首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Photocatalytic degradation of sulfamethoxazole(SMX) antibiotic has been studied under recycling batch and homogeneous flow conditions in a thin-film coated immobilized system namely parallel-plate(PPL) reactor. Experimentally designed, statistically evaluated with a factorial design(FD) approach with intent to provide a mathematical model takes into account the parameters influencing process performance. Initial antibiotic concentration, UV energy level, irradiated surface area, water matrix(ultrapure and secondary treated wastewater) and time, were defined as model parameters. A full of 2~5 experimental design was consisted of 32 random experiments. PPL reactor test experiments were carried out in order to set boundary levels for hydraulic, volumetric and defined defined process parameters. TTIP based thin-film with polyethylene glycol + TiO_2 additives were fabricated according to pre-described methodology. Antibiotic degradation was monitored by High Performance Liquid Chromatography analysis while the degradation products were specified by LC–TOF-MS analysis. Acute toxicity of untreated and treated SMX solutions was tested by standard Daphnia magna method. Based on the obtained mathematical model, the response of the immobilized PC system is described with a polynomial equation. The statistically significant positive effects are initial SMX concentration,process time and the combined effect of both, while combined effect of water matrix and irradiated surface area displays an adverse effect on the rate of antibiotic degradation by photocatalytic oxidation. Process efficiency and the validity of the acquired mathematical model was also verified for levofloxacin and cefaclor antibiotics. Immobilized PC degradation in PPL reactor configuration was found capable of providing reduced effluent toxicity by simultaneous degradation of SMX parent compound and TBPs.  相似文献   

2.
Chlorination disinfection has been widely used in reclaimed water treatment plants to ensure water quality. In order to assess the downstream quality risk of a running reclaimed water disinfection process, a set of dynamic equations was developed to simulate reactions in the disinfection process concerning variables of bacteria, chemical oxygen demand (COD), ammonia and monochloramine. The model was calibrated by the observations obtained from a pilot disinfection process which was designed to simulate the actual process in a reclaimed water treatment plant. A Monte Carlo algorithm was applied to calculate the predictive effluent quality distributions that were used in the established hierarchical assessment system for the downstream quality risk, and the key factors affecting the downstream quality risk were defined using the Regional Sensitivity Analysis method. The results showed that the seasonal upstream quality variation caused considerable downstream quality risk; the effluent ammonia was significantly influenced by its upstream concentration; the upstream COD was a key factor determining the process effluent risk of bacterial, COD and residual disinfectant indexes; and lower COD and ammonia concentrations in the infiuent would mean better downstream quality.  相似文献   

3.
A method was developed for the determination of total arsenic concentration in less than ng/ml level by decomposition of organoarsenicals using photo -oxidation combined with in situ trapping of arsenic hydride on a palladium coated graphite tube with subsequent atomization and detection by AAS. The organoarsenicals include monomethylarsenic, dimethylarsenic, arsenobetaine, arsenocholine, o -aminobenzenarsenate and p -aminobenzenarsenate. The method is simple and sensitive. Detection limit was obtained from different arsenic compounds over the range from 0. 058 to 0.063 ng/ml as As (based on three times of the standard deviation of 10 blank measurements) and the relative standard deviations for ten replicate measurements were from 2.0 to 3.8%. The calibration curves of arsenic compounds including inorganic and organic arsenicals were linear over the range from 0.1 to 3.0 ng/ml as As. The recommended method has been applied to the determination of total arsenic in tap and lake water samples at ng/ml leve  相似文献   

4.
Mechanism of NO reduction with non-thermal plasma   总被引:4,自引:2,他引:2  
Non-thermal plasma has been proved to be an effective and competitive technology for removing NO in flue gas since 1970. In this paper, the NO reduction mechanism of the non-thermal plasma reaction in NO/N2/O2 system was investigated using the method of spectral analysis and quantum chemistry. By the establishment of NO reduction and gas discharge plasma emission spectrum measuring system, the NO reduction results, gas discharge emission spectra of NO/N2/O2 and pure N2 were obtained, and then the model of molecular orbit of N2 either in ground state or its excited state was worked out using the method of molecular orbit Ab initio in SelfConsistent Field(SCF). It was found that NO reduction in NO/N2 gas discharge plasma was achieved mainly through a series of fast elementary reactions and the N(E6) at excited state was the base for NO reduction.  相似文献   

5.
A sensitive method based on the fluorescence quenching effect of the Tb^3+-Tiron complex is proposed for the determination of alkali-labile phosphoprotein phosphorus (ALP) released from fish plasma. The detection limit was 5.4 ng/ml (S/N=2), and the relative standard deviation of the quenching effect (6 replicates) was 4.6%. The results obtained by the proposed method were in good agreement with those obtained by the colorimetric assay. The advantages of the present method are its relatively simple detection procedure, the lack of toxic organic solvents, and high sensitivity.  相似文献   

6.
A new method that utilizes pretreated silica gel as an adsorbent has been developed for simultaneous preconcentration of trace Cd(Ⅱ) and Pb(Ⅱ) prior to the measurement by flame atomic absorption spectrometry. The effects of pH, the shaking time, the elution condition and the coexisting ions on the separation/preconcentration conditions of analytes were investigated. Under optimized conditions, the static adsorption capacity of Cd(Ⅱ) and Pb(Ⅱ) were 45.5 and 27.1mg/g, the relative standard deviations were 3.2% and 1.7% (for n = 11), and the limits of detection obtained were 4.25 and 0.60 ng/mL, respectively. The method was validated by analyzing the certified reference materials GBW 07304a (stream sediment) and successfully applied to the analysis of various treated wastewater samples with satisfactory results.  相似文献   

7.
This paper deals with the determination of trace elements in normal human hair, liver and kidney by Proton Induced X-ray Emission (PIXE) analysis. Sampling, specimen preparation and experimental procedures are described in detail. The accuracy of our system has been checked up with the determination of standard reference materials. The preliminary results on correlations between trace elements in human tissues are discussed. Application of the method described in the paper gives evidence in favour of the PIXE as a good tool on environmental life elements and health studies.  相似文献   

8.
A simple, cost effective and rapid electrochemical method has been developed for the determination of micro level ortho nitrobenzaldehyde(ONB) based on outstanding properties of modified aluminum electrode tin nanorods/anodic aluminum oxide/aluminum(SnNR/AAO/Al) for the first time. The SnNR/AAO/Al electrode was fabricated by a second step anodization, followed by electrodeposition and its electrochemical behavior was investigated in detail. The cyclic voltammetry results indicated that the SnNR/AAO/Al electrode exhibited efficient electrocatalytic activity toward reduction of ONB in the acidic solution. It provides an appreciable improvement of reduction peak for ONB at-0.721 V.Furthermore, various kinetic parameters such as transfer electron number, transfer proton number and standard heterogeneous rate constant were calculated from the scan rates.The electrocatalytic behavior was further exploited as a sensitive detection scheme for the ONB determination by differential pulse voltammetry. Under the optimized conditions, the concentration range and detection limit are 0.1-100 μmol/L and 0.05 μmol/L, respectively,for ONB. The analytical performance of this modified sensor has been evaluated for detection of real sample such as river water and recovery of ONB was achieved all-out up to102.3% under standard addition method.  相似文献   

9.
Based on the inhibition effect on the respiratory chain activity of microorganisms by toxicants,an electrochemical method has been developed to measure the current variation of a mediator in the presence of microorganisms contacted with a toxicant.Microelectrode arrays were adopted in this study,which can accelerate the mass transfer rate of an analyte to the electrode and also increase the total current signal,resulting in an improvement in detection sensitivity.We selected Escherichia coli as the testee and the standard glucoseglutamic acid as an exogenous material.Under oxygen restriction,the experiments in the presence of toxicant were performed at optimum conditions(solution pH 7.0,37°C and reaction for 3 hr).The resulting solution was then separated from the suspended microorganisms and was measured by an electrochemical method,using ferricyanide as a mediator.The current signal obtained represents the reoxidation of ferrocyanide,which was transformed to inhibiting efficiency,IC 50,as a quantitative measure of toxicity.The IC 50 values measured were 410,570 and 830mg/L for sodium nitrite,borax and aluminum potassium sulfate,respectively.The results show that the toxicity sequence for these three food additives is consistent with the value reported by other methods.Furthermore,the order of damage degree to the microorganism was also observed to be:sodium nitrite > borax > aluminum potassium sulfate > blank,according to the atomic force microscopy images of E.coli after being incubated for 3 hr with the toxic compound in buffer solutions.The electrochemical method is expected to be a sensitive and simple alternative to toxicity screening for chemical food additives.  相似文献   

10.
A novel thermal biosensor based on enzyme reaction for pesticides detection has been developed. This biosensor is a flow injection analysis system and consists of two channels with enzyme reaction column and identical reference column, which is set for eliminating the unspecific heat, The enzyme reaction takes place in the enzyme reaction column at a constant temperature(40℃) realized by a thermoelectric thermostat. Thermosensor based on the thermoelectric module containing 127 serial BiTe-thermocouples is used to monitor the temperature difference between two effluents from enzyme reaction column and reference column. The ability of this biosensor to detect pesticides is demonstrated by the decreased degree of the hydrolytic heat in two types of thermosensor mode. The hydrolytic reaction is inhibited by 36% at 1mg/L DDVP and 50% at 10mg/L DDVP when cell-typed thermosensor is used. The percent inhibition is 30% at 1mg/L DDVP and 42% at 10mg/L DDVP in tube-typed thermosensor mode. The detection for real sample shows that this biosensor can be used for detection of organophosphate pesticides residue.  相似文献   

11.
研究建立采用连续流动分析法测定水中高锰酸盐指数的分析方法,方法的检出限为0.04 mg/L,测定范围为0.16-10.0 mg/L。实验表明测得的数据与采用国家标准方法测得的数据有较好的一致性,并且已应用于实际样品测定,结果令人满意。具有操作简单、灵敏度高、分析速度快、稳定性高且易于实现自动化分析。  相似文献   

12.
微波加热快速测定环境水样中的CODMn   总被引:15,自引:0,他引:15  
高向阳  管棣  胡运良  郑君领 《环境科学》1992,13(1):79-82,36
利用微波加热技术,在密闭容器内压力消解,用高锰酸钾法快速测定了西流湖水、黄河水等环境水样和标准水样(CW82,中国环境监测总站)中的COD_(Mn),并与经典方法进行了对照测定,结果令人满意。本法十几分钟内可消解十几个样品,Cl_-离子含量高达1000mg/L时亦不产生干扰,COD_(Mn)的检测下限为0.26mg/L,上限为15.0mg/L,室内测定的RSD<4%,多次加标回收率在97.0~105.6%之间,标准水样测定结果的相对误差为0.3%。适用于轻度污染水体COD_(Mn)的批量分析。  相似文献   

13.
人工湿地净化海水养殖外排水影响因素与效果实验研究   总被引:1,自引:1,他引:0  
以海水养殖外排水为处理对象,构建芦苇复合垂直流人工湿地模拟系统进行处理效果的影响因素(盐度,水力负荷,污染负荷)实验。植物选择芦苇,种植密度为48株/m2,基质填料选择细纱、蛭石、高炉矿渣、沸石和砾石。实验结果显示,随着盐度的升高,人工湿地对CODMn和NH4-N的去除率差异不显著(P>0.05),对PO4-P的去除率在逐渐降低,变化显著(P<0.05),但芦苇表现出较强的耐盐性,在盐度20时生长良好。随着水力负荷的增加,人工湿地对CODMn、NH4-N和PO4-P的去除率呈现出降低的趋势,变化显著(P<0.05);而当污染负荷增加时,去除率呈现出先增加后降低的趋势。综合考虑运行合理性及运行效果,得出合理工况为盐度20,水力负荷0.4 m3/(m2.d),污染负荷CODMn 10 mg/L,NH4-N 2 mg/L,PO4-P 0.5 mg/L。在此工况下,系统稳定运行2个月,显示人工湿地对海水养殖外排水中的污染物具有较好的去除效果。  相似文献   

14.
臭氧生物活性炭工艺深度处理微污染原水   总被引:6,自引:0,他引:6  
以广州东江水源为原水,研究了臭氧生物活性炭深度处理工艺对污染物的去除效果。结果表明:实验期间炭滤出水高锰酸盐指数、NH4+-N、NO2--N和浊度指标平均值分别为1.09mg/L、0.04mg/L、0.003mg/L和0.42ntu,平均去除率达65.34%、96.03%、98.24%和96.33%。所测项目相对于国家新颁布的《生活饮用水卫生标准》(5479-2006)达标率为100%。  相似文献   

15.
生物砂滤池对有机物和氨氮的去除   总被引:3,自引:0,他引:3  
当在常规工艺前加生物预处理并取消预加氯时,砂滤池就成为生物砂滤池。与普通砂滤池相比其对有机物、氨氮和浊度的去除率都有很大的提高。实验以珠江源水为水源研究了生物砂滤池对高锰酸盐指数、NH3-N、NO2--N和浊度的去除,在实验期间生物砂滤池出水高锰酸盐指数、NH3-N、浊度平均值分别为1.32mg/L、0.098mg/L、0.171NTU,其相对于沉淀池出水的高锰酸盐指数、NH3-N、浊度的平均去除率分别为18.52%、72.93%、64.45%,而砂滤池出水NO2--N几乎检测不出来。滤池进水与出水溶解氧的变化也证明了砂滤池中生物的存在,并且生长状况良好。  相似文献   

16.
以库区天然水培养的二形栅藻(Scenedesmus dimorphus)为研究对象,利用大气压强电场电离放电产生羟基自由基(·OH),结合压力溶气气浮前处理工艺处理高藻水.实验结果表明,对于藻密度为65.6×10~4 cells/mL,浊度为10.8NTU,COD_(Mn)为6.74mg/L的高藻水,在总氧化剂TRO浓度为1.03 mg/L时,藻类去除效率达到100%;总细菌,总大肠菌群和大肠埃希氏菌均未检出;出水COD_(Mn)由1.43 mg/L降至1.25mg/L,降低了10%;浊度由0.66NTU降至0.54NTU,降低了12.59在排放高藻水的主管路中·OH杀藻的接触反应时间仅为6s.因此汽浮-·OH强氧化组合工艺可高效快速地处理高藻水,为保障水源水的供水安全探索了一种新的思路.  相似文献   

17.
氨气敏电极法测定大气中氨   总被引:2,自引:0,他引:2  
以H2SO4(0.05mol/L)和NH3(1.00mg/L)的混合溶液作吸收液,采用气敏电极测定大气中氨,发挥了离子选择电极所具有的快速、灵敏及测定范围宽等优点,保证了大气中低浓度氨测定的准确性和可靠性。实验表明,该方法检测限为0.014~0.018mg/m^2,精密度约为14.3%(相对标准偏差),回收率在97%~102%之间,经6个月实验室验证的结果,无论是精密度的变异系数或回收率的置信系数  相似文献   

18.
以臭氧-活性炭给水深度处理工艺中试试验为基础,研究活性炭滤池对微污染水的处理效果。实验结果表明:活性炭滤池出水高锰酸盐指数平均值为1.077mg/L,对砂滤池出水高锰酸盐指数的去除率为40.00%;氨氮平均值为0.037mg/L,去除率为94.57%;亚硝酸盐氮平均值为0.003mg/L,去除率为97.39%;浊度平均值为0.438NTU,去除率为13.61%。由此可见,活性炭滤池在此工艺中发挥着很重要的作用。  相似文献   

19.
新型絮凝剂PPFS的制备及其絮凝性能研究   总被引:19,自引:0,他引:19  
 基于固体聚硫酸铁(PFS)的制备方法,研究了固体聚磷硫酸铁-PPFS-的实验室制法,并对比了PPFS、PAS-聚硫酸铝-、PFS对Cu2+、CODMn的去除性能.结果表明,在制备条件下,P/Fe 为0.3:1的PPFS溶解性好,对Cu2+、CODMn的去除率明显优于PFS、PAS;P/Fe为0.4:1的PPFS 总Fe量、碱度及对Cu2+、CODMn的去除率均低于P/Fe为0.3:1的PPFS.  相似文献   

20.
弹性填料微孔曝气生物膜法修复污染水源除NH4+-N   总被引:7,自引:0,他引:7  
采用弹性填料微孔曝气生物接触氧化法对受污染的水源进行修复除NH4+-N效果研究.结果表明,在正常水温20℃~27℃条件下,当污染水源CODMn7~14mg/L,NH4+-N 0.7~2.0mg/L和生物修复工艺运行参数HRT为1.4h,气:水=0.5:1,DO为7~9mg/L时,生物修复工艺可去除水源中的NH4+-N为64%~95%;在较低水温7℃~12℃条件下,当污染水源CODMn6~11mg/L,NH4+-N 1.2~8.0mg/L和生物修复工艺运行参数HRT为1.4h,气:水=0.5:1,DO为8~10mg/L时,生物修复工艺可去除水源中的NH4+-N为40%~63%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号