首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Discussions on the use of marine reserves (no-take zones) and, more generally, spatial management of fisheries are, for the most part, devoid of analyses that consider the ecological and economic effects simultaneously. To fill this gap, we develop a two-patch ecological-economic model to investigate the effects of spatial management on fishery profits. Because the fishery effects of spatial management depend critically on the nature of the ecological connectivity, our model includes both juvenile and adult movement, with density dependence in settlement differentiating the two types of dispersal. Rather than imposing a reserve on our system and measuring its effect on profits, we ask: "When does setting catch levels to maximize system-wide profits imply that a reserve should be created?" Closing areas to fishing is an economically optimal solution when the value derived from spillover from the reserve outweighs the value of fishing in the patch. The condition, while simple to state in summary form, is complex to interpret because it depends on the settlement success of the dispersing organisms, the nature of the costs of the fishing, the economic and ecological heterogeneity of the system, the discount rate, and growth characteristics of the fish population. The condition is more likely to be satisfied when the closed area is a net exporter of biomass and has higher costs of fishing, and for fish populations with density-independent settlement ("adult movement") than with density-dependent settlement ("larval dispersal"). Rather surprisingly, there are circumstances whereby closing low biological productivity areas, and even sometimes low cost areas to fish, can result in greater fishing profits than when both areas are open to fishing.  相似文献   

2.
Two important processes determining the dynamics of spatially structured populations are dispersal and the spatial covariance of demographic fluctuations. Spatially explicit approaches to conservation, such as reserve networks, must consider the tension between these two processes and reach a balance between distances near enough to maintain connectivity, but far enough to benefit from risk spreading. Here, we model this trade-off. We show how two measures of metapopulation persistence depend on the shape of the dispersal kernel and the shape of the distance decay in demographic covariance, and we consider the implications of this trade-off for reserve spacing. The relative rates of distance decay in dispersal and demographic covariance determine whether the long-run metapopulation growth rate, and quasi-extinction risk, peak for adjacent patches or intermediately spaced patches; two local maxima in metapopulation persistence are also possible. When dispersal itself fluctuates over time, the trade-off changes. Temporal variation in mean distance that propagules are dispersed (i.e., propagule advection) decreases metapopulation persistence and decreases the likelihood that persistence will peak for adjacent patches. Conversely, variation in diffusion (the extent of random spread around mean dispersal) increases metapopulation persistence overall and causes it to peak at shorter inter-patch distances. Thus, failure to consider temporal variation in dispersal processes increases the risk that reserve spacings will fail to meet the objective of ensuring metapopulation persistence. This study identifies two phenomena that receive relatively little attention in empirical work on reserve spacing, but that can qualitatively change the effectiveness of reserve spacing strategies: (1) the functional form of the distance decay in covariance among patch-specific demographic rates and (2) temporal variation in the shape of the dispersal kernel. The sensitivity of metapopulation recovery and persistence to how covariance of vital rates decreases with distance suggests that estimating the shape of this function is likely to be as important for effective reserve design as estimating connectivity. Similarly, because temporal variation in dispersal dynamics influences the effect of reserve spacing, approaches to reserve design that ignore such variation, and rely instead on long-term average dispersal patterns, are likely to lead to lower metapopulation viability than is actually achievable.  相似文献   

3.
江苏盐城湿地珍禽国家级自然保护区资源开发的阈值管理   总被引:1,自引:1,他引:0  
通过分析主要保护对象丹顶鹤的越冬需求和资源开发活动对丹顶鹤及其生境的干扰,提出了针对保护区资源开发的阈值管理技术.设置允许适度开发、限制开发和禁止开发3种准入类型;准入区域限定在实验区内,面积应小于保护区总面积的1/10,且不大于实验区面积的1/3;准入时间上,根据丹顶鹤的越冬需求,确定每年9月末至次年2月末为限制利用期,3月初至次年9月末为适度利用期;停止新的滩涂围垦和风力发电项目建设,大力发展生态旅游.  相似文献   

4.
Hein AM  Gillooly JF 《Ecology》2011,92(3):549-555
Ecological theory suggests that both dispersal limitation and resource limitation can exert strong effects on community assembly. However, empirical studies of community assembly have focused almost exclusively on communities with a single trophic level. Thus, little is known about the combined effects of dispersal and resource limitation on assembly of communities with multiple trophic levels. We performed a landscape-scale experiment using spatially arranged mesocosms to study effects of dispersal and resource limitation on the assembly dynamics of aquatic invertebrate communities with two trophic levels. We found that interplay between dispersal and resource limitation regulated the assembly of predator and prey trophic levels in these pond communities. Early in assembly, predators and prey were strongly dispersal limited, and resource (i.e., prey) availability did not influence predator colonization. Later in assembly, after predators colonized, resource limitation was the strongest driver of predator abundance, and dispersal limitation played a negligible role. Thus, habitat isolation affected predators directly by reducing predator colonization rate, and indirectly through the effect of distance on prey availability. Dispersal and resource limitation of predators resulted in a transient period in which predators were absent or rare in isolated habitats. This period may be important for understanding population dynamics of vulnerable prey species. Our findings demonstrate that dispersal and resource limitation can jointly regulate assembly dynamics in multi-trophic systems. They also highlight the need to develop a temporal picture of the assembly process in multi-trophic communities because the availability and spatial distribution of limiting resources (i.e., prey) and the distribution of predators can shift radically over time.  相似文献   

5.
Larval dispersal is an important component of marine reserve networks. Two conceptually different approaches to incorporate dispersal connectivity into spatial planning of these networks exist, and it is an open question as to when either is most appropriate. Candidate reserve sites can be selected individually based on local properties of connectivity or on a spatial dependency-based approach of selecting clusters of strongly connected habitat patches. The first acts on individual sites, whereas the second acts on linked pairs of sites. We used a combination of larval dispersal simulations representing different seascapes and case studies of biophysical larval dispersal models in the Coral Triangle region and the province of Southeast Sulawesi, Indonesia, to compare the performance of these 2 methods in the spatial planning software Marxan. We explored the reserve design performance implications of different dispersal distances and patterns based on the equilibrium settlement of larvae in protected and unprotected areas. We further assessed different assumptions about metapopulation contributions from unprotected areas, including the case of 100% depletion and more moderate scenarios. The spatial dependency method was suitable when dispersal was limited, a high proportion of the area of interest was substantially degraded, or the target amount of habitat protected was low. Conversely, when subpopulations were well connected, the 100% depletion was relaxed, or more habitat was protected, protecting individual sites with high scores in metrics of connectivity was a better strategy. Spatial dependency methods generally produced more spatially clustered solutions with more benefits inside than outside reserves compared with site-based methods. Therefore, spatial dependency methods potentially provide better results for ecological persistence objectives over enhancing fisheries objectives, and vice versa. Different spatial prioritization methods of using connectivity are appropriate for different contexts, depending on dispersal characteristics, unprotected area contributions, habitat protection targets, and specific management objectives. Comparación entre los métodos de priorización de la conservación espacial con sitio y la conectividad espacial basada en la dependencia  相似文献   

6.
Larval dispersal connectivity is typically integrated into spatial conservation decisions at regional or national scales, but implementing agencies struggle with translating these methods to local scales. We used larval dispersal connectivity at regional (hundreds of kilometers) and local (tens of kilometers) scales to aid in design of networks of no-take reserves in Southeast Sulawesi, Indonesia. We used Marxan with Connectivity informed by biophysical larval dispersal models and remotely sensed coral reef habitat data to design marine reserve networks for 4 commercially important reef species across the region. We complemented regional spatial prioritization with decision trees that combined network-based connectivity metrics and habitat quality to design reserve boundaries locally. Decision trees were used in consensus-based workshops with stakeholders to qualitatively assess site desirability, and Marxan was used to identify areas for subsequent network expansion. Priority areas for protection and expected benefits differed among species, with little overlap in reserve network solutions. Because reef quality varied considerably across reefs, we suggest reef degradation must inform the interpretation of larval dispersal patterns and the conservation benefits achievable from protecting reefs. Our methods can be readily applied by conservation practitioners, in this region and elsewhere, to integrate connectivity data across multiple spatial scales.  相似文献   

7.
Dispersal is a major and critical process in population biology that has been particularly challenging to study. Animals can have major roles in seed dispersal even in species that do not appear specifically adapted to animal-aided dispersal. This can occur by two processes: direct movement of diaspores by animals and modification of landscape characteristics by animals in ways that greatly influence dispersal. We exploited the production of large, persistent dispersal structures (seed heads, henceforth) by Erodiophyllum elderi (Asteraceae), a daisy from arid Australia, to further understand secondary dispersal. Seed head dispersal on and off animal tracks in eight E. elderi patches was monitored for 9.5 months by periodically recording the location of marked seed heads. Sites were located inside a reserve that excludes sheep but not kangaroos, and in a nearby area with both kangaroos and sheep. The distance moved and likelihood of seed head movement was higher in areas with sheep, and especially along animal tracks. There was clear evidence that seed heads were channeled down animal tracks during large rainfall events. Seed head dispersal away from patches occurred to a limited extent via their physical contact with sheep and potentially via wind dispersal. Thus, the advantages of this study system allowed us to demonstrate the two postulated effects of herbivores on dispersal via direct movement of seed heads, and two distinct indirect effects through landscape modification by herbivores from the creation of animal tracks and the denudation of vegetation.  相似文献   

8.
Positive interactions are widely recognized as playing a major role in the organization of community structure and diversity. As such, recent theoretical and empirical works have revealed the significant contribution of positive interactions in shaping species’ geographical distributions, particularly in harsh abiotic conditions. In this report, we explore the joint influence of local dispersal and an environmental gradient on the spatial distribution, structure and function of communities containing positive interactions. While most previous theoretical efforts were limited to modelling the dynamics of single pairs of associated species being mutualist or competitor, here we employ a spatially explicit multi-species metacommunity model covering a rich range of interspecific interactions (mutualism, competition and exploitation) along an environmental gradient. We find that mutualistic interactions dominate in communities with low diversity characterized by limited species dispersal and poor habitat quality. On the other hand, the fraction of mutualistic interactions decreases at the expense of exploitation and competition with the increase in diversity caused by higher dispersal and/or habitat quality. Our multi-species model exemplifies the ubiquitous presence of mutualistic interactions and the role of mutualistic species as facilitators for the further establishment of species during ecosystem assembly. We therefore argue that mutualism is an essential component driving the origination of complex and diverse communities.  相似文献   

9.
Dispersal is a key determinant of the spatial distribution and abundance of populations, but human-made fragmentation can create barriers that hinder dispersal and reduce population viability. This study presents a modeling framework based on dispersal kernels (modified Laplace distributions) that describe stream fish dispersal in the presence of obstacles to passage. We used mark-recapture trials to quantify summer dispersal of brook trout (Salvelinus fontinalis) in four streams crossed by a highway. The analysis identified population heterogeneity in dispersal behavior, as revealed by the presence of a dominant sedentary component (48-72% of all individuals) characterized by short mean dispersal distance (<10 m), and a secondary mobile component characterized by longer mean dispersal distance (56-1086 m). We did not detect evidence of barrier effects on dispersal through highway crossings. Simulation of various plausible scenarios indicated that detectability of barrier effects was strongly dependent on features of sampling design, such as spatial configuration of the sampling area, barrier extent, and sample size. The proposed modeling framework extends conventional dispersal kernels by incorporating structural barriers. A major strength of the approach is that ecological process (dispersal model) and sampling design (observation model) are incorporated simultaneously into the analysis. This feature can facilitate the use of prior knowledge to improve sampling efficiency of mark-recapture trials in movement studies. Model-based estimation of barrier permeability and its associated uncertainty provides a rigorous approach for quantifying the effect of barriers on stream fish dispersal and assessing population dynamics of stream fish in fragmented landscapes.  相似文献   

10.
11.
Morales JM  Carlo TA 《Ecology》2006,87(6):1489-1496
For many plant species, seed dispersal is one of the most important spatial demographic processes. We used a diffusion approximation and a spatially explicit simulation model to explore the mechanisms generating seed dispersal kernels for plants dispersed by frugivores. The simulation model combined simple movement and foraging rules with seed gut passage time, plant distribution, and fruit production. A simulation experiment using plant spatial aggregation and frugivore density as factors showed that seed dispersal scale was largely determined by the degree of plant aggregation, whereas kernel shape was mostly dominated by frugivore density. Kernel shapes ranged from fat tailed to thin tailed, but most shapes were between an exponential and that of the solution of a diffusion equation. The proportion of dispersal kernels with fat tails was highest for landscapes with clumped plant distributions and increased with increasing number of dispersers. The diffusion model provides a basis for models including more behavioral details but can also be used to approximate dispersal kernels once a diffusion rate is estimated from animal movement data. Our results suggest that important characteristics of dispersal kernels will depend on the spatial pattern of plant distribution and on disperser density when frugivores mediate seed dispersal.  相似文献   

12.
The persistence of species in reserves depends in large part on the persistence of functional ecological interactions. Despite their importance, however, ecological interactions have not yet been explicitly incorporated into conservation prioritization methods. We develop here a general method for incorporating consumer–resource interactions into spatial reserve design. This method protects spatial consumer–resource interactions by protecting areas that maintain the connectivity between the distribution of consumers and resources. We illustrate our method with a conservation planning case study of a mammalian predator, American marten (Martes americana), and its two primary prey species, Red-backed vole (Clethrionomys rutilus) and Deer mouse (Peromyscus maniculatus). The conservation goal was to identify a reserve for marten that comprised 12% of a forest management unit in the boreal forest in Québec, Canada. We compared reserves developed using analysis variants that utilized different levels of information about predator and prey habitat distributions, species-specific connectivity requirements, and interaction connectivity requirements. The inclusion of consumer–resource interactions in reserve-selection resulted in spatially aggregated reserves that maintained local habitat quality for the species. This spatial aggregation was not induced by applying a qualitative penalty for the boundary length of the reserve, but rather was a direct consequence of modelling the spatial needs of the interacting consumer and resources. Our method for maintaining connectivity between consumers and their resources within reserves can be applied even under the most extreme cases of either complete spatial overlap or complete spatial segregation of consumer–resource distributions. The method has been made available via public software.  相似文献   

13.
Flügge AJ  Olhede SC  Murrell DJ 《Ecology》2012,93(7):1540-1549
The current spatial pattern of a population is the result of previous individual birth, death, and dispersal events. We present a simple model followed by a comparative analysis for a species-rich plant community to show how the current spatial aggregation of a population may hold information about recent population dynamics. Previous research has shown how locally restricted seed dispersal often leads to stronger aggregation in less abundant populations than it does in more abundant populations. In contrast, little is known about how changes in the local abundance of a species may affect the spatial distribution of individuals. If the level of aggregation within a species depends to some extent on the abundance of the species, then changes in abundance should lead to subsequent changes in aggregation. However, an overall change of spatial pattern relies on many individual birth and death events, and a surplus of deaths or births may have short-term effects on aggregation that are opposite to the long-term change predicted by the change in abundance. The change in aggregation may therefore lag behind the change in abundance, and consequently, the current aggregation may hold information about recent population dynamics. Using an individual-based simulation model with local dispersal and density-dependent competition, we show that, on average, recently growing populations should be more aggregated than shrinking populations of the same current local abundance. We tested this hypothesis using spatial data on individuals from a long-term tropical rain forest plot, and find support for this relationship in canopy trees, but not in understory and shrub species. On this basis we argue that current spatial aggregation is an important characteristic that contains information on recent changes in local abundance, and may be applied to taxonomic groups where dispersal is limited and within-species aggregation is observed.  相似文献   

14.
The design of marine reserves is complex and fraught with uncertainty. However, protection of critical habitat is of paramount importance for reserve design. We present a case study as an example of a reserve design based on fine-scale habitats, the affinities of exploited species to these habitats, adult mobility, and the physical forcing affecting the dynamics of the habitats. These factors and their interaction are integrated in an algorithm that determines the optimal size and location of a marine reserve for a set of 20 exploited species within five different habitats inside a large kelp forest in southern California. The result is a reserve that encompasses approximately 42% of the kelp forest. Our approach differs fundamentally from many other marine reserve siting methods in which goals of area, diversity, or biomass are targeted a priori. Rather, our method was developed to determine how large a reserve must be within a specific area to protect a self-sustaining assemblage of exploited species. The algorithm is applicable across different ecosystems, spatial scales, and for any number of species. The result is a reserve in which habitat value is optimized for a predetermined set of exploited species against the area left open to exploitation. The importance of fine-scale habitat definitions for the exploited species off La Jolla is exemplified by the spatial pattern of habitats and the stability of these habitats within the kelp forest, both of which appear to be determined by ocean microclimate.  相似文献   

15.
Seed dispersal is a crucial component of plant population dynamics. Human landscape modifications, such as habitat destruction and fragmentation, can alter the abundance of fruiting plants and animal dispersers, foraging rates, vector movement, and the composition of the disperser community, all of which can singly or in concert affect seed dispersal. Here, we quantify and tease apart the effects of landscape configuration, namely, fragmentation of primary forest and the composition of the surrounding forest matrix, on individual components of seed dispersal of Heliconia acuminata, an Amazonian understory herb. First we identified the effects of landscape configuration on the abundance of fruiting plants and six bird disperser species. Although highly variable in space and time, densities of fruiting plants were similar in continuous forest and fragments. However, the two largest-bodied avian dispersers were less common or absent in small fragments. Second, we determined whether fragmentation affected foraging rates. Fruit removal rates were similar and very high across the landscape, suggesting that Heliconia fruits are a key resource for small frugivores in this landscape. Third, we used radiotelemetry and statistical models to quantify how landscape configuration influences vector movement patterns. Bird dispersers flew farther and faster, and perched longer in primary relative to secondary forests. One species also altered its movement direction in response to habitat boundaries between primary and secondary forests. Finally, we parameterized a simulation model linking data on fruit density and disperser abundance and behavior with empirical estimates of seed retention times to generate seed dispersal patterns in two hypothetical landscapes. Despite clear changes in bird movement in response to landscape configuration, our simulations demonstrate that these differences had negligible effects on dispersal distances. However, small fragments had reduced densities of Turdus albicollis, the largest-bodied disperser and the only one to both regurgitate and defecate seeds. This change in Turdus abundance acted together with lower numbers of fruiting plants in small fragments to decrease the probability of long-distance dispersal events from small patches. These findings emphasize the importance of foraging style for seed dispersal and highlight the primacy of habitat size relative to spatial configuration in preserving biotic interactions.  相似文献   

16.
Intraspecific crop diversification is thought to be a possible solution to the disease susceptibility of monocultured crops. We modelled the stratified dispersal of an airborne pathogen population in order to identify the spatial patterns of cultivar mixtures that could slow epidemic spread driven by dual dispersal mechanisms acting over both short and long distances. We developed a model to simulate the propagation of a fungal disease in a 2D field, including a reaction-diffusion model for short-distance disease dispersal, and a stochastic model for long-distance dispersal. The model was fitted to data for the spatio-temporal spread of faba bean rust (caused by Uromyces viciae-fabae) through a discontinuous field. The model was used to compare the effectiveness of eight different planting patterns of cultivar mixtures against a disease spread by short-distance and stratified dispersal. Our combined modelling approach provides a reasonably good fit with the observed data for the spread of faba bean rust. Similar predictive power could be expected for the management of resource-mediated invasions by other airborne fungi. If a disease spreads by short-distance dispersal, random mixtures can be used to slow the epidemic spread, since their spatial irregularity creates a natural barrier to the progression of a smooth epidemic wave. In the context of stratified dispersal, heterogeneous patterns should be used that include a minimum distance between susceptible units, which decreases the probability of infection by long-distance spore dispersal. We provide a simple framework for modelling the stratified dispersal of disease in a diversified crop. The model suggests that the spatial arrangement of components in cultivar mixtures has to accord with the dispersal characteristics of the pathogen in order to increase the efficiency of diversification strategies in agro-ecosystems and forestry. It can be applied in low input agriculture to manage pathogen invasion by intercropping and cultivar mixtures, and to design sustainable systems of land use.  相似文献   

17.
Russo SE  Portnoy S  Augspurger CK 《Ecology》2006,87(12):3160-3174
Seed dispersal fundamentally influences plant population and community dynamics but is difficult to quantify directly. Consequently, models are frequently used to describe the seed shadow (the seed deposition pattern of a plant population). For vertebrate-dispersed plants, animal behavior is known to influence seed shadows but is poorly integrated in seed dispersal models. Here, we illustrate a modeling approach that incorporates animal behavior and develop a stochastic, spatially explicit simulation model that predicts the seed shadow for a primate-dispersed tree species (Virola calophylla, Myristicaceae) at the forest stand scale. The model was parameterized from field-collected data on fruit production and seed dispersal, behaviors and movement patterns of the key disperser, the spider monkey (Ateles paniscus), densities of dispersed and non-dispersed seeds, and direct estimates of seed dispersal distances. Our model demonstrated that the spatial scale of dispersal for this V. calophylla population was large, as spider monkeys routinely dispersed seeds >100 m, a commonly used threshold for long-distance dispersal. The simulated seed shadow was heterogeneous, with high spatial variance in seed density resulting largely from behaviors and movement patterns of spider monkeys that aggregated seeds (dispersal at their sleeping sites) and that scattered seeds (dispersal during diurnal foraging and resting). The single-distribution dispersal kernels frequently used to model dispersal substantially underestimated this variance and poorly fit the simulated seed-dispersal curve, primarily because of its multimodality, and a mixture distribution always fit the simulated dispersal curve better. Both seed shadow heterogeneity and dispersal curve multimodality arose directly from these different dispersal processes generated by spider monkeys. Compared to models that did not account for disperser behavior, our modeling approach improved prediction of the seed shadow of this V. calophylla population. An important function of seed dispersal models is to use the seed shadows they predict to estimate components of plant demography, particularly seedling population dynamics and distributions. Our model demonstrated that improved seed shadow prediction for animal-dispersed plants can be accomplished by incorporating spatially explicit information on disperser behavior and movements, using scales large enough to capture routine long-distance dispersal, and using dispersal kernels, such as mixture distributions, that account for spatially aggregated dispersal.  相似文献   

18.
Although larval dispersal is crucial for the persistence of most marine populations, dispersal connectivity between sites is rarely considered in designing marine protected area networks. In particular the role of structural characteristics (known as topology) for the network of larval dispersal routes in the conservation of metapopulations has not been addressed. To determine reserve site configurations that provide highest persistence values with respect to their connectivity characteristics, we model nine connectivity topological models derived from graph theory in a demographic metapopulation model. We identify reserve site configurations that provide the highest persistence values for each of the metapopulation connectivity models. Except for the minimally connected and fully connected populations, we observed two general ‘rules of thumb’ for optimising the mean life time for all topological models: firstly place the majority of reserves, so that they are neighbours of each other, on the sites where the number of connections between the populations is highest (hub), secondly when the reserves have occupied the majority of the vertices in the hub, then select another area of high connectivity and repeat. If there are no suitable hubs remaining then distribute the remaining reserves to isolated locations optimising contact with non-reserved sites.  相似文献   

19.
Burgess SC  Treml EA  Marshall DJ 《Ecology》2012,93(6):1378-1387
Despite the importance of dispersal for population connectivity, dispersal is often costly to the individual. A major impediment to understanding connectivity has been a lack of data combining the movement of individuals and their survival to reproduction in the new habitat (realized connectivity). Although mortality often occurs during dispersal (an immediate cost), in many organisms costs are paid after dispersal (deferred costs). It is unclear how such deferred costs influence the mismatch between dispersal and realized connectivity. Through a series of experiments in the field and laboratory, we estimated both direct and indirect deferred costs in a marine bryozoan (Bugula neritina). We then used the empirical data to parameterize a theoretical model in order to formalize predictions about how dispersal costs influence realized connectivity. Individuals were more likely to colonize poor-quality habitat after prolonged dispersal durations. Individuals that colonized poor-quality habitat performed poorly after colonization because of some property of the habitat (an indirect deferred cost) rather than from prolonged dispersal per se (a direct deferred cost). Our theoretical model predicted that indirect deferred costs could result in nonlinear mismatches between spatial patterns of potential and realized connectivity. The deferred costs of dispersal are likely to be crucial for determining how well patterns of dispersal reflect realized connectivity. Ignoring these deferred costs could lead to inaccurate predictions of spatial population dynamics.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号