首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fire influences the distribution of fauna in terrestrial biomes throughout the world. Use of fire to achieve a mosaic of vegetation in different stages of succession after burning (i.e., patch‐mosaic burning) is a dominant conservation practice in many regions. Despite this, knowledge of how the spatial attributes of vegetation mosaics created by fire affect fauna is extremely scarce, and it is unclear what kind of mosaic land managers should aim to achieve. We selected 28 landscapes (each 12.6 km2) that varied in the spatial extent and diversity of vegetation succession after fire in a 104,000 km2 area in the semiarid region of southeastern Australia. We surveyed for reptiles at 280 sites nested within the 28 landscapes. The landscape‐level occurrence of 9 of the 22 species modeled was associated with the spatial extent of vegetation age classes created by fire. Biogeographic context and the extent of a vegetation type influenced 7 and 4 species, respectively. No species were associated with the diversity of vegetation ages within a landscape. Negative relations between reptile occurrence and both extent of recently burned vegetation (≤10 years postfire, n = 6) and long unburned vegetation (>35 years postfire, n = 4) suggested that a coarse‐grained mosaic of areas (e.g. >1000 ha) of midsuccessional vegetation (11–35 years postfire) may support the fire‐sensitive reptile species we modeled. This age class coincides with a peak in spinifex cover, a keystone structure for reptiles in semiarid and arid Australia. Maintaining over the long term a coarse‐grained mosaic of large areas of midsuccessional vegetation in mallee ecosystems will need to be balanced against the short‐term negative effects of large fires on many reptile species and a documented preference by species from other taxonomic groups, particularly birds, for older vegetation. Mosaicos de Fuego y la Conservación de Reptiles en una Región Propensa al Fuego  相似文献   

2.
Agricultural environments are critical to the conservation of biota throughout the world. Efforts to identify key influences on the conservation status of fauna in such environments have taken complementary approaches. Many studies have focused on the role of remnant or seminatural vegetation and emphasized the influence on biota of spatial patterns in the landscape. Others have recognized that many species use diverse "countryside" elements within farmland, and emphasize the benefits of landscape heterogeneity for conservation. Here, we investigated the effect of independent measures of both the spatial pattern (extent and configuration) and heterogeneity of elements (i.e., land uses/vegetation types) on bird occurrence in farm-scale agricultural mosaics in southeastern Australia. Birds were sampled in all types of elements in 27 mosaics (each 1 x 1 km) selected to incorporate variation in cover of native vegetation and the number of different element types in the mosaic. We used an information-theoretic approach to identify the mosaic properties that most strongly influenced bird species richness. Subgroups of birds based on habitat requirements responded most strongly to the extent of preferred elements in mosaics. Woodland birds were richer in mosaics with higher cover of native vegetation while open-tolerant species responded to the extent of scattered trees. In contrast, for total species richness, mosaic heterogeneity (richness of element types) and landscape context (cover of native vegetation in surrounding area) had the greatest influence. These results showed that up to 76% of landscape-level variation in richness of bird groups is attributable to mosaic properties directly amenable to management by landowners. Key implications include (1) conservation goals for farm landscapes must be carefully defined because the richness of different faunal components is influenced by different mosaic properties; (2) the extent of native vegetation is a critical influence in agricultural environments because it drives the farm-scale richness of woodland birds and has a broader context effect on total bird richness in mosaics; (3) land-use practices that enhance the heterogeneity of farmland mosaics are beneficial for native birds; and (4) the cumulative effect of even small elements in farm mosaics contribute to the structural properties of entire landscapes.  相似文献   

3.
Abstract: The dependency of highly endemic island floras on few potential pollinators in depauperate island faunas suggests that pollinators and seed dispersers may be crucial in the preservation of biodiversity in isolated oceanic islands. We discuss the hypothesis that flying foxes are "strong interactors" in South Pacific islands where they serve as the principal pollinators and seed dispersers, This suggests that the ongoing decline and ultimate extinction of flying fox species on Pacific islands may lead to a cascade of linked plant extinctions. We propose an empirical test of this hypothesis: comparisons of plant reproductive success in Guam, which has virtually lost its flying fox populations, and Samoa, where significant populations remain.  相似文献   

4.
Abstract: Selective extinction following isolation of habitat patches may be due to biogeographical (e.g., island size or isolation) and ecological (species natural histories, interspecifc interactions) factors, or their interactions. Among the demographic and life history attributes commonly associated with high extinction probability are small populations, large size of individuals, and population variability. Long-term capture-recapture data from forest habitat in central Panama permit an examination of the association between mainland survival rates and extinction on a nearby land-bridge island Species of birds that no longer occur on Barro Colorado Island (BCI), Panama, have, on average, lower survival rates on the adjacent mainland than species that have persisted on BCI. Moreover, of the species that no longer occur on BCI, those with lower mainland survival rates generally disappeared earlier from the island. My analysis provides little evidence of a relationship between extinction and population size. Recolonization of BCI from the adjacent mainland by the forest undergrowth species studied here is unlikely. Reduced reproductive success on BCI combined with naturally low adult survival rates seems to be responsible for these BCI extinctions. High nest predation and/or altered landscape dynamics are probable agents in the low reproductive success. The methods used here could be employed in other circumstances to identify fragmentation-sensitive species.  相似文献   

5.
To study the effect of habitat fragmentation on population viability, I used extinction rates on islands in archipelagoes and estimated the relative probability of extinction per species on single large islands and sets of smaller islands with the same total area. Data on lizards, birds, and mammals on oceanic islands and mammals on mountaintops and in nature reserves yield similar results. Species are likely to go extinct on all the small islands before they go extinct on the single, large island. In the short term, the analysis indicates that extinction probabilities may be lower on a set of small islands. This is perhaps an artifact due to underestimation of extinction rates on small islands and/or the necessity of pooling species in a focal taxon to obtain estimates of extinction rates (which may obscure area thresholds and underestimate the slope and curvature of extinction rates as a function of area). Ultimately, cumulative extinction probabilities are higher for a set of small islands than for single large islands. Mean and median times to extinction tend to be shorter in the fragmented systems, in some cases much shorter. Thus, to minimize extinction rates in isolated habitat remnants and nature reserve systems, the degree of fragmentation should be minimized  相似文献   

6.
Megafaunal Extinctions: The Conservation Message from 11,000 Years B.P.   总被引:1,自引:0,他引:1  
Abstract: At the end of the Pleistocene, the Americas, northern Eurasia: and Australia experienced a vast decline in large mammal diversity, while Africa and tropical Asia were hardly affected. The elimination of the megaberbivores (animals weighing >1000 kg, probably by human predation, removed the vegetation impact of these species. The resultant reduction in habitat mosaic diversity and in forage quality probably precipitated the extinctions of lesser large mammalian species. Surviving megaherbivores in the form of elephants and rhinoceroses are currently being exterminated from many African conservation areas. African savanna ecosystems could prove more resistant to species losses than north temperate ecosystems, because geomorphic factors plus low and erratic rainfall enhance spatial heterogeneity and vegetation quality independently of large herbivore impact Nevertheless, the history of the Hluhluwe Game Reserve in South Africa suggests that certain African ecosystems may become susceptible to an inexorable decline in populations of some large herbivores following the extermination of elephants. If elephants and rhinoceroses cannot be conserved active habitat manipulation will be needed to retain a diverse fauna of large mammals in such regions.  相似文献   

7.
Threats to Avifauna on Oceanic Islands   总被引:1,自引:0,他引:1  
Abstract:  Results of the study by Blackburn et al. (2004 a ) of avifauna on oceanic islands suggest that distance from the mainland and time since European colonization have major influences on species extinctions and that island area is a significant but secondary contributing factor. After augmenting the data of the study on geographical properties for some of the islands they examined, we used a causal analysis approach with structural equation modeling to reexamine their conclusions. In our model geographical properties of islands, such as island area and isolation, were considered constraints on biological factors, such as the number of introduced mammalian predators and existing number of avifauna, that can directly or indirectly influence extinction. Of the variables we tested, island area had the greatest total influence on the threat of extinction due to its direct and indirect effects on the size of island avifauna. Larger islands had both a greater number of threatened bird species and more avifauna, increasing the number of species that could become threatened with extinction. Island isolation also had a significant, positive, and direct effect on threats to island avifauna because islands farther from the mainland had fewer current extant avifauna. Time since European colonization had a significant negative, but relatively weaker, influence on threats compared with the traditional biogeographic factors of island area and distance to the mainland. We also tested the hypothesis that the amount of threat is proportionally lower on islands that have had more extinctions (i.e., there is a "filter effect"). Because the proportion of bird extinctions potentially explained only 2.3% of the variation in the proportion of threatened species on islands, our results did not support this hypothesis. Causal modeling provided a powerful tool for examining threat of extinction patterns of known and hypothesized pathways of influence.  相似文献   

8.
Islands present a unique scenario in conservation biology, offering refuge yet imposing limitations on insular populations. The Kimberley region of northwestern Australia has more than 2500 islands that have recently come into focus as substantial conservation resources. It is therefore of great interest for managers to understand the driving forces of genetic structure of species within these island archipelagos. We used the ubiquitous bar‐shouldered skink (Ctenotus inornatus) as a model species to represent the influence of landscape factors on genetic structure across the Kimberley islands. On 41 islands and 4 mainland locations in a remote area of Australia, we genotyped individuals across 18 nuclear (microsatellite) markers. Measures of genetic differentiation and diversity were used in two complementary analyses. We used circuit theory and Mantel tests to examine the influence of the landscape matrix on population connectivity and linear regression and model selection based on Akaike's information criterion to investigate landscape controls on genetic diversity. Genetic differentiation between islands was best predicted with circuit‐theory models that accounted for the large difference in resistance to dispersal between land and ocean. In contrast, straight‐line distances were unrelated to either resistance distances or genetic differentiation. Instead, connectivity was determined by island‐hopping routes that allow organisms to minimize the distance of difficult ocean passages. Island populations of C. inornatus retained varying degrees of genetic diversity (NA = 1.83 – 7.39), but it was greatest on islands closer to the mainland, in terms of resistance‐distance units. In contrast, genetic diversity was unrelated to island size. Our results highlight the potential for islands to contribute to both theoretical and applied conservation, provide strong evidence of the driving forces of population structure within undisturbed landscapes, and identify the islands most valuable for conservation based on their contributions to gene flow and genetic diversity.  相似文献   

9.
Effects of Forest Fragmentation on a Dung Beetle Community in French Guiana   总被引:4,自引:0,他引:4  
Abstract:  Fragmentation is the most common disturbance induced by humans in tropical forests. Some insect groups are particularly suitable for studying the effects of fragmentation on animal communities because they are taxonomically and ecologically homogenous. We investigated the effects of forest fragmentation on a dung beetle species community in the forest archipelago created in 1994–1995 by the dam of Petit Saut, French Guiana. We set and baited an equal number of pitfall traps for dung beetles on three mainland sites and seven island sites. The sites ranged from 1.1 to 38 ha. In 250 trap days, we captured 50 species in 19 genera. Diversity indices were high (2.18–4.06). The lowest diversity was on the small islands and one mainland site. Species richness and abundance were positively related to fragment area but not to distance from mainland or distance to the larger island. The islands had lower species richness and population than mainland forest, but rarefied species richness was relatively invariant across sites. There was a marked change in species composition with decreasing fragment that was not caused by the presence of a common fauna of disturbed-area species on islands. Small islands differed from larger islands, which did not differ significantly from mainland sites. Partial correlation analyses suggested that species richness and abundance of dung beetle species were positively related to the number of species of nonflying mammals and the density index of howler monkeys ( Alouatta seniculus ), two parameters positively related to fragment area.  相似文献   

10.
Data on flora and vegetation of 14 off-shore islands representing different habitat types were studied for investigating floristic composition, vegetation types and correlation with their habitats and ecosystem. The results demonstrate considerable plant distribution and diversity among the islands within the limited spectrum of species; encompassing a total of 47 species, belonging to 43 genera under 24 families. The most representative families were Amaranthaceae (9 species), Fabaceae (4 species), Poaceae (4 species) and Asteraceae and Aizoaceae (3 species each). Fourteen families are represented by only one species. The mangrove species, Avicennia marina, occurs throughout the coast of Abu Dhabi in discontinuous patches and in different water salinities. The studies also seek to underline that dominant species that constitutes the flora of Abu Dhabi are salt tolerant in nature. Compared to other Arabian Peninsula ecosystems, UAE perhaps has a higher coastal: mainland area ratio, which has contributed to a natural dominance of salt tolerant species among the community. The studies show 40% similarity among islands with respect to the species diversity. The floristic composition of the off-shore islands also indicates a need to consider these sites as protected sites.  相似文献   

11.
Conservation actions need to be prioritized, often taking into account species’ extinction risk. The International Union for Conservation of Nature (IUCN) Red List provides an accepted, objective framework for the assessment of extinction risk. Assessments based on data collected in the field are the best option, but the field data to base these on are often limited. Information collected through remote sensing can be used in place of field data to inform assessments. Forests are perhaps the best‐studied land‐cover type for use of remote‐sensing data. Using an open‐access 30‐m resolution map of tree cover and its change between 2000 and 2012, we assessed the extent of forest cover and loss within the distributions of 11,186 forest‐dependent amphibians, birds, and mammals worldwide. For 16 species, forest loss resulted in an elevated extinction risk under red‐list criterion A, owing to inferred rapid population declines. This number increased to 23 when data‐deficient species (i.e., those with insufficient information for evaluation) were included. Under red‐list criterion B2, 484 species (855 when data‐deficient species were included) were considered at elevated extinction risk, owing to restricted areas of occupancy resulting from little forest cover remaining within their ranges. The proportion of species of conservation concern would increase by 32.8% for amphibians, 15.1% for birds, and 24.7% for mammals if our suggested uplistings are accepted. Central America, the Northern Andes, Madagascar, the Eastern Arc forests in Africa, and the islands of Southeast Asia are hotspots for these species. Our results illustrate the utility of satellite imagery for global extinction‐risk assessment and measurement of progress toward international environmental agreement targets.  相似文献   

12.
Insularization of Tanzanian Parks and the Local Extinction of Large Mammals   总被引:8,自引:0,他引:8  
Island biogeography theory predicts that species will be lost on habitat "islands" created by the fragmentation of continental regions. Many Tanzanian parks are rapidly becoming habitat islands as a result of human settlement, agricultural development, and the active elimination of wildlife on adjacent lands. The rate of extinction of mammals in six Tanzanian parks over the last 35–83 years is significantly and inversely related to park area, suggesting that increasing insularization of the parks has been an important contributory factor in large mammal extinctions. I compared observed patterns of persistence of mammals in Tanzanian parks to predictions derived from earlier extinction models. The predictions of the S 1 models of Soulé et al. (1979) and Burkey (1994) and the S 2 and S 3 models of Soulé et al. (1979) match very closely the observed pattern of persistence of mammals in Tanzanian parks. The loss of mammal species will probably continue, particularly in the smaller parks. Establishment of wildlife corridors linking the parks in northern Tanzania could help to reduce the potential loss of species in the future.  相似文献   

13.
Abstract: The dependency of highly endemic island floras on few potential pollinators in depauperate island faunas suggests that pollinators and seed dispersers may be crucial in the preservation of biodiversity in isolated oceanic islands. We discuss the hypothesis that flying foxes are "strong interactors" in South Pacific islands where they setwe as the principal pollinators and seed dispersers, This suggests that the ongoing decline and ultimate extinction of flying fox species on Pacific islands may lead to a cascade of linked plant extinctions. We propose an empirical test of this hypothesis: comparisons of plant reproductive success in Guam, which has virtually lost its flying fox populations, and Samoa, where signifcant populations remain.  相似文献   

14.
Abstract: Populations of large brown algae of the Laminariales and Fucales (Phaeophyta) have declined or been extirpated from many locations on temperate coasts worldwide. We conducted field surveys and a literature review, and examined herbarium specimens, through which we discovered previously unreported extirpations of large brown algal species from a tropical and subtropical coastline. Sargassum amaliae, S. aquifolium, S. carpophyllum, S. polycystum, and S. spinifex were common habitat‐forming macroalgae that supported diverse assemblages of invertebrates and smaller algae before urbanization began in 1970 along the 45‐km length of Sunshine Coast in Queensland, Australia. Causes of these extirpations are not known, but are consistent with losses of other large brown algal species from coastal areas undergoing urbanization or eutrophication. Sargassum spp. do not have the characteristics thought to protect marine species from extinction (large geographical ranges, occurrence on many different substrata, long‐distance dispersal). Some local Sargassum spp. are endemic to eastern Australia. Abundance of Sargassum is limited by suitable substrata on the sandy southern Queensland coast (370 km). These substrata are 12 rocky headlands separated by long (5–105 km) sandy beaches. Most multicellular propagules (the only motile stage in Sargassum) settle within 1–3 m of parental thalli, which restricts long‐distance dispersal needed to maintain connectivity among populations and to recolonize areas of the headlands from which populations have been extirpated. Local Sargassum spp. could be categorized as data deficient by the International Union for Conservation of Nature (IUCN), but the IUCN vulnerable category is more accurate given extirpations, limited habitat, and the lack of connectivity among populations.  相似文献   

15.
The deserts of central Australia contain richer communities of lizards than any other arid regions, with the highest diversity occurring in sand dune habitats dominated by hummock-forming spinifex grasses. To investigate the mechanisms that permit coexistence, we studied two species of coexisting agamid lizards that exhibit striking divergence in their use of habitat in the Simpson Desert of central Australia. Here, the military dragon Ctenophorus isolepis is restricted primarily to sites providing > 30% cover of hard spinifex Triodia basedowii, whereas the central netted dragon C. nuchalis occurs in areas with much sparser (< 10%) cover. We constructed four mechanistic models to explain this pattern and then derived hypotheses to test them. One hypothesis, that competition restricts each species to its preferred habitat, was rejected after dyad encounters in field enclosures failed to elicit any habitat shift or any overt interactions between the species. Our next hypotheses were that each species exhibits preferences for different thermal environments or different prey types and that each selects the habitats that maximize access to them. Both were supported. C. isolepis preferred lower temperatures when active and specialized in eating ants < 5 mm long and selected spinifex-dominated areas where these requirements were met. In contrast, C. nuchalis preferred higher temperatures and a diversity of prey, both of which were available mostly in open areas. Finally, we used plasticine models to test the hypothesis that each species faced lower risk of predation in its selected habitat. This was partly supported, as models of both species were attacked more often in the open than under spinifex cover. The results show that habitat divergence occurs along several, probably covarying, niche axes. We suggest that different levels of spinifex cover provide the template for a broad range of ecological interactions, allowing lizard species to partition biotic and abiotic resources and achieve the extraordinarily high levels of local diversity that are observed.  相似文献   

16.
Species are being lost from isolated reserves as predicted by ecological theory, prompting calls for larger reserves with higher species immigration rates. However, some large islands have lost a large proportion of their species, whereas some small islands have not lost any. Conservation efforts would be more efficient if the cause of such variation in the relationships among number of species lost, island size, and immigration rate were known. Observed species losses could be affected by the time since islands were isolated, species immigration rates, species extirpation rates, the pre-fragmentation diversity of the region relative to steady state, or overestimation of the pre-fragmentation diversity of islands. To test the last three hypotheses, I compared the intersection points of the island, intraprovincial, and interprovincial species-area relationships of terrestrial mammals from nine archipelagos of land-bridge islands and terrestrial habitat isolates. Species losses from three archipelagos were greater than expected due to reduced immigration rates alone, although I could not resolve if this was due to increased extirpation rates or overestimation of the pre-fragmentation diversity of the islands. Analysis of six archipelagos indicates that the diversity of mammals in two regions of North America is currently below steady state, probably due to the extinction of mammals and glacial retreat during the late Pleistocene. These results have direct implications for reserve planning. When provincial diversity is below steady state, some combinations of reserve size and species immigration rate will allow reserves to maintain their pre-isolation diversity. However, the diversity of provinces relative to steady state is likely to vary, so conservation of a given proportion of a province may not always conserve the same proportion of its species. I present a new species-area relationship for islands formed by fragmentation that replaces the parameter c (fitted constant) with a rotation point. Estimation of this rotation point will allow reserve planners to separate the effects of extirpation and immigration rates on species losses from islands, identify provinces that are below steady-state diversity, and estimate the combinations of reserve size and immigration rate that will prevent loss of species from reserves.  相似文献   

17.
The Passenger Pigeon (Ectopistes migratorius) was a social breeder, and it has been suggested that the species experienced functional extinction, defined as a total reproductive failure, prior to its actual extinction in the early years of the 20th century. We applied a novel randomization test based on the relative times of the most recent egg‐ and skin‐specimen sightings (i.e., recorded date of specimen collection) to test for functional extinction. For a total of 6 eggs and 27 skins, the observed significance level was 0.38, which indicated that the species did not become functionally extinct. Thus, proposals to reverse its rapid decline in the late 19th century could have been successful.  相似文献   

18.
Stiles A  Scheiner SM 《Ecology》2008,89(9):2473-2481
Urbanization can have profound effects on the plant communities persisting in remnant habitats. That process can be explored by examining patterns of nestedness. Species composition for a set of communities exhibits a nested pattern if species present in progressively richer assemblages form a series of subsets. Nestedness can form as a result of the dynamic processes of extinction or colonization. It can also reflect a nested distribution of habitats among the sites or the differential abundance properties of species through passive sampling. This study investigated whether Sonoran Desert woody vegetation in remnant islands within metropolitan Phoenix is nested and explored which mechanisms are responsible for the pattern. It also examined whether vegetation is nested in similar habitat types across islands, and how species abundance relates to the nested pattern and hypothesized mechanisms. All data sets were significantly nested, indicating a nested pattern at the island and habitat levels. Community-level analyses did not indicate a primary mechanism leading to the nested pattern. Among species with abundances correlated with the nested rank-order of sites, abundance properties were significantly related to different variables. This suggests that individual taxa respond to divergent ecological mechanisms, leading to nestedness. Thus, nestedness in plant communities can result from a complex set of contributors and may not be attributable to a single factor.  相似文献   

19.
Abstract:  In recent centuries bird species have been deteriorating in status and becoming extinct at a rate that may be 2–3 orders of magnitude higher than in prehuman times. We examined extinction rates of bird species designated critically endangered in 1994 and the rate at which species have moved through the IUCN (World Conservation Union) Red List categories of extinction risk globally for the period 1988–2004 and regionally in Australia from 1750 to 2000. For Australia we drew on historical accounts of the extent and condition of species habitats, spread of invasive species, and changes in sighting frequencies. These data sets permitted comparison of observed rates of movement through the IUCN Red List categories with novel predictions based on the IUCN Red List criterion E, which relates to explicit extinction probabilities determined, for example, by population viability analysis. The comparison also tested whether species listed on the basis of other criteria face a similar probability of moving to a higher threat category as those listed under criterion E. For the rate at which species moved from vulnerable to endangered, there was a good match between observations and predictions, both worldwide and in Australia. Nevertheless, species have become extinct at a rate that, although historically high, is 2 (Australia) to 10 (globally) times lower than predicted. Although the extinction probability associated with the critically endangered category may be too high, the shortfall in realized extinctions can also be attributed to the beneficial impact of conservation intervention. These efforts may have reduced the number of global extinctions from 19 to 3 and substantially slowed the extinction trajectory of 33 additional critically endangered species. Our results suggest that current conservation action benefits species on the brink of extinction, but is less targeted at or has less effect on moderately threatened species.  相似文献   

20.
Muniappan  R.  Silva-Krott  I. U.  Lali  T. S. 《Chemoecology》1994,5(2):75-77
Summary The adult fruit piercing moth,Othreis fullonia, a native of the indo-Malaysian region, causes severe damage to fruits grown throughout the tropical and subtropical belt from Africa through Asia and Australia to the Pacific Islands. Plants of the family Menispermaceae and the genusErythrina (Fabaceae) serve as larval hosts but the adult moths prefer Menispermaceae plants for oviposition. In Africa, Asia and Australia, the moth does not lay eggs onErythrina since members of the Menispermaceae are abundant. However in the insular Pacific region, where most islands have few or no species of Menispermaceae, the introduced fruit piercing moth utilizesErythrina as an alternate larval host, and either depletes, endangers or causes the possible extinction of Menispermaceae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号