首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A carbon paste electrode modified with p-chloranil and carbon nanotubes was used for the sensitive and selective voltammetric determination of hydroxylamine (HX) and phenol (PL). The oxidation of HX at the modified electrode was investigated by cyclic voltammetry (CV), chronoamperommetry, and electrochemical impedance spectroscopy. The values of the catalytic rate constant (k), and diffusion coefficient (D) for HX were calculated. Square wave voltammetric peaks current of HX and PL increased linearly with their concentrations at the ranges of 0.1–172.0 and 5.0–512.0 μmol L?1, respectively. The detection limits for HX and PL were 0.08 and 2.0 μmol L?1, respectively. The separation of the anodic peak potentials of HX and PL reached to 0.65 V, using square wave voltammetry. The proposed sensor was successfully applied for the determination of HX and PL in water and wastewater samples.  相似文献   

2.
A miniaturized screen-printed electrode (SPE) modified with a carbon black-gold nanoparticle (CBNP-AuNP) nanocomposite has been developed as an electrochemical sensor for the detection of inorganic mercury ions (Hg2+). The working electrode surface has been modified with nanocomposite constituted of CBNPs and AuNPs by an easy drop casting procedure that makes this approach extendible to an automatable mass production of modified SPEs. Square wave anodic stripping voltammetry (SWASV) was adopted to perform Hg2+ detection, revealing satisfactory sensitivity and detection limit, equal to 14 μA ppb?1 cm?2 and 3 ppb, respectively. The applicability of the CBNP-AuNP-SPE for the determination of inorganic mercury has been assessed in river water by a simple filtration and acidification of the sample as well as in soil by means of a facile acidic extraction procedure assisted by ultrasound.  相似文献   

3.
Abstract

This paper describes a simple, inexpensive, highly sensitive, selective, and efficient electrochemical method to determine glyphosate (GLY) in samples of milk, orange juice, and agricultural formulation. The oxidation reaction on the electrode surface was electrochemically characterised by cyclic voltammetry (CV) and square wave voltammetry (SWV). The investigation of GLY at carbon paste electrode revealed a non-reversible oxidation peak at +0.95 V versus Ag/AgCl, which was used for electrochemical detection of GLY. The operating parameters (pH, frequency, step potential, and amplitude) were optimised in relation to the peak current intensity, and a calibration curve was set up in a concentration range of 4.40?×?10?8–2.80?×?10?6 mol L?1, with a detection limit of 2?×?10?9 mol L?1. After calibration curve was plotted, the developed procedure was applied to determine GLY in previously contaminated samples: milk and orange juice, and in a commercial formulation, obtaining recovery values between 98.31% and 103.75%. These results show that the proposed method can be used for GLY quantification in different samples with high sensitivity, specificity, stability, and reproducibility.  相似文献   

4.
In recent years, increasing awareness of the environmental impact of heavy metals has prompted a demand for monitoring and decontaminating industrial wastes prior to discharging into natural water bodies. This paper describes the preparation and electrochemical application of carbon paste electrode modified with nanocellulosic fibers for the determination of cadmium and lead in water samples using anodic stripping voltammetry. First, cadmium and lead were adsorbed on the carbon paste electrode surface at open circuit potential, followed by anodic stripping voltammetric scan from -1 to 0 V. Different factors affecting sensitivity and precision of the electrode, including accumulating solvent, pH of the accumulating solvent, accumulation time, supporting electrolyte, and scan rate were investigated. The proposed method was also applied to the determination of Cd (II) and Pb (II) in the presence of other interfering metal ions and cetyl trimethyl ammonium bromide, sodium dodecyl sulfate, and Triton X-100 as a representative of cationic, anionic, and neutral surfactants. Linear calibration curves were obtained in the concentration ranges of 150–650 μg?L?1 and 80–300 μg?L?1, respectively, for cadmium and lead at an accumulated time of 10 min with limits of detection 88 and 33 μg?L?1. Optimized working conditions are defined as acetate buffer of pH?5 as accumulating solvent, hydrochloric acid as supporting electrolyte, and scan rate 50 mV/s. This technique does not use mercury and therefore has a positive environmental benefit. The method is reasonably sensitive and selective and has been successfully applied to the determination of trace amounts of Cd (II) and Pb (II) in water samples.  相似文献   

5.
A newly developed electrochemical sensor for chlorothalonil based on nylon 6,6 film deposited onto screen printed electrode (SPE) with electrochemical modulation of pH at the electrode/solution interface was studied for the first time. Differential pulse cathodic stripping voltammetry (DPCSV) was used to carry out the electrochemical and analytical studies. Experimental parameters such as accumulation potential, initial potential, accumulation time and pH of Britton-Robinson buffer have been optimized. Chlorothalonil gave optimum analytical signal in a medium of 0.04?M Britton-Robinson buffer at pH 6.0. A well-defined reduction peak was observed, at Ep= ?0.851 and ?0.938?V vs. Ag/AgCl (3.0?M KCl) for both bare SPE and modified SPE, respectively. The peak currents of modified SPE were significantly increased as compared to bare SPE. At the modified SPE, a linear relationship between the peak current and chlorothalonil concentration was obtained in the range from 0.1 to 2.8?×?10?6?M with a detection limit of 1.53?×?10?8?M (S/N=?3). The practical applicability of the newly developed method has been demonstrated on analyses of real water samples. The newly developed sensor shows good reproducibility with RSD of 3.92%. The nylon 6,6 modified SPE showed itself as promising sensor with good selectivity for chlorothalonil determination.  相似文献   

6.
Abstract

This article demonstrates the first application of a copper-based porous coordination polymer (BTCA-P-Cu-CP) as a carbon paste electrode (CPE) modifier for the detection of malathion. The electrochemical behavior of BTCA-P-Cu-CP/CPE was explored using cyclic voltammetry (CV) while chrono-amperometry methods were applied for the analytical evaluation of the sensor performance. Under optimized conditions, the developed sensor exhibited high reproducibility, stability, and wide dynamic range (0.6–24?nM) with the limits of detection and sensitivity equal to 0.17?nM and 5.7 µAnMcm?1, respectively, based on inhibition signal measurement. Furthermore, the presence of common coexisting interfering species showed a minor change in signals (<4.4%). The developed sensor has been applied in the determination of malathion in spiked vegetable extracts. It exhibited promising results in term of fast and sensitive determination of malathion in real samples at trace level with recoveries of 91.0 to 104.4%. (RSDs < 5%, n?=?3). A comparison of the two studied techniques showed that the HPLC technique is unable to detect malathion when the concentration is lower than 1.8?µM while 0.006 µM is detected with appropriate RSDs 0.2–5.2% (n?=?3) by amperometric method. Due to the high sensitivity and selectivity, this new electrochemical sensor will be useful for monitoring trace malathion in real samples.  相似文献   

7.
The electrochemical behavior of new generation fungicide acibenzolar-s-methyl (S-methyl 1,2,3-benzothiadiazole-7-carbothioate, ASM) on the hanging mercury drop electrode (HMDE) was investigated using square wave adsorptive stripping voltammetry. This method of determination is based on the irreversible reduction of ASM at the HMDE. The well-defined ASM peak was observed at ?0.4 V (vs. Ag/AgCl) in BR buffer at pH 2.2. The reduction peak current was proportional to concentration of ASM from 1.0 × 10?8 to 6.0 × 10?8 mol L?1 with detection and quantification limit 3.0 × 10?9 and 1.0 × 10?8 mol L?1, respectively. The applicability of the developed method for analysis of spiked samples of tap water, river water, and soil is illustrated. The effect of adsorption on the mercury electrode was studied in detail using the AC impedance method. Possible interferences with other common pesticides and heavy metal ions were examined. Clarification of the electrode mechanism was made using cyclic voltammetry (CV) technique.  相似文献   

8.
A carbon paste electrode was used for the electrochemical quantification of carbendazim in water and orange juice samples. Carbendazim oxidation on the electrode surface was found to be controlled by adsorption. The novel electrochemical procedure for carbendazim quantification employed differential pulse voltammetry using a carbon paste electrode under optimal conditions. Carbendazim oxidation currents were linear at concentrations of 2.84 to 45.44 µg L?1, with a limit of detection of 0.96 µg L?1. The proposed method was applied to carbendazim quantification in ultrapurified water, river water, and orange juice. Recovery rates in water and orange juice samples were in the 97%–101% range, indicating that the method can be employed to determine carbendazim in these matrices, with advantages including shorter analysis time and lower cost than routine methods such as chromatography or spectroscopy. The electrode showed good reproducibility, remarkable stability, and especially good surface renewability by simple mechanical polishing. The recovery rates observed were highly concordant with those obtained for high-performance liquid chromatography, having a relative standard deviation of less than 1.3%.  相似文献   

9.
The purpose of this research is to use a simple method to prepare magnetic modified biomass with good adsorption performances for cationic ions. The magnetic modified biomass was prepared by two steps: (1) preparation of pyromellitic dianhydride (PMDA) modified biomass in N, N-dimethylacetamide solution and (2) preparation of magnetic PMDA modified biomass by a situ co-precipitation method under the assistance of ultrasound irradiation in ammonia water. The adsorption potential of the as-prepared magnetic modified biomass was analyzed by using cationic dyes: methylene blue and basic magenta as model dyes. Optical micrograph and x-ray diffraction analyses showed that Fe3O4 particles were precipitated on the modified biomass surface. The as-prepared biosorbent could be recycled easily by using an applied magnetic field. Titration analysis showed that the total concentration of the functional groups on the magnetic PMDA modified biomass was calculated to be 0.75 mmol g?1 by using the first derivative method. The adsorption capacities (q m) of the magnetic PMDA modified biomass for methylene blue and basic magenta were 609.0 and 520.9 mg g?1, respectively, according to the Langmuir equation. Kinetics experiment showed that adsorption could be completed within 150 min for both dyes. The desorption experiment showed that the magnetic sorbent could be used repeatedly after regeneration. The as-prepared magnetic modified sorbent had a potential in the dyeing industry wastewater treatment.  相似文献   

10.
Although the long incubation time of biochemical oxygen demand (BOD7) measurements has been addressed by the use of microbial biosensors, the resulting sensor-BOD values gained from the measurements with specific industrial wastewaters still underestimates the BOD value of such samples. This research aims to provide fast and more accurate BOD measurements in the dairy wastewater samples. Unlike municipal wastewater, wastewater from the dairy industry contains many substrates that are not easily accessible to a majority of microorganisms. Therefore, a bacterial culture, Microbacterium phyllosphaerae, isolated from dairy wastewater was used to construct a semi-specific microbial biosensor. A universal microbial biosensor based on Pseudomonas fluorescens, which has a wide substrate spectrum but is nonspecific to dairy wastewater, was used as a comparison. BOD biosensors were calibrated with OECD synthetic wastewater, and experiments with different synthetic and actual wastewater samples were carried out. Results show that the semi-specific M. phyllosphaerae-based microbial biosensor is more sensitive towards wastewaters that contain milk derivates and butter whey than the P. fluorescens-based biosensor. Although the M. phyllosphaerae biosensor underestimates the BOD7 value of actual dairy wastewaters by 25–32 %, this bacterial culture is more suitable for BOD monitoring in dairy wastewater than P. fluorescens, which underestimated the same samples by 46–61 %.  相似文献   

11.
A series of lead dioxide electrodes developed on titania nanotube arrays with different matrix were fabricated by electrodeposition. Before the deposition of PbO2, the matrix of this anode was electrochemically reduced in (NH4)2SO4 solution and/or pre-deposited with certain amounts of copper. To gain insight into these pretreatments, the PbO2 electrodes were characterized by SEM, LSV, and XRD, and their electrocatalytic activities for pollutant degradation were compared using p-nitrophenol (p-NP) as a model. It was confirmed that the electrochemical reduction with (NH4)2SO4 resulted in the partial conversion of TiO2 into Ti4O7 and Ti5O9, which increased the conductivity of PbO2 anode, but decreased its electrochemical activity, while the Ti/TNTs*-Cu/PbO2 electrode with both pretreatments possessed the highest oxygen evolution overpotential of 2.5 V (vs. SCE) and low substrate resistance. After a 180-min treatment on this electrode, the removal efficiency of p-NP reached 82.5 % and the COD removal achieved 42.5 % with the energy consumption of 9.45 kWh m?3, demonstrating the best performance among these electrodes with different matrices. Therefore, this titania nanotube array-based PbO2 electrode has a promising application in the industrial wastewater treatment.  相似文献   

12.
Laboratory-scale batch, vertical, and horizontal column experiments were conducted to investigate the attenuative capacity of a fine-grained clayey soil of local origin in the surrounding of a steel plant wastewater discharge site in West Bengal, India, for removal of phenol. Linear, Langmuir, and Freundlich isotherm plots from batch experimental data revealed that Freundlich isotherm model was reasonably fitted (R 2?=?0.94). The breakthrough column experiments were also carried out with different soil bed heights (5, 10, and 15 cm) under uniform flow to study the hydraulic movements of phenol by evaluating time concentration flow behavior using bromide as a tracer. The horizontal migration test was also conducted in the laboratory using adsorptive phenol and nonreactive bromide tracer to explore the movement of solute in a horizontal distance. The hydrodynamic dispersion coefficients (D) in the vertical and horizontal directions in the soil were estimated using nonlinear least-square parameter optimization method in CXTFIT model. In addition, the equilibrium convection dispersion model in HYDRUS 1D was also examined to simulate the fate and transport of phenol in vertical and horizontal directions using Freundlich isotherm constants and estimated hydrodynamic parameters as input in the model. The model efficacy and validation were examined through statistical parameters such as the coefficient of determination (R 2), root mean square error and design of index (d).  相似文献   

13.
The electroanalytical behaviors of the endocrine-disrupting chemical trifluralin have been studied at a nanostructuring electrode. The nanostructuring electrode was fabricated by coating a uniform multi-wall carbon nanotubes/dihexadecyl hydrogen phosphate (MWNTs/DHP) film on glassy carbon electrode (GCE). The reduction peak currents of trifluralin increased remarkably and the reduction peak potential shifted positively at the nanostructuring electrode, compared with that at a bare GCE. The results showed that this nanostructuring electrode exhibited excellent enhancement effects on the electrochemical reduction of trifluralin. Consequently, a simple and sensitive electroanalytical method was developed for the determination of trifluralin. Under optimal conditions, a linear response of trifluralin was obtained in the range from 5.0 × 10−9 to 6.0 × 10−6 mol L−1 (r = 0.998) and with a limit of detect (LOD) of 2.0 × 10−9 mol L−1. The proposed procedure was successfully applied to determine trifluralin in soil samples with satisfactory results.  相似文献   

14.
A highly tolerant phenol-degrading yeast strain PHB5 was isolated from wastewater effluent of a coke oven plant and identified as Candida tropicalis based on phylogenetic analysis. Biodegradation experiments with C. tropicalis PHB5 showed that the strain was able to utilize 99.4 % of 2,400 mg l?1 phenol as sole source of carbon and energy within 48 h. Strain PHB5 was also observed to grow on 18 various aromatic hydrocarbons. Haldane model was used to fit the exponential growth data and the following kinetic parameters were obtained: μ max?=?0.3407 h?1, K S?=?15.81 mg l?1, K i?=?169.0 mg l?1 (R 2?=?0.9886). The true specific growth rate, calculated from μ max, was 0.2113. A volumetric phenol degradation rate (V max) was calculated by fitting the phenol consumption data with Gompertz model and specific degradation rate (q) was calculated from V max. The q values were fitted with Haldane model, yielding following parameters: q max?=?0.2766 g g?1 h?1, K S ?=?2.819 mg l?1, K i ?=?2,093 (R 2?=?0.8176). The yield factor (Y X/S ) varied between 0.185 to 0.96 g g?1 for different initial phenol concentrations. Phenol degradation by the strain proceeded through a pathway involving production of intermediates such as catechol and cis,cis-muconic acid which were identified by enzymatic assays and HPLC analysis.  相似文献   

15.
The aim of the present research is to develop economic, fast, and versatile method for the removal of toxic organic pollutant phenol from wastewater using eggshell. The batch experiments are conducted to evaluate the effect of pH, phenol concentration, dosage of adsorbent, and contact time on the removal of phenol. The paper includes in-depth kinetic studies of the ongoing adsorption process. Attempts have also been made to verify Langmuir and Freundlich adsorption isotherms. The morphology and characteristics of eggshell have also been studied using scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and X-ray fluorescence analysis. At ambient temperature, the maximum adsorption of phenol onto eggshells has been achieved at pH 9 and the contact time, 90 min. The experimental data give best-fitted straight lines for pseudo-first-order as well as pseudo-second-order kinetic models. Furthermore, the adsorption process verifies Freundlich and Langmuir adsorption isotherms, and on the basis of mathematical expressions of these models, various necessary adsorption constants have been calculated. Using adsorption data, various thermodynamic parameters like change in enthalpy (?H 0), change in entropy (?S 0), and change in free energy ?G 0 have also been evaluated. Results clearly reveal that the solid waste material eggshell acts as an effective adsorbent for the removal of phenol from aqueous solutions.  相似文献   

16.
Effective arsenic removal from highly laden industrial wastewater is an important but challenging task. Here, a combined coprecipitation/nano-adsorption process, with ferric chloride and calcium chloride as coprecipitation agents and polymer-based nanocomposite as selective adsorbent, has been validated for arsenic removal from tungsten-smelting wastewater. On the basis of operating optimization, a binary FeCl3 (520 mg/L)–CaCl2 (300 mg/L) coprecipitation agent could remove more than 93 % arsenic from the wastewater. The resulting precipitate has proved environmental safety based on leaching toxicity test. Fixed-bed column packed with zirconium or ferric-oxide-loaded nanocomposite was employed for further elimination of arsenic in coprecipitated effluent, resulting in a significant decrease of arsenic (from 0.96 to less than 0.5 mg/L). The working capacity of zirconium-loaded nanocomposite was 220 bed volumes per run, much higher than that of ferric-loaded nanocomposite (40 bed volumes per run). The exhausted zirconium-loaded nanocomposite could be efficiently in situ regenerated with a binary NaOH–NaCl solution for reuse without any significant capacity loss. The results validated the combinational coprecipitation/nano-adsorption process to be a potential alternative for effective arsenic removal from highly laden industrial effluent.  相似文献   

17.
Utilization of agrowaste materials for the production of activated carbon, as an excellent adsorbent with large surface area, is well established industrially, for dephenolation of wastewater. In the present work, dried pods of Prosopis cineraria—a novel and low-cost agrowaste material—were used to prepare activated carbons by zinc chloride activation. Batch adsorption experiments were carried out to study the effects of various physicochemical parameters such as initial phenol concentration, adsorbent dose, initial solution pH, and temperature. Pseudo-first-order second-order and diffusion kinetic models were used to identify the possible mechanisms of such adsorption process. The Langmuir and Freundlich equations were used to analyze the adsorption equilibrium. Maximum removal efficiency of 86 % was obtained with 25 mg?L?1 of initial phenol concentration. The favorable pH for maximum phenol adsorption was 4.0. Freundlich equation represented the adsorption equilibrium data more ideally than the Langmuir. The maximum adsorption capacity obtained was 78.32 mg?g?1 at a temperature of 30 °C and 25 mg?L?1 initial phenol concentration. The adsorption was spontaneous and endothermic. The pseudo-second-order model, an indication of chemisorption mechanism, fitted the experimental data better than the pseudo-first-order Lagergren model. Regeneration of spent activated carbon was carried out using Pseudomonas putida MTCC 2252 as the phenol-degrading microorganism. Maximum regeneration up to 57.5 % was recorded, when loaded phenol concentration was 25 mg?L?1. The data obtained in this study would be useful in designing and fabricating an efficient treatment plant for phenol-rich effluents.  相似文献   

18.
Understanding oxygen release by plants is important to the design of constructed wetlands for wastewater treatment. Lab-scale systems planted with Phragmites australis were studied to evaluate the amount of oxygen release by plants using electrode techniques and oxygen consumption model. Oxygen release rate (0.14 g O2/m2/day) measured using electrode techniques was much lower than that (3.94–25.20 gO2/m2/day) calculated using the oxygen consumption model. The results revealed that oxygen release by plants was significantly influenced by the oxygen demand for the degradation of pollutants, and the oxygen release rate increased with the rising of the concentration of degradable materials in the solution. The summary of the methods in qualifying oxygen release by wetland plants demonstrated that variations existed among different measuring methods and even in the same measuring approach. The results would be helpful for understanding the contribution of plants in constructed wetlands toward actual wastewater treatment.  相似文献   

19.
采用电沉积法制备铈修饰的PbO2/C电极,通过SEM、XRD、XPS及循环伏安对PbO2/C、Ce-PbO2/C电极进行表征,结果表明,Ce-PbO2/C电极比PbO2/C颗粒细小,表面均匀致密,电化学氧化能力较强,修饰电极中Ce以CeO2的形态存在。以Ce-PbO2/C为工作电极,电解浓度为1 000 mg/L的高盐酸性红B模拟活性染料废水,考察了电压、pH、电解质浓度、极间距对脱色率、氨氮去除率及COD去除率的影响。确定适宜工艺条件为:初始酸性红B溶液浓度为1 000 mg/L,pH值为6,电压10 V,电解时间1 h,电极间距1.5 cm,该条件下脱色率、氨氮去除率和COD去除率分别为99.98%、97.23%和90.17%。通过UV-Vis及GC-MS初步分析了降解过程可能存在的中间产物及降解途径。  相似文献   

20.
The present study used an eco-ditch system that employed Eichhornia crassipes, Bacillus subtilis, and Bellamya aeruginosa (E–B–B) during the summer and fall (high temperature) seasons and a second eco-ditch system that employed Elodea nuttallii, a compound microbial preparation called “EM bacteria”, and Hypophthalmichthys molitrix (E–E–H) during the winter and spring (low temperature) seasons successively to purify the discharged wastewater produced by Chinese soft-shelled turtle greenhouse cultivation. The wastewater was sampled, and the dynamic changes in the major nutrient pollutant indicators over several months were analysed. After the E–B–B and E–E–H eco-ditch purification systems were operated for nearly 140 days each, the following results were observed: the total nitrogen (TN) removal rates in the wastewater were 75 % and 69 %, respectively; the total phosphorus (TP) removal rates were 82 % and 86 %, respectively; the NH4 +-N removal rates were 91 % and 75 %, respectively; the chemical oxygen demand (CODcr) decreased 54 % and 44 %, respectively; the dissolved oxygen (DO) contents increased nearly 3 to 4 times; and the wastewater was maintained at neutral or alkaline pH values. The wastewater physical traits gradually changed from being yellow, brown, and muddy to being pale yellow, slightly turbid, and odourless. Both eco-ditch systems were observed to have a relatively favourable effect on the purification of Chinese soft-shelled turtle aquaculture wastewater. The continuous use of both eco-ditch systems could result in a year-round purification effect on Chinese soft-shelled turtle greenhouse aquaculture wastewater; therefore, this method has good prospects for promotion and application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号