insight into the process of deforestation. We propose a novel hierarchical modeling specification incorporating spatial association. The hierarchical aspect allows us to accommodate misalignment between the land-use (response) data layer and explanatory data layers. Spatial structure seems appropriate due to the inherently spatial nature of land use and data layers explaining land use. Typically, there will be missing values or holes in the response data. To accommodate this we propose an imputation strategy. We apply our modeling approach to develop a novel deforestation model for the eastern wet forested zone of Madagascar, a global rain forest “hot spot”. Using five data layers created for this region, we fit a suitable spatial hierarchical model. Though fitting such models is computationally much more demanding than fitting more standard models, we show that the resulting interpretation is much richer. Also, we employ a model choice criterion to argue that our fully Bayesian model performs better than simpler ones. To the best of our knowledge, this is the first work that applies hierarchical Bayesian modeling techniques to study deforestation processes. We conclude with a discussion of our findings and an indication of the broader ecological applicability of our modeling style.  相似文献   

13.
The issue of variances of different soil variables prevailing at different sampling scales is addressed. This topic is relevant for soil science, agronomy and landscape ecology. In multi-stage sampling there are randomness components in each stage of sampling which can be taken into account by introducing random effects in analysis through the use of hierarchical linear mixed models (HLMM). Due to the nested sampling scheme, there are several hierarchical sub-models. The selection of the best model can be carried out through likelihood ratio tests (LRTs) or Wald tests, which are asymptotically equivalent under standard conditions. However, when the comparison leads to a restricted hypothesis of variance components, standard conditions are not maintained, which leads to more elaborated versions of LRTs. These versions are not disseminated among environmental scientists. The present study shows the modeling of soil data from a sampling where sites, fields within sites, transects within fields, and sampling points within transects were selected in order to take samples from different vegetation types (open and shade). For soil data, several sub-models were compared using Wald tests, classic LRTs and adjusted LRTs where the distribution of the test statistic under the null hypothesis is the Chi-square mixture of Chi-square distributions. The inclusion of random effects via HLMM and suggested by the latest version of LRT allowed us to detect effects of vegetation type on soil properties that were not detected under a classical ANOVA.  相似文献   

14.
Clough Y 《Ecology》2012,93(8):1809-1815
The need to model and test hypotheses about complex ecological systems has led to a steady increase in use of path analytical techniques, which allow the modeling of multiple multivariate dependencies reflecting hypothesized causation and mechanisms. The aim is to achieve the estimation of direct, indirect, and total effects of one variable on another and to assess the adequacy of whole models. Path analytical techniques based on maximum likelihood currently used in ecology are rarely adequate for ecological data, which are often sparse, multi-level, and may contain nonlinear relationships as well as nonnormal response data such as counts or proportion data. Here I introduce a more flexible approach in the form of the joint application of hierarchical Bayes, Markov chain Monte Carlo algorithms, Shipley's d-sep test, and the potential outcomes framework to fit path models as well as to decompose and estimate effects. An example based on the direct and indirect interactions between ants, two insect herbivores, and a plant species demonstrates the implementation of these techniques, using freely available software.  相似文献   

15.
Abstract: Biologists who develop and apply habitat models are often familiar with the statistical challenges posed by their data's spatial structure but are unsure of whether the use of complex spatial models will increase the utility of model results in planning. We compared the relative performance of nonspatial and hierarchical Bayesian spatial models for three vertebrate and invertebrate taxa of conservation concern (Church's sideband snails [Monadenia churchi], red tree voles [Arborimus longicaudus], and Pacific fishers [Martes pennanti pacifica]) that provide examples of a range of distributional extents and dispersal abilities. We used presence–absence data derived from regional monitoring programs to develop models with both landscape and site‐level environmental covariates. We used Markov chain Monte Carlo algorithms and a conditional autoregressive or intrinsic conditional autoregressive model framework to fit spatial models. The fit of Bayesian spatial models was between 35 and 55% better than the fit of nonspatial analogue models. Bayesian spatial models outperformed analogous models developed with maximum entropy (Maxent) methods. Although the best spatial and nonspatial models included similar environmental variables, spatial models provided estimates of residual spatial effects that suggested how ecological processes might structure distribution patterns. Spatial models built from presence–absence data improved fit most for localized endemic species with ranges constrained by poorly known biogeographic factors and for widely distributed species suspected to be strongly affected by unmeasured environmental variables or population processes. By treating spatial effects as a variable of interest rather than a nuisance, hierarchical Bayesian spatial models, especially when they are based on a common broad‐scale spatial lattice (here the national Forest Inventory and Analysis grid of 24 km2 hexagons), can increase the relevance of habitat models to multispecies conservation planning.  相似文献   

16.
Model practitioners increasingly place emphasis on rigorous quantitative error analysis in aquatic biogeochemical models and the existing initiatives range from the development of alternative metrics for goodness of fit, to data assimilation into operational models, to parameter estimation techniques. However, the treatment of error in many of these efforts is arguably selective and/or ad hoc. A Bayesian hierarchical framework enables the development of robust probabilistic analysis of error and uncertainty in model predictions by explicitly accommodating measurement error, parameter uncertainty, and model structure imperfection. This paper presents a Bayesian hierarchical formulation for simultaneously calibrating aquatic biogeochemical models at multiple systems (or sites of the same system) with differences in their trophic conditions, prior precisions of model parameters, available information, measurement error or inter-annual variability. Our statistical formulation also explicitly considers the uncertainty in model inputs (model parameters, initial conditions), the analytical/sampling error associated with the field data, and the discrepancy between model structure and the natural system dynamics (e.g., missing key ecological processes, erroneous formulations, misspecified forcing functions). The comparison between observations and posterior predictive monthly distributions indicates that the plankton models calibrated under the Bayesian hierarchical scheme provided accurate system representations for all the scenarios examined. Our results also suggest that the Bayesian hierarchical approach allows overcoming problems of insufficient local data by “borrowing strength” from well-studied sites and this feature will be highly relevant to conservation practices of regions with a high number of freshwater resources for which complete data could never be practically collected. Finally, we discuss the prospect of extending this framework to spatially explicit biogeochemical models (e.g., more effectively connect inshore with offshore areas) along with the benefits for environmental management, such as the optimization of the sampling design of monitoring programs and the alignment with the policy practice of adaptive management.  相似文献   

17.
Ovaskainen O  Soininen J 《Ecology》2011,92(2):289-295
Community ecologists and conservation biologists often work with data that are too sparse for achieving reliable inference with species-specific approaches. Here we explore the idea of combining species-specific models into a single hierarchical model. The community component of the model seeks for shared patterns in how the species respond to environmental covariates. We illustrate the modeling framework in the context of logistic regression and presence-absence data, but a similar hierarchical structure could also be used in many other types of applications. We first use simulated data to illustrate that the community component can improve parameterization of species-specific models especially for rare species, for which the data would be too sparse to be informative alone. We then apply the community model to real data on 500 diatom species to show that it has much greater predictive power than a collection of independent species-specific models. We use the modeling approach to show that roughly one-third of distance decay in community similarity can be explained by two variables characterizing water quality, rare species typically preferring nutrient-poor waters with high pH, and common species showing a more general pattern of resource use.  相似文献   

18.
Analysis of brood sex ratios: implications of offspring clustering   总被引:13,自引:0,他引:13  
Generalized linear models (GLMs) are increasingly used in modern statistical analyses of sex ratio variation because they are able to determine variable design effects on binary response data. However, in applying GLMs, authors frequently neglect the hierarchical structure of sex ratio data, thereby increasing the likelihood of committing 'type I' error. Here, we argue that whenever clustered (e.g., brood) sex ratios represent the desired level of statistical inference, the clustered data structure ought to be taken into account to avoid invalid conclusions. Neglecting the between-cluster variation and the finite number of clusters in determining test statistics, as implied by using likelihood ratio-based L2-statistics in conventional GLM, results in biased (usually overestimated) test statistics and pseudoreplication of the sample. Random variation in the sex ratio between clusters (broods) can often be accommodated by scaling residual binomial (error) variance for overdispersion, and using F-tests instead of L2-tests. More complex situations, however, require the use of generalized linear mixed models (GLMMs). By introducing higher-level random effects in addition to the residual error term, GLMMs allow an estimation of fixed effect and interaction parameters while accounting for random effects at different levels of the data. GLMMs are first required in sex ratio analyses whenever there are covariates at the offspring level of the data, but inferences are to be drawn at the brood level. Second, when interactions of effects at different levels of the data are to be estimated, random fluctuation of parameters can be taken into account only in GLMMs. Data structures requiring the use of GLMMs to avoid erroneous inferences are often encountered in ecological sex ratio studies.  相似文献   

19.
Species distribution models (SDMs) have become integral tools in scientific research and conservation planning. Despite progress in the assessment of various statistical models for use in SDMs, little has been done in way of evaluating appropriate ecological models. In this paper, we evaluate the multiscale filter framework as a suitable theoretical model for predicting freshwater fish distributions in the upper Green River system (Ohio River drainage), USA. The spatial distributions of six fishes with contrasting biogeographies were modeled using boosted regression trees and multiscale landscape data. Species biogeography did not appear to affect predictive performance and all models performed well statistically with receiver operating characteristic area under the curve (AUC) ranging from 0.87 to 0.98. Predictive maps show accurate estimations of ranges for five of six species based on historical collections. The relative influence of each type of environmental feature and spatial scale varied markedly with between species. A hierarchical effect was detected for narrowly distributed species. These species were highly influenced by soil composition at larger spatial scales and land use/land cover (LULC) patterns at more proximal scales. Conversely, LULC pattern was the most influential feature for widely distributed at all spatial scales. Using multiscale data capable of capturing hierarchical landscape influences allowed production of accurate predictive models and provided further insight into factors controlling freshwater fish distributions.  相似文献   

20.
A stochastic model is applied to describe the spatial structure of a forest stand. We aim at quantifying the strength of the competition process between the trees in terms of interaction within and between different size classes of trees using multivariate Gibbs point processes with hierarchical interactions introduced in [Högmander, H., Särkkä, A., 1999. Multitype spatial point patterns with hierarchical interactions. Biometrics 55, 1051–1058]. The new model overcomes the main limitation of the traditional use of the Gibbs models allowing to describe systems with non-symmetric interactions between different objects. When analyzing interactions between neighbouring trees it is natural to assume that the size of a tree determines its hierarchical level: the largest trees are not influenced by any other trees than the trees in the same size class, while trees in the other size classes are influenced by the other trees in the same class as well as by all larger trees. In this paper, we describe a wide range of Gibbs models with both hierarchical and non-hierarchical interactions as well as a simulation algorithm and a parameter estimation procedure for the hierarchical models. We apply the hierarchical interaction model to the analysis of forest data consisting of locations and diameters of tree stems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号