首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When measurements of in-vivo fluorescence are used to estimate photosynthesis in the field, the marked temporal and spatial variations in phytoplankton populations, and their nutrient and light histories, have produced varied results. Natural phytoplankton populations in large, flow-through mesocosms with different controlled nutrient and sewage sludge additions were sampled weekly from June to September 1984. Good correlations were observed between the increase in fluorescence upon the addition of DCMU (F) and both in-situ production and the parameters (Pm and ) of the photosynthesis-irradiance curve for these phytoplankton populations. Good correlations were also obtained between DCMU-enhanced fluorescence (FDCMU) and chlorophyll a concentrations. The relationship between F and in-situ 14C production was consistent among mesocosms even in the face of major shifts from diatom-dominated to dinoflagellate-dominated populations. On the other hand, the FDCMU:Chl a relationship was significantly different between mesocosms and related to species composition. It was concluded that F offers the possibility of rapidly and accurately indexing both in-situ production and the photosynthetic capacity of mixed phytoplankton populations.This study was supported by EPA cooperative agreement 810265-03 and NOAA grant NA-83-ABD-00008  相似文献   

2.
To develop a method for the determination of photosynthetic pigment species in individual phytoplankton cells, especially natural picophytoplankton cells, the fluorescence spectra of intact cells were studied with cultured phytoplankton. The study was made mainly with phycoerythrin-containing picophytoplankton collected off Japan in 1982 with reference to diatomal species and phycoerythrin-free cyanophycean species. The spectra were measured for cell suspensions with an ordinary spectrofluorometer, and for individual cells with a microscope spectrofluorometer, paying special attention to the effect of cell-fixation. Results indicated that: (1) the cell-fixation with the glutaraldehyde and paraformaldehyde mixture modified phycoerythrin emission from picophytoplankton markedly in its wavelength location and intensity, but (2) the emission from phycocyanin was affected far less, and (3) the emission from chlorophyll a was not altered. However, the phycoerythrin emission modified by the fixation was found to be easily distinguished from other emissions, and kept its intensity high enough for detection with a fluorescence microscope. The fluorescence properties after the fixation were kept unaltered for a long period of time. Based on the results, we propose a simple method for the determination of photosynthetic pigments in individual phytoplankton cells in seas and lakes using fluorescence microscopy. Results of our tests with natural samples of phytoplankton are presented, and problems for further improvement are also discussed.  相似文献   

3.
Short-term variability in the photosynthetic activity of microphytobenthos assemblages was studied by measuring chlorophyll fluorescence rapid light curves (RLC), using pulse amplitude modulated (PAM) fluorometry. Measurements carried out on undisturbed samples under dark–light cycles revealed large diel oscillations in both the initial slope of the RLC () and in the maximum relative electron transport rate (ETRm). Short-term variations in RLC parameters were also observed, closely following changes in incident photon irradiance (E). Increases in irradiance were followed by decreases in and increases in ETRm, resulting in significant correlations between the light-saturation parameter Ek and E. These results were interpreted as resulting from the onset of reversible energy-dissipating, non-photochemical quenching mechanisms and of compensatory high light-induced activation of carbon metabolism activity. Short-term RLC variability was shown to result mainly from physiological causes and to be detectable only by using short (10–20 s) light steps during RLC construction. Dark-adapted samples kept under constant conditions exhibited apparently endogenous rhythms in RLC parameters and in the maximum quantum yield, Fv/Fm, coincident with vertical migratory movements occurring during subjective photoperiods. These fluctuations appeared to result from the interaction between migratory rhythms and the physiological responses, and from the endogenous activation of processes affecting both the efficiency of energy transfer from light-harvesting antennae to the photosystem II (PSII) reaction centres or from non-radiative pathways (Fv/Fm, ) and the reactions downstream of PSII (ETRm).Communicated by M. Kühl, Helsingør  相似文献   

4.
Patterns of phytoplankton carbon (C) metabolism were examined in å combined laboratory and field study to assess the influence of light conditions on 14C assimilation into photosynthetic end-products. Laboratory studies with three species representing distinct size classes and taxonomic groups tested the influence of low light on patterns of C flow. Prorocentrum mariae-lebouriae (dinoflagellate) and Ditylum brightwellii (diatom) showed decreased movement of photoassimilated 14C into protein following a shift to low light 14C assimilation into lipids and photosynthetic pigments increased in low light and was paralleled by increased chl a per cell. The proportion of 14C fixed into protein returned to the pre-shift level upon return to initial light conditions. Monochrysis lutheri (chrysophyte) did not show this pattern of reduced % 14C protein. Incubations of 12 and 24 h demonstrated significant rearrangements in labeling patterns at night, wherein 14C flow into protein in darkness was favored. % 14C protein at night was lower for M. lutheri than for the other species, suggesting some interspecific differences in the low light response. Measurements of 14C assimilation in phytoplankton assemblages from Chesapeake Bay demonstrated movement of a higher proportion of photo-assimilated C into protein in samples collected in the surface mixed layer than in those below the pycnocline. In comparison, phytoplankton collected below the pycnocline fixed a higher proportion of 14C into lipids, photosynthetic pigments, and low molecular weight metabolites, as was observed in low light laboratory cultures. A comparison of 12- and 24-h incubations for measuring patterns of C flow into photosynthetic end-products confirmed the inadequacy of short-term measurements, as significant changes in 14C allocation occurred in the dark phase of the photocycle. Together, these results suggest that 14C assimilation into photosynthetic end-products can be a useful measure of adaptive state in changing light conditions, but point out some difficulties in applying this approach in situ.  相似文献   

5.
Diel changes in phytoplankton photosynthetic efficiency in Brackish waters   总被引:2,自引:0,他引:2  
From 18 to 23 September 1974, investigations on the diel changes in phytoplankton were carried out in the Baltic Sea. Every 4 h, water samples were collected from 2 and 15 m, and PO4, chlorophyll a, temperature, salinity, pH, phytoplankton composition and phytoplankton light photosynthesis relationship were determined. Continuous measurements of surface irradiance and some estimations of zooplankton were also made. P B (photosynthesis per unit chlorophyll a at low light levels of 2·10-2 cal cm-2 min-1) revealed only random variation during the sampling period, i.e., 1.0 to 1.6 mg C (mg chlorophyll a)-1 h-1. P m B (Light-saturated photosynthesis per unit of chlorophyll a) displayed pronounced diel fluctuations with the highest value of about 6 mg C (mg chlorophyll a)-1 h-1 around noon, and the lowest value of about 2.5 mg C (mg chlorophyll a)-1 h-1 during the night, during which latter period the value of P m B was more or less constant. Reasons for the diel fluctuations are discussed, and an equation which describes these fluctuations is proposed. Using this equation, the daily phytoplankton production estimated in incubators by a previously described method can be corrected for the time of day at which samples are collected.  相似文献   

6.
Photoadaption in marine phytoplankton: Response of the photosynthetic unit   总被引:3,自引:0,他引:3  
Some species of phytoplankton adapt to low light intensities by increasing the size of the photosynthetic unit (PSU), which is the ratio of light-harvesting pigments to P700 (reaction-center chlorophyll of Photosystem I). PSU size was determined for 7 species of marine phytoplankton grown at 2 light intensities: high (300 E m-2 s-1) and low (4 E m-2 s-1); PSU size was also determined for 3 species grown at only high light intensity. PSU size varied among species grown at high light from 380 for Dunaliella euchlora to 915 for Chaetoceros danicus. For most species grown at low light intensity, PSU size increased, while the percentage increase varied among species from 13 to 130%. No change in PSU size was observed for D. euchlora. Photosynthetic efficiency per chlorophyll a (determined from the initial slope of a curve relating photosynthetic rate to light intensity) varied inversely with PSU size. In contrast, photosynthetic efficiency per P700 was enhanced at larger PSU sizes. Therefore, phytoplankton species with intrinsically large PSU sizes probably respond more readily to the rapid fluctuations in light intensity that such organisms experience in the mixed layer.Contribution No. 1180 from the Department of Oceanography, University of Washington, Seattle, Washington, USA  相似文献   

7.
Six species of marine phytoplankton of different sizes and taxonomic categories were grown in microcosms under identical experimental conditions; the species cultured were: Pavlova lutheri (Prymnesiophyceae), Dunaliella tertiolecta (Chlorophyceae), Phaeodactylum tricornutum (Baciollariophyceae), Eutreptiella sp. (Euglenophyceae), Alexandrium tamarense (Dinophyceae), and Phaeocystis pouchetii (Prymnesiophyceae). The photosynthetic carbon metabolism of these phytoplankton was studied throughout the exponential and lag phases of growth after nutrient depletion. The relative incorporation of carbon into protein was positively correlated with phytoplankton growth, while carbon assimilation into low molecular weight metabolites (LMWM) and storage products, i.e., lipid and polysaccharides, generally increased under nutrient-limiting conditions. Clear taxonspecific differences were observed in the proportions of carbon incorporated into cell constituents. A significant linear relationship was consistently found between the relative synthesis of protein to LMWM, and both the production normalised to chlorophyll (P:B) and the phytoplankton growth rate. However, ANCOVA revealed significant, interspecific differences in these relationships.  相似文献   

8.
In August 1984, hourly measurements of photosynthetic characteristics were carried out during 96 h, at 5 and 10 m, on a natural population of phytoplankton in the St Lawrence Estuary. Synchronous circadian variations of similar amplitude (max./min.: 2 to 3) were observed at the two depths in both the photosynthetic capacity (P m B ) and the photosynthetic efficiency (B). Maximum values occurred at around noontime and minima during the night. Estimates of daily specific productivity were computed with and without the observed circadian variability. Large differences (15 to 70%) were evidenced between estimates.Contribution to the programs of GIROQ (Groupe interuniversitaire de recherches océanographiques du Québec) and of the Maurice Lamontagne Institute (Department of Fisheries and Oceans)  相似文献   

9.
Circadian rhythms in photosynthesis were defined in field populations of phytoplankton. Measurements of carbon-dioxide fixation rates demonstrated that a diurnal periodicity of photosynthesis in samples incubated under natural light-dark (LD) cycles also were observed to continue in similar samples which had been photoadapted to constant dim light (LL) for 48 h. These changes in photosynthetic rates preceded sunset and sunrise, had daily amplitudes that ranged from 1.5 to 2.0, appeared to be independent of light-intensity, and displayed maxima about midday, while rates of dark fixation of carbon dioxide and the photosynthetic pigment content per cell were constant over the circadian cycle. Similar rhythmicity also was detected in room-temperature (22°C) chlorophyll a fluorescence yield, in both the obsence and presence of the photosynthesis inhibitor DCMU [3-(3,4-dichlorophenyl)-1, 1-dimethylurea]. However, the magnitude and timing of the fluorescence rhythm maxima seem to depend on wavelengths monitored and, in part, on the measuring technique used. Also, the circadian changes in the fluorescence intensity were abolished at low temperature (-60°C), and the shape of the emission spectra of chlorophyll fluorescence of cells in LD and LL did not change over time. The significance of the fluorescence rhythms with regard to chlorophyll a determinations and photosynthetic rates is discussed. It was concluded that there was sufficient similarity between circadian rhythms of photosynthesis in natural phytoplankton populations and in laboratory cultures of dinoflagellates to suggest that the mechanism of regulation may be the same for both of them.  相似文献   

10.
L. E. Brand 《Marine Biology》1982,69(3):253-262
The diel periodicities of in-vivo chlorophyll fluorescence and DCMU-enhanced chlorophyll fluorescence of 47 marine phytoplankton species were examined for 2 d in a 14 h L:10 h D light: dark cycle and then in continous light for another 2 to 3 d. Almost all phytoplankton species exhibit a more rapid increase in in-vivo fluorescence and DCMU-enhanced fluorescence during the light phase than during the dark phase. About one-half of the species examined exhibited persistent diel rhythms in continous light, indicating the operation of a biological clock. No phylogenetic or habitat related trends as to which species exhibited persistent rhythms were apparent. Of the phyla of eukaryotic phytoplankton adequately examined, none lacked biological clocks. Contrary to past hypotheses, some phytoplankton species maintain a persistent diel rhythm in a constant environment while reproducing at a rate greater than one division per day.  相似文献   

11.
Effects of diurnal variation in phytoplankton photosynthesis on estimating daily primary production (DPP) were examined using field data from Sagami Bay, Japan. DPP at 5 m depth was calculated from the continuous data of chlorophyll a (Chl a) and light intensity monitored by a natural fluorescence sensor with and without considering time-dependent changes in the photosynthesis–irradiance (P–E) relationship. Chl a could be estimated from natural fluorescence examining the variations in the quantum yield of fluorescence (φ f) and Chl a-specific light absorption coefficient (a*ph), and relating them to Chl a. The P–E relationship was determined by water sampling three times daily. A distinct diurnal pattern was observed for the maximum photosynthetic rate (P*max), being maximal at noon, while periodicity of the maximum light utilization coefficient (α*) was less obvious. The actual DPP was calculated by interpolating the P–E parameters from those obtained at dawn, noon, and dusk. For comparison, DPP was calculated by fixing the P–E parameters as the constants measured at dawn, noon or dusk for a day. The difference from the actual DPP was small when the P–E parameters measured at dawn (3% on average) and noon (5%) were used as the constants for a day. The difference was largest when the values at dusk were used (−43%). The medium values of P*max at dawn, its low values at dusk, and the fact that a major part of the DPP was produced around noon were responsible for these results. The present study demonstrates that measurement of the P–E parameters at dawn or noon can give a good estimation of DPP from natural fluorescence.  相似文献   

12.
Short-term changes in phytoplankton photosynthetic activity were studied during different periods of the years 2009 and 2010 in the coastal waters of a macrotidal ecosystem (the Strait of Dover, eastern English Channel). During each sampling period, samples were taken every 1.45 h., from sunrise to sunset, during at least 5 days distributed along a complete spring–neap tide cycle. The photosynthetic parameters were obtained by measuring rapid light curves using pulse amplitude modulated fluorometry and were related to environmental conditions and phytoplankton taxonomic composition. The maximum quantum yield (F v/F m) showed clear light-dependent changes and could vary from physiological maxima (0.68–0.60) to values close to 0.30 during the course of 1 day, suggesting the operation of photoprotective mechanisms. The maximum electron transport rate (ETRm) and maximal light utilization efficiency (α) were generally positively correlated and showed large diel variability. These parameters fluctuated significantly from hour to hour within each day and the intraday pattern of variation changed significantly among days of each sampling period. Stepwise multiple linear regressions analyses indicated that light fluctuations explained a part of this variability but a great part of variability stayed unexplained. F v/F m, ETRm and α were not only dependent on the light conditions of the sampling day but also on those of the previous days. A time lag of 3 days in the effect of light on ETRm and α variation was highlighted. At these time scales, changes in phytoplankton community structure seemed to have a low importance in the variability in photosynthetic parameters. The photoacclimation index E k showed a lower variability and was generally different from the incident irradiance, indicating a limited acclimation capacity with a poor optimization of light harvesting during the day. However, in well-mixed systems such as the Strait of Dover, the short-term photoacclimation is disrupted by the high level of variability in environmental conditions. Also, the variability observed in the present study can be associated with a particular kind of photosynthetic response: the “E k-independent” variability. The physiological basis of this photosynthetic response is largely unresolved and further researches on this subject are still required to better explain the dynamics of phytoplankton activity in the Strait of Dover.  相似文献   

13.
The effect of 3x10-6 M DCMU [3-(3,4-dichlorophenyl)-1, 1-dimethylurea] on in vivo chlorophyll a fluorescence was observed in nearshore waters of the Southern California Bight. We compared fluorescence readings in the presence and absence of this inhibitor using parallel flow-through fluorometers. The increase in fluorescence induced by DCMU is expressed as the FRI (fluorescence response index). Theory and laboratory studies on batch cultures of phytoplankton suggest that the FRI is correlated with photosynthetic efficiency and/or physiological state, but other studies have produced results in apparent conflict with this interpretation. Although sufficient information does not exist to justify the use of fluorescence response as a precise physiological indicator in the field, we suggest that very low FRI values are a manifestation of photosynthetic debility in a sample. Vertical profiles showed a wide range of the fluorescence response index. At a station close to shore, low FRI values were observed well below the 1% light level, but the fluorescence response of the phytoplankton throughout the euphotic zone was similar to that of growing cultures. Farther offshore, the FRI was depressed near the surface, but increased in the enhanced nutrient conditions of the lower euphotic zone. The patterns observed were strong, and consistent with hypotheses which relate low values of the FRI to diminished photosynthetic capacity.  相似文献   

14.
Water samples were collected in and near Kasitsna Bay (Cook Inlet), Alaska over 18 mo (February 1979–August 1980). Seasonal changes in glucose and glutamate uptake rates were measured in these samples. During the second year of the study, the uptake rates of glycolate and acetate and primary productivity were also measured. Of the substrates tested, significant positive linear correlations were observed between glucose and glutamate uptake and primary productivity. A higher correlation was observed between glucose to glutamate uptake ratios and primary productivity. The seasonal patterns of glucose uptake, glucose-to-glutamate uptake ratios and primary productivity rates show that the ratios changes simultaneously with fluctuations in primary productivity rates. The glucose uptake patterns reveal a delay in the response of the glucose-utilizing microorganisms to the onset of the bloom. It is suggested that by measuring the uptake rates of the simple compounds by microheterotrophs, and comparing these rates with each other, one can determine the relative flux of these compounds through the system. If the major source of these compounds is material released into the seawater by phytoplankton, it is possible that this approach could characterize the flux of extracellular products. As more is known about how the composition of extracellular material relates to the physiological state of phytoplankton, such an approach may eventually be a useful indirect assessment of the physiological state of natural phytoplankton populations.Published as Technical Paper No. 6397, Oregon Agricultural Experiment Station  相似文献   

15.
In high-latitude waters such as the Southern Ocean, the primary production of phytoplankton supports the ecosystem. To understand the photo-acclimation strategy of such phytoplankton within cold environments, the vertical distribution profile of photosynthetic pigments was analyzed in the Southern Ocean. Samples were taken along 110°E during the austral summer, and along 150°E and around the edge of the seasonal sea ice of the Antarctic Continent during the austral autumn. Pigment extraction methods were optimized for these samples. The standing crop of chlorophyll a was larger in the region along the edge of the seasonal sea ice than at sampling stations in open ocean areas. Chlorophyll concentration seemed to be dependent on the formation of thermo- and haloclines along the edge of the seasonal sea ice, but not in the open ocean where such clines are less pronounced. The marker pigments fucoxanthin and/or 19′-hexanoyloxyfucoxanthin were dominant at most sampling stations throughout the water column, while other marker pigments such as alloxanthin were quite low. This indicated that diatoms and/or haptophytes were the major phytoplankton in this area. Comparison of the relative ratio of fucoxanthin with that of 19′-hexanoyloxyfucoxanthin allowed some stations to be characterized as either diatom-dominant or haptophyte-dominant. The relative ratio of xanthophyll-cycle pigments (diadinoxanthin plus diatoxanthin) to chlorophyll a was high in surface waters and decreased gradually with depth. This suggests that near the ice edge during summer in the Southern Ocean, both diatoms and haptophytes acclimate to their light environments to protect their photosystems under high-light conditions.  相似文献   

16.
In order to understand the relationships between the dynamics of phytoplankton populations in the surface microlayer (MIL) and in the water column below (SSW), this study used high-performance liquid chromatography-derived pigment markers in samples from a coastal lagoon of Baja California (Estero de Punta Banda, EPB) under summer (October 2003) and winter (December 2003) conditions. Photosynthetic pigment signatures of phytoplankton at the air–sea interface (phytoneuston) and subsurface measurements were related to bottom-up (temperature, salinity, nutrient concentrations) and top-down factors (zooplankton abundance). Slicks and scum layers were observed in the inner part of the lagoon and coincided with greater stratification of layers just below the sea surface and lower wind intensities. In general, spatial variability in pigment markers and ancillary data was very high and resulted in non-significant differences between MIL and subsurface samples when different regions of EPB or sampling dates were compared. However, different patterns were found between pigments and environmental factors of MIL and SSW samples when the relative numbers of stations with positive and negative differences (ΔX = X MILX SSW) were computed. For each survey, pigment markers of phytoneuston and phytoplankton samples were not necessarily correlated. Further analysis revealed that those markers (19′-butanoyloxyfucoxanthin, prasinoxanthin, divinil-chlorophyll a) corresponded to picophytoplankton groups (haptophyte, prasinophyte, and prochlorophyte). On both dates, the MIL was enriched in 19′-hexanoyloxyfucoxanthin (a marker for a type 4 haptophyte) and fucoxanthin (marker for bacillariophytes, haptophytes, and crysophytes) and depleted in peridinin (marker for dinophytes). Different zooplankton grazers accumulated in the MIL (loricate tintinnids) and in SSW (copepod nauplii).  相似文献   

17.
Vertical profiling of the upper ocean with a laser/fiber optic fluorometer enabled the determination of fluorescence emission spectra of photosynthetic pigments over small vertical scales. Simultaneous acquisition of phycoerythrin (PE) and chlorophyll (chl) emission spectra allowed in situ differentiation between PE-containing cells (cryptomonads and cyanobacteria) and other chl-containing autotrophs. Further, fluorescence spectral peak shifts associated with different species of PE-containing cells resulted in even finer scale in situ taxonomic differentiation. We found that the phycoerythrin fluorescence emission maxima shifted from 578 nm near the surface, to 585 m at the base of the shallow thermocline (30% light level), and to 590 nm below the thermocline at the base of the euphotic zone (1% light level). These shifts in peak emission coincided with a taxonomic change in the PE-containing cells (as determined from analysis of discrete bottle samples) from a greater proportion of Synechococcus spp. in the upper water column to a greater proportion of cryptomonads at the base of the euphotic zone. These results indicate that the composition of the phytoplankton assemblage may be assessed in situ without sample collection.  相似文献   

18.
两种富营养化水体对植物生长及光合荧光特性的影响   总被引:1,自引:0,他引:1  
周晓红  王国祥  杨飞 《生态环境》2011,20(2):337-344
采用水培方法,研究水芹(Oenanthe javanica)、美人蕉(Canna indica)、菖蒲(Acorus calamus)在两种富营养化水体中生长、部分光合荧光特性的变化,结果表明:(1)营养盐对水芹、美人蕉株高、根长有显著影响,2种植物在低营养盐水体(L)中株高、根长增长率显著低于高营养盐水体(H),生物量亦表现为L组〈H组,而菖蒲在2种水体中株高、根长,生物量等无显著差异(p〈0.05);(2)水芹、美人蕉叶片的叶绿素a(Chla),叶绿素b(Chlb)在L组中含量低,在H组中含量高,w(Chla)/w(Chlb)则随营养盐浓度的升高而降低。菖蒲叶片Chla,Chlb,Car、w(Chla)/w(Chlb)在两实验水体中无显著差异;(3)水芹、美人蕉叶片的Fv/Fm,Yield,qP,re,t,max值及其饱和光强随营养盐浓度的降低而显著降低,qN值变化趋势正好相反,表明在低营养盐水体中,两种植物光系统II(PS II)光能转换效率显著下降,且PS II将吸收过剩的能量通过热耗散的形式释放,以保护自身组织免受过剩光的损害,体现了两种植物在营养盐缺失下的自我保护机制,而菖蒲叶片Fv/Fm,Yield,qP,qN以及快速光响应曲线在L组、H组中均显著差异(p〉0.05),表明在本文设定的营养盐浓度范围内,菖蒲叶片的光合作用能力未受到显著影响。  相似文献   

19.
Nitrogen content of food as an index of absorption efficiency in fishes   总被引:1,自引:0,他引:1  
Gravimetric estimation of absorption efficiency in fishes is a time-consuming process and still subject to technical errors. Available marker methods require no quantitative recovery of feces, but their applicability is limited (e.g. chromic oxide method) or their reliability is questionable (e.g. Conover's ash ratio method). From over 100 values reported for about 50 fish species, it has been observed that nitrogen content of food holds a positive correlation to absorption efficiency; the relation is significantly (P<0.001) correlated (r=>0.9). Hence absorption efficiency (Ae) of fishes is predictable from the nitrogen content of food with less than 8% error, using the equation log Ae=1.3706+0.5807 log N.Dedicated to Professor O. Kinne on his 61st birthday, August 30, 1984  相似文献   

20.
The use of stable isotope of carbon, 13C, for the determination of the photosynthetic rate of a marine phytoplankton population was examined. Particular concern was paid to the effects of non-phytoplanktonic organic carbon and the enrichment of inorganic carbon on the estimation of the photosynthetic rate. Photosynthetic rates determined by the 13C method showed a remarkable agreement with those determined by the 14C method. Insitu determinations of photosynthetic rate were made in three different water types: open ocean, coastal and neritic waters, which included oligo- and mesotrophic waters, by using the 13C method established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号