首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 976 毫秒
1.
Environmental Science and Pollution Research - Coal seam permeability is one of the key parameters affecting coalbed methane (CBM), and plays an important role in resource evaluation and regional...  相似文献   

2.
Produced water (water co-produced with oil and gas) constitutes the single largest waste stream for oil and gas industry. Reclaiming this water for beneficial use is thought to be one of the most practical solutions that can solve both environmental and water shortage problems. The feasibility of this practice depends on the ability to remove its chemical content to the levels that meets the appropriate standards. Organic compounds are probably the most difficult fraction to handle. In this paper, the discrete organic compounds and non-volatile, macromolecular organic compounds (i.e., natural organic matter--NOM) of three produced water samples from the Osage-Skiatook Environmental Research site were characterized. Two of the three produced waters had very little contribution from NOM, while one of the samples had about 23% NOM contribution to its organic matrix pool. Fluorescent spectrophotometric scans provided little differentiation among the organic quality of the produced water, while pyrolysis-GC/MS showed that the NOM characteristics of the three produced waters were distinct. Specifically, the overall halogenated content and aromaticity of the NOM were found to be possible qualifiers that distinguish produced water from the coalbed methane well from produced water from the oil well. And the specific chemical fragments that are linked to polysaccharide sources were found to be potential identifiers that distinguish produced water from the newer oil well from produced water from the older oil well. These identifiers were, however, only suggested for this preliminary study. More samples must be included to build a substantial database on produced water NOM to confirm and identify more markers.  相似文献   

3.
An initial investigation into the potential environmental impacts of CO2 sequestration in unmineable coal seams has been conducted, focusing on changes in the produced water during enhanced coalbed methane (ECBM) production, using a CO2 injection process (CO2-ECBM). A high volatile bituminous coal, Pittsburgh No. 8, was reacted with synthetic produced water and gaseous carbon dioxide at 40°C and 50 bar to evaluate the potential for mobilisation of toxic metals during CO2-ECBM/sequestration. Microscopic and X-ray diffraction analysis of the post-reaction coal samples clearly show evidence of chemical reaction and chemical analysis of the synthetic produced water shows substantial changes in composition. These results suggest that changes to the produced water chemistry and the potential for mobilising toxic trace elements from coal beds are important factors to be considered when evaluating deep, unmineable coal seams for CO2 sequestration.  相似文献   

4.
Prior to the application of biochar as an agricultural improver, attention should be paid to the potential introduction of toxicants and resulting unintended impacts on the environment. In the present study, the concentrations of polycyclic aromatic hydrocarbons (PAHs), heavy metals, and mineral elements were determined in maize and sludge biochars produced at 100 °C increments between 200 and 700 °C. The concentration ranges of total PAHs were 358–5,136 μg kg?1 in maize biochars and 179–70,385 μg kg?1 in sludge biochars. The total heavy metals were detected at the following concentrations (mg kg?1): Cu, 20.4–56.7; Zn, 59.7–133; Pb, 1.44–3.50; Cd, <0.014; Cr, 8.08–21.4; Ni, 4.38–9.82 in maize biochars and Cu, 149–202; Zn, 735–986; Pb, 54.7–74.2; Cd, 1.06–1.38; Cr, 180–247; Ni, 41.1–56.1 in sludge biochars. The total concentrations of PAHs and heavy metals in all maize biochars and most sludge biochars were below the control standards of sludge for agricultural use in China, the USA, and Europe. The leachable Mn concentrations in sludge biochars produced at below 500 °C exceeded the groundwater or drinking water standards of these countries. Overall, all the maize biochars were acceptable for land application, but sludge biochars generated at temperatures between 200 and 500 °C were unsuitable for application as soil amendments due to their potential adverse effects on soil and groundwater quality.  相似文献   

5.
Pig farms are a vital component of rural economies in Australia. However, disposal of effluent leads to many environmental problems. This case study of the Berrybank Farm piggery waste management system in Victoria estimates greenhouse gas (GHG) benefits from three different activities. Analysis reveals that the capturing and combusting of methane from piggery effluent could save between 4859 and 5840 tCO2e yr? 1 of GHG emissions. Similarly, using methane for replacing fuels for electricity generation could save another 800 tCO2e yr? 1of GHGs. Likewise, by utilizing the biogas wastes to replace inorganic fertilizers there could be a further saving of 1193 to 1375 tCO2e yr? 1 of GHG, depending on the type of fertilizers the waste replaces. Therefore, a well-managed piggery farm with 15,000 pigs could save 6,852 to 8,015 tCO2e yr? 1, which equates to the carbon sequestrated from 6,800 to 8,000 spotted gum trees (age = 35 year) in their above plus below-ground biomass. Implementation of similar project in suitable areas in Australia could have significant environmental and financial benefits.  相似文献   

6.
A significant emerging environmental problem is the disturbance and oxidation of soils with high levels of iron sulphide minerals resulting in acidification and causing the mobilization of metals into groundwater. This process is occurring in many parts of the world. In Western Australia, impacted groundwater is extracted by residents for domestic use. We sought to establish domestic use patterns of bore water and the concentration of metals. Sixty-seven domestic bore water samples clearly indicated oxidation of sulphidic materials with heavy metal concentrations ranging for aluminium (相似文献   

7.
Characterization of groundwater quality allows the evaluation of groundwater pollution and provides information for better management of groundwater resources. This study characterized the shallow groundwater quality and its spatial and seasonal variations in the Lower St. Johns River Basin, Florida, USA, under agricultural, forest, wastewater, and residential land uses using field measurements and two-dimensional kriging analysis. Comparison of the concentrations of groundwater quality constituents against the US EPA’s water quality criteria showed that the maximum nitrate/nitrite (NO x ) and arsenic (As) concentrations exceeded the EPA’s drinking water standard limits, while the maximum Cl, SO 4 2?? , and Mn concentrations exceeded the EPA’s national secondary drinking water regulations. In general, high kriging estimated groundwater NH 4 + concentrations were found around the agricultural areas, while high kriging estimated groundwater NO x concentrations were observed in the residential areas with a high density of septic tank distribution. Our study further revealed that more areas were found with high estimated NO x concentrations in summer than in spring. This occurred partially because of more NO x leaching into the shallow groundwater due to the wetter summer and partially because of faster nitrification rate due to the higher temperature in summer. Large extent and high kriging estimated total phosphorus concentrations were found in the residential areas. Overall, the groundwater Na and Mg concentration distributions were relatively more even in summer than in spring. Higher kriging estimated groundwater As concentrations were found around the agricultural areas, which exceeded the EPA’s drinking water standard limit. Very small variations in groundwater dissolved organic carbon concentrations were observed between spring and summer. This study demonstrated that the concentrations of groundwater quality constituents varied from location to location, and impacts of land uses on groundwater quality variation were profound.  相似文献   

8.
The extensive eastern boundary of Everglades National Park (ENP) in south Florida (USA) is subject to one of the most expensive and ambitious environmental restoration projects in history. Understanding and predicting the water quality interactions between the shallow aquifer and surface water is a key component in meeting current environmental regulations and fine-tuning ENP wetland restoration while still maintaining flood protection for the adjacent developed areas. Dynamic factor analysis (DFA), a recent technique for the study of multivariate non-stationary time-series, was applied to study fluctuations in groundwater quality in the area. More than two years of hydrological and water quality time series (rainfall; water table depth; and soil, ground and surface water concentrations of N-NO3-, N-NH4+, P-PO4(3-), Total P, F-and Cl-) from a small agricultural watershed adjacent to the ENP were selected for the study. The unexplained variability required for determining the concentration of each chemical in the 16 wells was greatly reduced by including in the analysis some of the observed time series as explanatory variables (rainfall, water table depth, and soil and canal water chemical concentration). DFA results showed that groundwater concentration of three of the agrochemical species studied (N-NO3-, P-PO4(3-)and Total P) were affected by the same explanatory variables (water table depth, enriched topsoil, and occurrence of a leaching rainfall event, in order of decreasing relative importance). This indicates that leaching by rainfall is the main mechanism explaining concentration peaks in groundwater. In the case of N-NH4+, in addition to leaching, groundwater concentration is governed by lateral exchange with canals. F-and Cl- are mainly affected by periods of dilution by rainfall recharge, and by exchange with the canals. The unstructured nature of the common trends found suggests that these are related to the complex spatially and temporally varying land use patterns in the watershed. The results indicate that peak concentrations of agrochemicals in groundwater could be reduced by improving fertilization practices (by splitting and modifying timing of applications) and by operating the regional canal system to maintain the water table low, especially during the rainy periods.  相似文献   

9.
This study considers the flux of radioactivity in flowback fluid from shale gas development in three areas: the Carboniferous, Bowland Shale, UK; the Silurian Shale, Poland; and the Carboniferous Barnett Shale, USA. The radioactive flux from these basins was estimated, given estimates of the number of wells developed or to be developed, the flowback volume per well and the concentration of K (potassium) and Ra (radium) in the flowback water. For comparative purposes, the range of concentration was itself considered within four scenarios for the concentration range of radioactive measured in each shale gas basin, the groundwater of the each shale gas basin, global groundwater and local surface water. The study found that (i) for the Barnett Shale and the Silurian Shale, Poland, the 1 % exceedance flux in flowback water was between seven and eight times that would be expected from local groundwater. However, for the Bowland Shale, UK, the 1 % exceedance flux (the flux that would only be expected to be exceeded 1 % of the time, i.e. a reasonable worst case scenario) in flowback water was 500 times that expected from local groundwater. (ii) In no scenario was the 1 % exceedance exposure greater than 1 mSv—the allowable annual exposure allowed for in the UK. (iii) The radioactive flux of per energy produced was lower for shale gas than for conventional oil and gas production, nuclear power production and electricity generated through burning coal.  相似文献   

10.
The fate, effects, and potential environmental risks of ethylene glycol (EG) in the environment were examined. EG undergoes rapid biodegradation in aerobic and anaerobic environments (approximately 100% removal of EG within 24 h to 28 days). In air, EG reacts with photo-chemically produced hydroxyl radicals with a resulting atmospheric half-life of 2 days. Acute toxicity values (LC(50)s and EC(50)s) were generally >10,000 mg/l for fish and aquatic invertebrates. The data collectively show that EG is not persistent in air, surface water, soil, or groundwater, is practically non-toxic to aquatic organisms, and does not bioaccumulate in aquatic organisms. Potential long-term, quasi-steady state regional concentrations of EG estimated with a multi-media model for air, water, soil, and sediment were all less than predicted no effect concentrations (PNECs).  相似文献   

11.
Global detection of antibiotic substances in water matrices has considerably increased in the recent past. However, in India research on this issue is limited or generalised in the literature. Risks associated with the presence of antibiotics in the environment can be quantified using a hazard quotient (HQ) approach. Here, HQs were developed using the measured environmental concentration (MEC) approach for antibiotic residues in Indian water matrices previously reported in the literature. In the present study, environmental risk assessment, using the HQ index [HQ?=?measured environmental concentration (MEC)/predicted no effect concentration (PNEC)] for different antibiotics, was performed according to the guidelines of European Medicine Evaluation Agency (EMEA). MEC and PNEC levels were obtained from the literature. PNEC values were also calculated from EC50 using a safety factor when no PNECs were reported in the literature. HQs were obtained for industrial effluents (HQ?=?104) that were greater than any previously reported values. Ciprofloxacin, a fluoroquinolone antibiotic, seemed to present the greatest risk in India. The HQ indices for Indian water matrices were in the following order: industrial effluents?>?lake water?>?river water?>?hospital effluents?>?treated sewage ? groundwater. A very high HQ represents a potential environmental concern for aquatic environments in India and demands that immediate attention be devoted to regulating these compounds, especially in pharmaceutical industrial wastewater.  相似文献   

12.
The discovery that negatively charged aggregates of C60 fullerene (nC60) are stable in water has raised concerns regarding the potential environmental and health effects of these aggregates. In this work, we show that nC60 aggregates produced by extended mixing in the presence of environmentally relevant carboxylic acids (acetic acid, tartaric acid, citric acid) have surface charge and morphologic properties that differ from those produced by extended mixing in water alone. In general, aggregates formed in the presence of these acids have a more negative surface charge and are more homogeneous than those produced in water alone. Carboxylic acid identity, solution pH, and sodium ion concentration, which are all intricately coupled, play an important role in setting the measured surface charge. Comparisons between particle sizes determined by analysis of TEM images and those obtained by dynamic light scattering (DLS) indicate that DLS results require careful evaluation when used to describe nC60 aggregates.  相似文献   

13.
Deterioration in groundwater quality has attracted wide social interest in China. In this study, groundwater quality was monitored during December 2014 at 115 sites in the Hutuo River alluvial-pluvial fan region of northern China. Results showed that 21.7% of NO3 ? and 51.3% of total hardness samples exceeded grade III of the national quality standards for Chinese groundwater. In addition, results of gray relationship analysis (GRA) show that 64.3, 10.4, 21.7, and 3.6% of samples were within the I, II, IV, and V grades of groundwater in the Hutuo River region, respectively. The poor water quality in the study region is due to intense anthropogenic activities as well as aquifer vulnerability to contamination. Results of principal component analysis (PCA) revealed three major factors: (1) domestic wastewater and agricultural runoff pollution (anthropogenic activities), (2) water-rock interactions (natural processes), and (3) industrial wastewater pollution (anthropogenic activities). Using PCA and absolute principal component scores-multivariate linear regression (APCS-MLR), results show that domestic wastewater and agricultural runoff are the main sources of groundwater pollution in the Hutuo River alluvial-pluvial fan area. Thus, the most appropriate methods to prevent groundwater quality degradation are to improve capacities for wastewater treatment and to optimize fertilization strategies.  相似文献   

14.
Groundwater quality in coastal area has been an issue of interest because of excessive groundwater extraction for human use, for example, industrialization, irrigation, which can lead to saltwater intrusion. The study develops an integrated data analysis procedure based on multivariate statistics principal component analysis (PCA), hierarchical cluster analysis (HCA) and redundancy analysis (RDA), to determine the effects of key environmental conditions on the formulation of groundwater pollutants. This proposed method was demonstrated by analyzing groundwater quality monitoring data collected between 2011 and 2014 from four coastal industrial areas in Changhua county of Taiwan, namely Chuansing, Xianxi, Lukang and Fangyuan industrial parks. First, different environmental conditions in each industrial region were explored by PCA. The spatial hierarchy and spatial distribution of pollutant categories were then identified using HCA with the kriging method. Finally, the effect of environmental conditions on constitutive pollutants were identified with RDA. The three environmental patterns identified from the analytical results in Chuansing, Lukang and Xianxi were the salination factor (including conductivity and general hardness (GH)), water level and redox condition (including dissolved oxygen and oxidation–reduction potential). Fangyuan industrial park had only two patterns, namely salination (including conductivity and GH) and oxygen content (including DO and depth). The pollutant category indicated high concentrations of all pollutants in Chuansing and Fangyuan, and higher concentration of SO42?, TDS, Cl? in Xianxi, and of NH3-N, Mn, Fe and TOC in Lukang. According to RDA results, salination caused the high concentrations of NH3N, Cl?, TDS in Chuansing, and of Cl?, TDS and SO42? in Xianxi and Lukang. Additionally, salination caused high concentrations of Fe in both Lukang and Fangyuan industrial parks in combination with those three pollutants. The redox condition was linked to high content of NO3? in Chuansing and Lukang, and of TOC in Xianxi. In Fangyuan industrial park, NO3? was also linked to high oxygen concentration. In summary, the combination of PCA, HCA and RDA enables the analysis of monitoring data to support policy decision-making.  相似文献   

15.
Tunisia has very limited potential of surface and groundwater resources which are subject to different quantitative and qualitative forms of degradation. The risk of groundwater pollution results from the interaction between the vulnerability of aquifers to pollution and anthropogenic activities. Our research focuses on the study of the Sers water table water quality (northwest Tunisia) following the inputs used for agricultural activities in the region. Water samples were extracted from 40 wells to analyze the main physicochemical parameter indicators of the groundwater quality. The results obtained show that these waters have two major facies: Na-Cl and Ca-Mg-SO4. The nitrate contents are relatively high suggesting that the agricultural activities are probably the most important anthropogenic source of water contamination. The results of the Standardized Principal Component Analysis (SPCA) confirm the geochemical methods and results and provide further information about the water quality of the Sers El Kef aquifer. In addition, the pollution degree differs from one site to another depending on the spreading rate of nitrogen fertilizers and the distance from the pollution source.  相似文献   

16.
Hydrocarbon vapors associated with spilled petroleum products arouse regulatory concern and can pose a significant health and safety risk. While petroleum products do not contain a significant amount of methane (CH4), high CH4contents in soil gas near petroleum spills have been reported. While CH4is nontoxic, its accumulation in shallow soil gas represents a potential explosion and asphyxiation hazard, especially in confined spaces. Identifying the source and origin of shallow CH4accumulations is an important part of evaluating potential exposure pathways, selecting appropriate remedial measures, and determining environmental liability. This paper discusses the potential nature and anthropogenic sources for shallow CH4and how integration of geological, geochemical, and land use data can be used to determine its origin and identify its source. Two case studies are presented, one where CH4associated with a gasoline spill is shown to be derived from a natural source rather than the gasoline, and a second where CH4associated with spilled crude oil is shown to be produced in the vadose zone by biodegradation of the oil.  相似文献   

17.

Identification of different pollution sources in groundwater is challenging, especially in areas with diverse land uses and receiving multiple inputs. In this study, principal component analysis (PCA) was combined with geographic information system (GIS) to explore the spatial and temporal variation of groundwater quality and to identify the sources of pollution and main factors governing the quality of groundwater in a multiple land-use area in southwestern China. Groundwater samples collected from 26 wells in 2012 and 38 wells in 2018 were analyzed for 13 water quality parameters. The PCA results showed that the hydro-geochemical process was the predominant factor determining groundwater quality, followed by agricultural activities, domestic sewage discharges, and industrial sewage discharges. Agriculture expansion from 2012 to 2018 resulted in increased apportionment of agricultural pollution. In contrast, economic restructure and infrastructure improvement reduced the contributions of domestic sewage and industrial pollution. Anthropogenic activities were found the major causes of elevated nitrogen concentrations (NO3?, NO2?, NH4+) in groundwater, highlighting the necessity of controlling N sources through effective fertilizer managements in agricultural areas and reducing sewage discharges in urban areas. The applications of GIS and PCA successfully identified the sources of pollutants and major factors driving the variations of groundwater quality in tested years.

  相似文献   

18.
The bioaccumulation potential and environmental fate of polychlorinated hydroxydiphenyl ethers (HO-PCDEs; polychlorinated phenoxyphenols, PCPP), the major impurities of chlorophenol formulations and their methoxy analogues (MeO-PCDEs; polychlorinated methoxyanisoles, PCPAs) were investigated. Oligochaete worms (Lumbriculus variegatus) exposed to sediment spiked with a model substance of one HO-hexaCDE (4'-HO-PCDE 161) or its methoxy analogue (4'-MeO-PCDE 161) clearly accumulated the test compounds revealing the potential for environmental risk of HO-PCDEs and MeO-PCDEs. The HO-PCDE tested has earlier been reported as an abundant component in a Finnish chlorophenol formulation (Ky-5) and its methoxy analogue is recognized as an abundant MeO-PCDE in sawmill soil contaminated by the formulation. The occurrence of 4'-HO-PCDE 161 and its methoxy analogue among other HO-PCDEs and MeO-PCDEs in lake mussels (Anodonta piscinalis) incubated in a river contaminated via the manufacture of Ky-5 showed that these compounds are bioavailable and transported in the aquatic environment. Mussel comparison with sediment data pointed to a higher accumulation potential for MeO-PCDEs than for HO-PCDEs. The finding of HO-PCDEs in groundwater samples collected from a groundwater reservoir, which had been contaminated by chlorophenols, points to potential of HO-PCDEs for transport with water in soil.  相似文献   

19.
Landfill gas (LFG) generation is predicted by a first-order decay (FOD) equation that incorporates two parameters: a methane generation potential (L0) and a methane generation rate (k). Because non-hazardous waste landfills may accept many types of waste streams, multiphase models have been developed in an attempt to more accurately predict methane generation from heterogeneous waste streams. The ability of a single-phase FOD model to predict methane generation using weighted-average methane generation parameters and tonnages translated from multiphase models was assessed in two exercises. In the first exercise, waste composition from four Danish landfills represented by low-biodegradable waste streams was modeled in the Afvalzorg Multiphase Model and methane generation was compared to the single-phase Intergovernmental Panel on Climate Change (IPCC) Waste Model and LandGEM. In the second exercise, waste composition represented by IPCC waste components was modeled in the multiphase IPCC and compared to single-phase LandGEM and Australia’s Solid Waste Calculator (SWC). In both cases, weight-averaging of methane generation parameters from waste composition data in single-phase models was effective in predicting cumulative methane generation from -7% to +6% of the multiphase models. The results underscore the understanding that multiphase models will not necessarily improve LFG generation prediction because the uncertainty of the method rests largely within the input parameters. A unique method of calculating the methane generation rate constant by mass of anaerobically degradable carbon was presented (kc) and compared to existing methods, providing a better fit in 3 of 8 scenarios. Generally, single phase models with weighted-average inputs can accurately predict methane generation from multiple waste streams with varied characteristics; weighted averages should therefore be used instead of regional default values when comparing models.

Implications: Translating multiphase first-order decay model input parameters by weighted average shows that single-phase models can predict cumulative methane generation within the level of uncertainty of many of the input parameters as defined by the Intergovernmental Panel on Climate Change (IPCC), which indicates that decreasing the uncertainty of the input parameters will make the model more accurate rather than adding multiple phases or input parameters.  相似文献   


20.
There is an urgent need globally to trigger fundamental societal changes in water management away from existing unsustainable paradigms. This paper attempts to understand the evolution of newspaper coverage of water issues in China by analyzing water-related articles in a major national newspaper, the People’s Daily, over the period 1946–2012 using a content analysis approach. The major findings include the following: (1) water issues were in relatively prominent positions in the newspaper; (2) the reporting of water issues in China experienced three stages: 1946 to the middle of 1980s—flood and drought control and water for food production, the middle of 1980s to 1997—water for economic development, and 1998 to the present—water for the environmental sustainability and economic development; (3) the reporting of water issues in the People’s Daily clearly reflected China’s top-down water resources management system, and no “real” public opinions on water were reported during the study period; and (4) the People’s Daily is just a wind vane of Chinese mainstream values and policies on water. The findings supported the realist assumption that the societal value changes on water issues in China were triggered by a range of factors including biophysical pressure (floods and droughts), political campaign (the Cultural Revolution), macro-economic reform (Reform and Opening-up), water institutional arrangement (the Water Law), and water management reform (the No. 1 Central Document on water reform). While there are similarities and differences between this study and other studies, important implications for more sustainable water management are a need to strengthen academic specialists’ and NGO’s voices in the newspaper to create a better informed public, and to stimulate practices toward sustainable water use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号