首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Exposure to ambient polycyclic aromatic hydrocarbons (PAHs) is a potential health concern for communities because many PAHs are known to be mutagenic and carcinogenic. However, information on ambient concentrations of PAHs in communities is very limited. During the Urban Community Air Toxics Monitoring Project, Paterson City, NJ, PAH concentrations in ambient air PM10 (particulate matter < or = 10 microm in aerodynamic diameter) were measured from November 2005 through December 2006 in Paterson, a mixed-use urban community located in Passaic County, NJ. Three locations dominated by industrial, commercial, and mobile sources were chosen as monitoring sites. The comparison background site was located in Chester, NJ, which is approximately 58 km west/southwest of Paterson. The concentrations of all of the individual PAHs at all three Paterson sites were found to be significantly higher than those at the background site (P < 0.05). The PAH profiles obtained from the three sites with different land-use patterns showed that the contributions of heavier PAHs (molecular weight > 202) to the total PAHs were significantly higher at the industrial site than those at the commercial and mobile sites. Analysis of the diagnostic ratios between PAH isomers suggested that the diesel-powered vehicles were the major PAH sources in the Paterson area throughout the year. The operation of industrial facilities and other combustion sources also partially contributed to PAH air pollution in Paterson. The correlation of individual PAH, total PAH, and the correlation of total PAHs with other air co-pollutants (copper, iron, manganese, lead, zinc, elemental carbon, and organic carbon) within and between the sampling sites supported the conclusions obtained from the diagnostic ratio analysis.  相似文献   

4.
Sedimentation is a common but complex phenomenon in the urban drainage system. The settling mechanisms involved in detention basins are still not well understood. The lack of knowledge on sediment transport and settling processes in actual detention basins is still an obstacle to the optimization of the design and the management of the stormwater detention basins. In order to well understand the sedimentation processes, in this paper, a new boundary condition as an attempt to represent the sedimentation processes based on particle tracking approach is presented. The proposed boundary condition is based on the assumption that the flow turbulent kinetic energy near the bottom plays an important role on the sedimentation processes. The simulated results show that the proposed boundary condition appears as a potential capability to identify the preferential sediment zones and to predict the trapping efficiency of the basin during storm events.  相似文献   

5.
The characterization and control of runoff pollution from nonpoint sources in urban areas are a major issue for the protection of aquatic environments. We propose a methodology to quantify the sources of pollutants in an urban catchment and to analyze the associated uncertainties. After describing the methodology, we illustrate it through an application to the sources of Cu, Pb, Zn, and polycyclic aromatic hydrocarbons (PAH) from a residential catchment (228 ha) in the Paris region. In this application, we suggest several procedures that can be applied for the analysis of other pollutants in different catchments, including an estimation of the total extent of roof accessories (gutters and downspouts, watertight joints and valleys) in a catchment. These accessories result as the major source of Pb and as an important source of Zn in the example catchment, while activity-related sources (traffic, heating) are dominant for Cu (brake pad wear) and PAH (tire wear, atmospheric deposition).  相似文献   

6.
Water samples from streams, brooks and storm sewer outfall pipes that collect storm waters across the Island of Montréal were analyzed for caffeine, carbamazepine and fecal coliforms. All samples contained various concentrations of these tracers, indicating a widespread sanitary contamination in urban environments. Fecal coliforms and caffeine levels ranged over several orders of magnitude with a modest correlation between caffeine and fecal coliforms (R2 value of 0.558). An arbitrary threshold of 400 ng caffeine L−1 allows us to identify samples with an elevated fecal contamination, as defined by more than 200 colony-forming units per 100 mL (cfu 100 mL−1) of fecal coliforms. Low caffeine levels were sporadically related to high fecal coliform counts. Lower levels of caffeine and fecal coliforms were observed in the brooks while the larger streams and storm water discharge points contained over ten times more. The carbamazepine data showed little or no apparent correlation to caffeine. These data suggest that this storm water collection system, located in a highly urbanized urban environment, is widely contaminated by domestic sewers as indicated by the ubiquitous presence of fecal contaminants as well as caffeine and carbamazepine. Caffeine concentrations were relatively well correlated to fecal coliforms, and could potentially be used as a chemical indicator of the level of contamination by sanitary sources. The carbamazepine data was not significantly correlated to fecal coliforms and of little use in this dataset.  相似文献   

7.
Natural radionuclides have been proposed as a means of assessing the transport of ozone (O3) and aerosols in the troposphere. Beryllium-7 (7Be) is produced in the upper troposphere and lower stratosphere by the interaction of cosmogenic particles with atmospheric nitrogen and oxygen. 7Be has a 53.29-day half-life (478 keV gamma) and is known to attach to fine particles in the atmosphere once it is formed. It has been suggested that O3 from aloft can be transported into rural and urban regions during stratospheric-tropospheric folding events leading to increased background levels of O3 at the surface. 7Be can be used as a tracer of upper atmospheric air parcels and the O3 associated with them. Aerosol samples with a 2.5-microm cutoff were collected during 12-hr cycles (day/night) for a 30-day period at Deer Park, TX, near Houston, in August-September of 2000, and at Waddell, AZ, near Phoenix, in June-July of 2001. A comparison of 7Be levels with 12-hr O3 averages and maxima shows little correlation. Comparison of nighttime and daytime O3 levels indicate that during the day, when mixing is anticipated to be higher, the correlation of 7Be with O3 in Houston is approximately twice that observed at night. This is consistent with mixing and with the anticipated loss of O3 by reaction with nitric oxide (NO) and dry deposition. At best, 30% of the O3 variance can be explained by the correlation with 7Be for Houston, less than that for Phoenix where no significant correlation was seen. This result is consistent with the intercept values obtained for 7Be correlations with either O3 24-hr averages or O3 12-hr maxima and is also in the range of the low O3 levels (25 ppb) observed at Deer Park during a tropical storm event where the O3 is attributable primarily to background air masses. That is, maximum background O3 level contributions from stratospheric sources aloft are estimated to be in the range of 15-30 ppb in the Houston, TX, and Phoenix, AZ, area, and levels above these are because of local tropospheric photochemical production.  相似文献   

8.
A comprehensive study was carried out to investigate the impacts of road salts on the benthic compartment of a small urban detention facility, Rouge River Pond. Although the pond is an engineered water body, it is representative of many small urban lakes, ponds and wetlands, which receive road runoff and are probable high impact areas. Specific objectives of the study were to document the porewater chemistry of an aquatic system affected by elevated salt concentrations and to carry out a toxicological assessment of sediment porewater to determine what factors may cause porewater toxicity. The results indicate that the sediment porewater may itself attain high salt concentrations. The computations show that increased chloride levels have important implications on the Cd complexation, augmenting its concentration in porewater. The toxicity tests suggest that the toxicity in porewater is caused by metals or other toxic chemicals, rather than high levels of chloride.  相似文献   

9.
Methods for simulating air pollution due to road traffic and the associated effects on stormwater runoff quality in an urban environment are examined with particular emphasis on the integration of the various simulation models into a consistent modelling chain. To that end, the models for traffic, pollutant emissions, atmospheric dispersion and deposition, and stormwater contamination are reviewed. The present study focuses on the implementation of a modelling chain for an actual urban case study, which is the contamination of water runoff by cadmium (Cd), lead (Pb), and zinc (Zn) in the Grigny urban catchment near Paris, France. First, traffic emissions are calculated with traffic inputs using the COPERT4 methodology. Next, the atmospheric dispersion of pollutants is simulated with the Polyphemus line source model and pollutant deposition fluxes in different subcatchment areas are calculated. Finally, the SWMM water quantity and quality model is used to estimate the concentrations of pollutants in stormwater runoff. The simulation results are compared to mass flow rates and concentrations of Cd, Pb and Zn measured at the catchment outlet. The contribution of local traffic to stormwater contamination is estimated to be significant for Pb and, to a lesser extent, for Zn and Cd; however, Pb is most likely overestimated due to outdated emissions factors. The results demonstrate the importance of treating distributed traffic emissions from major roadways explicitly since the impact of these sources on concentrations in the catchment outlet is underestimated when those traffic emissions are spatially averaged over the catchment area.  相似文献   

10.
Urban stormwater infiltration basins are designed to hold runoff from impervious surfaces and allow the settling of sediments and associated pollutants. However concerns have been expressed about the environmental impacts that may be exerted by the trapped pollutants on groundwater, soils and ecosystems. In this context, sediment characterization represents a key issue for local authorities in terms of management strategies. During the last two decades, several studies were launched including either physical or chemical characterization of stormwater sediments but without real synthesis of data and methods used. Consequently, there is an important need for reviewing the current experimental techniques devoted to the physico-chemical characterization of sediment. The review is based on the outcomes of two experimental sites for which long term monitoring and data collection have been done: the Cheviré basin (near Nantes) and the Django Reinhardt basin (near Lyon). The authors summarize the studies dealing with bulk properties, pollutant contents, their potential mobility and speciation. This paper aims at promoting the significant progresses that were made through a multidisciplinary approach involving multi-scaled and combined experimental techniques.  相似文献   

11.
Acid deposition models are inherently simplified representations of real world behaviour and their performance is best evaluated by comparison with observations. National and international acid rain policy assessments handle observed and modelled deposition fields in different ways. Here, both the observed and modelled deposition fields are seen as uncertain and the Generalised Likelihood Uncertainty Estimation (GLUE) framework is used to choose acceptable sets of model input parameters that minimise the differences between them. These acceptable sets of model parameters are then used to estimate deposition budgets to the UK and to provide a probabilistic treatment of excess deposition over environmental quality standards (critical loads).  相似文献   

12.
Measurements of ammonia and particulate ammonium were made in the daytime (1200–1500) at a urban site in Yokohama during the 5-year period, 1982–1986. Diurnal NH3 concentrations showed a distinct seasonal trend with a maximum in summer. The diurnal monthly average concentrations were above 10 ppb during the late spring and summer months, while the concentrations during the winter months were between 1 and 5 ppb. The seasonal variation was found to be very similar to that of the average air temperature and showed a periodic pattern over 1 year. A good correlation was observed between diurnal NH3 concentrations and average air temperatures during the 5-year period. The annual mean concentrations were in the range of 6.6–7.6 ppb with only a minor deviation. The diurnal monthly average concentrations of particulate NH4+ were between 1 and 4 μg m−3 and no significant seasonal variations were seen. As a short-term study, simultaneous measurements of NH3, HNO3 and particulate NO3 were made. The diurnal mean concentrations of NH3 and HNO3 were 7.6 and 0.8 ppb, respectively. The concentration of particulate NO3 ranged from 0.3 to 6μg−3. Both HNO3 and particulate NO3 concentrations were relatively low and constant. Thus, NH3 and HNO3 levels did not agree with the concentrations predicted from the NH4NO3 equilibrium constant.  相似文献   

13.
Sediment management from stormwater infiltration basins represents a real environmental and economic issue for stakeholders due to the pollution load and important tonnages of these by-products. To reduce the sediment volumes to treat, organic and metal micropollutant-bearing phases should be identified. A combination of density fractionation procedure and microanalysis techniques was used to evaluate the distribution of polycyclic aromatic hydrocarbons (PAHs) and trace metals (Cd, Cr, Cu, Ni, Pb, and Zn) within variable density fractions for three urban stormwater basin sediments. The results confirm that PAHs are found in the lightest fractions (d?d??3) whereas trace metals are equally distributed within the light, intermediary, and highest fractions (d?d?d?d?>?2.8 g cm?3) and are mostly in the 2.3?d??3 fraction. The characterization of the five fractions by global analyses and microanalysis techniques (XRD and MEB-EDX) allowed us to identify pollutant-bearing phases. PAHs are bound to the organic matter (OM) and trace metals to OM, clays, carbonates and dense particles. Moreover, the microanalysis study underlines that OM is the main constituent responsible for the aggregation, particularly for microaggregation. In terms of sediment management, it was shown that density fractionation is not suitable for trace metals but could be adapted to separate PAH-enriched phases.  相似文献   

14.
Atmospheric transport and deposition of polychlorinated biphenyls (PCBs) is an important problem for ecosystems around the world. Data from several monitoring networks demonstrate that atmospheric PCB concentrations are dramatically elevated in urban areas compared to rural or background regions, such that these urban emissions of PCBs support the regional and global transport and deposition of PCBs to more remote areas. Identifying and controlling the sources of urban atmospheric PCBs is thus essential in minimizing the regional and global transport and deposition of these compounds. From December 1999 to November 2000, gas-phase PCB concentrations were measured at two monitoring locations, 8 km apart, within the New York City metropolitan area, at Jersey City and Bayonne, NJ. Concentrations, congener patterns, and temporal patterns of PCBs differ dramatically at the two sites, suggesting that a significant source of atmospheric PCBs exists within 8 km of the Bayonne site, resulting in spikes in gas-phase PCB concentration at Bayonne that are not observed at Jersey City. The Regional Atmospheric Model System (RAMS) coupled with the Hybrid Particle and Concentration Transport model (HYPACT) was used to estimate that the PCB source near Bayonne emits a flux of ΣPCBs on the order of 100 g d−1. Extrapolation of this source magnitude to the area of New York City suggests that this urban area emits at least 300 kg yr−1 ΣPCBs to the regional atmosphere, similar in magnitude to the flow of ΣPCB out of the Upper Hudson River into the New York/New Jersey Harbor.  相似文献   

15.
Hwang HM  Green PG  Young TM 《Chemosphere》2006,64(8):1383-1392
Surface sediment samples (0-5 cm) from five tidal marshes along the coast of California, USA were analyzed for organic pollutants to investigate their relationship to land use, current distribution within marshes, and possible sources. Among the study areas, Stege Marsh, located in San Francisco Bay, was the most contaminated. Compared to San Francisco Bay, Stege Marsh had much higher levels of organic contaminants such as PCBs (polychlorinated biphenyls), DDTs, and chlordanes. At reference marshes (Tom's Point and Walker Creek in Tomales Bay), organic contaminants in sediments were very low. While PAHs (polycyclic aromatic hydrocarbons) were found at all of the study areas (22-13,600 ng g(-1)), measurable concentrations of PCBs were found only in the sediments from Stege Marsh (80-9,940 ng g(-1)). Combustion related (pyrogenic) high molecular weight PAHs were dominant in sediments from Stege and Carpinteria Marshes, while in sediments from Tom's Point and Walker Creek petroleum related (petrogenic) low molecular weight PAHs and alkyl-substituted PAHs were much more abundant than pyrogenic PAHs. PCB congener patterns in all of the Stege Marsh samples were the same and revealed that Aroclor 1248 was a predominant source. In all marshes, the sum of DDE and DDD accounted for more than 90% of total DDTs, indicating that DDT has degraded significantly. The ratios of p,p'-DDE to p,p'-DDD in sediments from Stege Marsh provide evidence of possible previous use of technical DDD. Chlordane ratios indicated that chlordanes have degraded slightly. Bis(2-ethylhexyl)phthalate (280-32,000 ng g(-1)) was the most abundant phthalate. The data indicates that Stege Marsh may be a source of contaminants that continue to be discharged into San Francisco Bay.  相似文献   

16.
Thirteen PAHs, five nitro-PAHs and two hydroxy-PAHs were determined in 55 vapor-phase samples collected in a suburban area of a large city (Madrid, Spain), from January 2008 to February 2009. The data obtained revealed correlations between the concentrations of these compounds and a series of meteorological factors (e.g., temperature, atmospheric pressure) and physical–chemical factors (e.g., nitrogen and sulfur oxides). As a consequence, seasonal trends were observed in the atmospheric pollutants. A “mean sample” for the 14-month period would contain a total PAH concentration of 13 835 ± 1625 pg m−3 and 122 ± 17 pg m−3 of nitro-PAHs. When the data were stratified by season, it emerged that a representative sample of the coldest months would contain 18 900 ± 2140 pg m−3 of PAHs and 150 ± 97 pg m−3 of nitro-PAHs, while in an average sample collected in the warmest months, these values drop to 9293 ± 1178 pg m−3 for the PAHs and to 97 ± 13 pg m−3 for the nitro-PAHs. Total vapor phase concentrations of PAHs were one order of magnitude higher than concentrations detected in atmospheric aerosol samples collected on the same dates. Total nitro-PAH concentrations were comparable to their aerosol concentrations whereas vapor phase OH-PAHs were below their limits of the detection, indicating these were trapped in airborne particles.  相似文献   

17.
18.
Environmental Science and Pollution Research - The aim of this study was to investigate the presence of metal contamination in water, sediments and three different fish species. All samples were...  相似文献   

19.

Background

PM10 aerosol samples were simultaneously collected at two urban and one urban background sites in Fuzhou city during two sampling campaigns in summer and winter. PM10 mass concentrations and chemical compositions were determined.

Methods

Water-soluble inorganic ions (Cl?, NO 3 ? , SO 4 2? , NH 4 + , K+, Na+, Ca2+, and Mg2+), carbonaceous species (elemental carbon and organic carbon), and elements (Al, Si, Mg, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Br, and Pb) were detected using ion chromatography, thermal/optical reflectance, and proton-induced X-ray emission methods, respectively.

Results

PM10 mass concentrations, as well as most of the chemical components, were significantly increased from urban background to urban sites, which were due to enhanced anthropogenic activities in urban areas. Elements, carbonaceous species, and most of the ions were more uniformly distributed at different types of sites in winter, whereas secondary ion SO 4 2? , NO 3 ? , and NH 4 + showed more evident urban-background contrast in this season. The chemical mass closure indicated that mineral dust, organic matters, and sulfate were the most abundant components in PM10. The sum of individually measured components accounted for 86.9?C97.7% of the total measured PM10 concentration, and the discrepancy was larger in urban area than in urban background area.

Conclusion

According to the principal component analysis?Cmultivariate linear regression model, mineral dust, secondary inorganic ions, sea salt, and motor vehicle were mainly responsible for the PM10 particles in Fuzhou atmosphere, and contributed 19.9%, 53.3%, 21.3%, and 5.5% of PM10, respectively.  相似文献   

20.
Environmental Science and Pollution Research - Contents of 16 polycyclic aromatic hydrocarbons were analyzed in 30 soil samples from 15 locations in Novi Sad, Serbia, assessing for the first time...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号