首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of alcohol fuel has received much attention since 1980s. In Brazil, ethanol-fueled vehicles have been currently used on a large scale. This paper reports the atmospheric methanol, ethanol and isopropanol concentrations which were measured from May to December 1997, in Osaka, Japan, where alcohol fuel was not used, and from 3 to 9 February 1998, in Sao Paulo, Brazil, where ethanol fuel was used. The alcohols were determined by the alkyl nitrite formation reaction using gas chromatography (GC-ECD) analysis. The concentration of atmospheric alcohols, especially ethanol, measured in Sao Paulo were significantly higher than those in Osaka. In Osaka, the average concentrations of atmospheric methanol, ethanol, and isopropanol were 5.8±3.8, 8.2±4.6, and 7.2±5.9 ppbv, respectively. The average ambient levels of methanol, ethanol, and isopropanol measured in Sao Paulo were 34.1±9.2, 176.3.±38.1, and 44.2±13.7 ppbv, respectively. The ambient levels of aldehydes, which were expected to be high due to the use of alcohol fuel, were also measured at these sampling sites. The atmospheric formaldehyde average concentration measured in Osaka was 1.9±0.9 ppbv, and the average acetaldehyde concentration was 1.5±0.8 ppbv. The atmospheric formaldehyde and acetaldehyde average concentrations measured in Sao Paulo were 5.0±2.8 and 5.4±2.8 ppbv, respectively. The C2H5OH/CH3OH and CH3CHO/HCHO were compared between the two measurement sites and elsewhere in the world, which have already been reported in the literature. Due to the use of ethanol-fueled vehicles, these ratios, especially C2H5OH/CH3OH, are much higher in Brazil than these measured elsewhere in the world.  相似文献   

2.
ABSTRACT

We examine the life cycles of gasoline, diesel, compressed natural gas (CNG), and ethanol (C2H5OH)-fueled internal combustion engine (ICE) automobiles. Port and direct injection and spark and compression ignition engines are examined. We investigate diesel fuel from both petroleum and biosources as well as C2H5OH from corn, herbaceous bio-mass, and woody biomass. The baseline vehicle is a gasoline-fueled 1998 Ford Taurus. We optimize the other fuel/powertrain combinations for each specific fuel as a part of making the vehicles comparable to the baseline in terms of range, emissions level, and vehicle lifetime. Life-cycle calculations are done using the economic input-output life-cycle analysis (EIO-LCA) software; fuel cycles and vehicle end-of-life stages are based on published model results.

We find that recent advances in gasoline vehicles, the low petroleum price, and the extensive gasoline infrastructure make it difficult for any alternative fuel to become commercially viable. The most attractive alternative fuel is compressed natural gas because it is less expensive than gasoline, has lower regulated pollutant and toxics emissions, produces less greenhouse gas (GHG) emissions, and is available in North America in large quantities. However, the bulk and weight of gas storage cylinders required for the vehicle to attain a range comparable to that of gasoline vehicles necessitates a redesign of the engine and chassis. Additional natural gas transportation and distribution infrastructure is required for large-scale use of natural gas for transportation. Diesel engines are extremely attractive in terms of energy efficiency, but expert judgment is divided on whether these engines will be able to meet strict emissions standards, even with reformulated fuel. The attractiveness of direct injection engines depends on their being able to meet strict emissions standards without losing their greater efficiency. Biofuels offer lower GHG emissions, are sustainable, and reduce the demand for imported fuels. Fuels from food sources, such as biodiesel from soybeans and C2H5OH from corn, can be attractive only if the co-products are in high demand and if the fuel production does not diminish the food supply. C2H5OH from herbaceous or woody biomass could replace the gasoline burned in the light-duty fleet while supplying electricity as a co-product. While it costs more than gasoline, bioethanol would be attractive if the price of gasoline doubled, if significant reductions in GHG emissions were required, or if fuel economy regulations for gasoline vehicles were tightened.  相似文献   

3.
Abstract

The traditional technologies for odor removal of thiol usually create either secondary pollution for scrubbing, adsorption, and absorption processes, or sulfur (S) poisoning for catalytic incineration. This study applied a laboratory-scale radio-frequency plasma reactor to destructive percentage-grade concentrations of odorous dimethyl sulfide (CH3SCH3, or DMS). Odor was diminished effectively via reforming DMS into mainly carbon disulfide (CS2) or sulfur dioxide (SO2). The removal efficiencies of DMS elevated significantly with a lower feeding concentration of DMS or a higher applied rf power. A greater inlet oxygen (O2)/DMS molar ratio slightly improved the removal efficiency. In an O2-free environment, DMS was converted primarily to CS2, methane (CH4), acetylene (C2H2), ethylene (C2H4), and hydrogen (H2), with traces of hydrogen sulfide (H2S), methyl mercaptan (CH3SH), and dimethyl disulfide. In an O2-containing environment, the species detected were SO2, CS2, carbonyl sulfide, carbon dioxide (CO2), CH4, C2H4, C2H2, H2, formal-dehyde, and methanol. Differences in yield of products were functions of the amounts of added O2 and the applied power. This study provided useful information for gaining insight into the reaction pathways for the DMS dissociation and the formation of products in the plasmolysis and conversion processes.  相似文献   

4.
We have numerically modeled the breakdown of small quantities of several chlorinated hydrocarbons (CH3CI, CH2CI2, CHCI3, CCI4, C2H3CI, and C2H5CI) in a lean mixture of combustion products between 800 and 1480 K. This simulates the fate of poorly atomized waste in a liquid-Injection Incinerator. Kinetics calculations were performed using the CHEMKIN and SENKIN programs, with a reaction mechanism that was developed at Louisiana State University to model flat-flame burner experiments.

A 99.99-percent destruction efficiency was attained In one second at temperatures ranging from 1280 to 960 K, with CCI4 requiring the highest temperature for destruction and C2H5CI the lowest. For all compounds except C2H5CI, there was a range of temperatures at which byproducts accounted for several percent of the elemental chlorine at the outlet. The more heavily chlorinated compounds formed more byproducts even though the amount of elemental chlorine was the same in all cases. The sensitivity of results to residence time, equivalence ratio, temperature profile, and the presence of additional chlorine, was examined for the case of CHCI3.  相似文献   

5.

This article shows oily sawdust gasification research on countercurrent installation. Experimental research was on a laboratory scale. The main purpose of the experiment was combustible gas production with higher CH4 concentration. Gas concentrations like CO, CO2, CH4, H2, and CnHm determine syngas composition. The technological parameter’s value defines experimental conditions. Value of this was fuel to air ratio. With fuel to air ratio change, syngas composition was a differential phenomenon where it depended on the process parameters like temperature. Additionally, evaluation of methane formation from CO, H2, and CO2 was done. Methanization coefficients were based on CO and CO2 hydrogenation reactions. Component’s activity was in analogs way to syngas components changed.

  相似文献   

6.
Abstract

The purpose of this study was to develop a technology that can convert biogas to synthesis gas (SynGas), a low-emission substituted energy, using a non-thermal-pulsed plasma method. To investigate the characteristics of Syn-Gas production from simulated biogas, the reforming characteristics in relation to variations in pulse frequency, biogas component ratio (C3H8/CO2), vapor flow ratio (H2O/total flow rate [TFR]), biogas velocity, and pulse power were studied. A maximum conversion rate of 49.1% was achieved for the biogas when the above parameters were 500 Hz, 1.5, 0.52, 0.32 m/sec, and 657 W, respectively. Under the above conditions, the dry basis mole fractions of the SynGas were as follows: H2 = 0.645,CH4 = 0.081, C2H2 = 0.067, C3H6 = 0.049, CO = 0.008 and C2H4 = 0.004. The ratio of hydrogen to the other intermediates in the SynGas (H2/ITMs) was 3.1.  相似文献   

7.
Additional inhibitors for the conversion of NO to NO2 in C3H6—NO—02 irradiated mixtures have been tested at 25°C. These mixtures initially contained 16 mTorr C3H6, 8 mTorr NO, 0.012 mTorr NO2, additive, and enough O2 to bring the total pressure to 100 Torr. The NO2 pressure was monitored photometrically. In the absence of additive, the NO2 pressure first increases with irradiation time reaching a maximum conversion at about 15 minutes. As the irradiation time increases beyond 15 min, the NO2 pressure drops. Before adding the inhibitors, runs were done with 10 Torr of CO added, and in these runs the conversion was speeded so that the maximum in NO2 pressure occurred at 10 min. This enhancement in conversion rate is considered to be diagnostic for the presence of HO radicals. Next 10-min irradiations were done with various amounts of hexafluorobenzene (C6F6), nitrobenzene (C6H5NO2), or naphtha lene (C10H8) added. The NO2 pressure was reduced to one-half its value in the absence of inhibitor with 270 mTorr C6F6’, 220 mTorr C6H5N02, or 4 mTorr C10Hg. The C10H8 is a very efficient inhibitor, but additions of up to 1 8.5 mTorr C10H8 did not reduce the N02 pressure to zero. Studies of the percent conversion of NO to NO2 vs. irradiation time were done with either 4.2 mTorr C10H8 or 40 mTorr 2,6-di-ferf-butyl-4-methylphenol (Ph) added. In the former case the peak conversion was delayed from 15 to 22 min, while in the latter case no delay occurred. However, with the Ph added, there appeared to be some reduction in the maximum value of percent conversion.  相似文献   

8.
Gotoh Y  Iwata G  Choh K  Kubota M  Matsuda H 《Chemosphere》2011,85(4):637-642
A comparison of CaOs produced by calcining two types of hydrated lime and calcium carbonate was made for decomposition of trichloroethylene and in-situ dry sorption of the decomposed Cl-products using a lab-scale gas flow type tubular packed bed reactor. About 20 mg of CaO sample was mixed with about 2 g of Al2O3 particles and packed in the reactor and allowed to react with a flowing standard gas containing 500 ppm of C2HCl3 (N2 balance) at 673 and 873 K, under the condition that the reaction of CaO with C2HCl3 might be completed within a few hours.It was found that no thermal decomposition of C2HCl3 at or below 673 K was observed in a reactor packed only with Al2O3 particles. However, a considerable amount of decomposition of C2HCl3 was obtained in a reactor packed with CaO and Al2O3, even at 673 K. For 1 mol of CaO prepared by calcining highly reactive Ca(OH)2 at 673 K, decomposition of 0.42 mol of C2HCl3 and in-situ absorption product of 0.53 mol of CaCl2 were obtained. At 873 K, about 46% of C2HCl3 was thermally decomposed. The total amount of C2HCl3 decomposed in CaO-Al2O3 particle bed at 873 K became nearly twice larger than that at 673 K. For 1 mol of CaO prepared by calcining highly reactive Ca(OH)2 at 873 K, decomposition of 0.59 mol of C2HCl3 and in-situ absorption product of 0.67 mol of CaCl2 were obtained. Small amounts of C2Cl2, C2Cl4, CCl4, etc. were detected during decomposition of C2HCl3 at 673 and 873 K.It was recognized that the data on decomposition of C2HCl3 as well as in-situ dry sorption of Cl-products in CaO particle bed were correlated with specific surface area of the CaO employed.  相似文献   

9.
Smog chamber/FTIR techniques were used to study the relative reactivity of OH radicals with methanol, ethanol, phenol, C2H4, C2H2, and p-xylene in 750 Torr of air diluent at 296±2 K. Experiments were performed with, and without, 500–8000 μg m−3 (4000–50 000 μm2 cm−3 surface area per volume) of NaCl, (NH4)2SO4 or NH4NO3 aerosol. In contrast to the recent findings of Oh and Andino (Atmospheric Environment 34 (2000) 2901, 36 (2002) 149; International Journal of Chemical Kinetics 33 (2001) 422) there was no discernable effect of aerosol on the rate of loss of the organic compounds via reaction with OH radicals. Gas kinetic theory arguments cast doubt upon the findings of Oh and Andino. The available data suggest that the answer to the title question is “No”. As part of this work the rate constants for reactions of OH radicals with methanol, ethanol, and phenol in 750 Torr of air at 296 K were determined to be: kOH+CH3OH=(8.12±0.54)×10−13, kOH+C2H5OH=(3.47±0.32)×10−12 and kOH+phenol=(3.27±0.31)×10−11 cm3 molecule−1 s−1.  相似文献   

10.
The rate constant for the reaction of diethyl sulfide (DES; C2H5SC2H5) with ozone was determined for the first time, which was (2.77±0.27)×10−19 cm3 molecule−1 s−1 under a room temperature of (289±1) K. Experiments were conducted under supposedly pseudo-first-order decay conditions, keeping [DES]0>50[O3]0, but having different combinations of [DES]0 and [O3]0. Cyclohexane was added into the reactor to eliminate the effect of OH radicals. The wall decay of ozone and the role of cyclohexane were also discussed in the present work.  相似文献   

11.
Air pollution has a great impact on the social and economic aspects all over the world. In order to account the human interaction with the atmospheric environment, a suitable scientific basis is needed.That is why six physicochemical quantities have been determined in a previous work for each one heterogeneous system between organic volatile pollutants and oxide-pigments of works of art. This investigation is extended in order to determine experimentally five new ones. Thus, a more precise contribution to the elucidation of the mechanism of the deterioration of various works of art in museums is achieved. These physicochemical quantities are: (1) local adsorption energies, (2) local monolayer capacities, (3) local adsorption isotherms, (4) density probability function, and (5) pollutant concentration on the oxide-pigment at equilibrium. All these adsorption parameters mentioned above have been calculated as a function of experimental time for the systems: C6H6/TiO2, C6H6/NO2/TiO2, C6H6/Cr2O3, C6H6/NO2/Cr2O3, C6H5CH3/TiO2, C6H5CH3/NO2/TiO2, C6H5CH3/Cr2O3, C6H5CH3/NO2/Cr2O3, C6H6/PbO, C6H6/NO2/PbO, C6H5CH3/PbO, and C6H5CH3/NO2/PbO for the first time. Thus, in this work we shall stress the recent new aspect of Reversed Flow-(Inverse) Gas Chromatography (RF-GC or RF-IGC), i.e. the time-resolved chromatography related to the evaluation of some important adsorption parameters. Gas Chromatography is a promising meeting place of surface science and atmospheric chemistry.  相似文献   

12.
In urban atmospheres hydrocarbons promote the conversion of NO to NO2 under the influence of sunlight, ultimately giving rise to photochemical smog. The conversion results from a long chain process with HO radicals as the chain carrier. If this chain could be interrupted by suitable radical traps, the formation of photochemical smog would be inhibited. In this paper we report the results of studies using phenol, benzaldehyde, and aniline as inhibitors. Mixtures containing 16 mTorr C3H6, 8 mTorr NO, ~85 Torr 02, and the addi tives were irradiated at 25°C. The NO2 pressure was monitored photometrically. In the absence of additive, the NO2 pressure first increases with irradiation time reaching a maximum conversion corresponding to 70% of the NO at 1 2 minutes. As the radiation time is lengthened, the NO2 pressure drops. With the additive present, the formation of NO2 is delayed. The time to reach the maximum percent conversion of NO to N02 becomes 20, 22, 31, and 40 minutes respectively, for 13 mTorr C6H5OH, 2 mTorr C6H5CHO, 8 mTorr C6H5CHO, and 4.1 mTorr C6H5NH2 added. The problems and possibilities of adding inhibitors to the atmosphere to control air pollution are discussed.  相似文献   

13.
The thermal decomposition of polyethylene glycol was investigated by using a technique combining evolved gas analysis (time-resolved pyrolysis) with ion-attachment mass spectrometry. This technique allows the detection of intact pyrolysis products and, therefore, offers the opportunity for direct real-time monitoring of thermal by-products. Unstable products can thus be detected; for instance, many highly reactive organic peroxides, such as CH3OOH and HOCH2OOH, were found in this study. Classification analysis revealed 10 major compositional formulas among the product species: CnH2n+2O, CnH2n+2O2, CnH2n+2O3, CnH2n+2O4, CnH2n+2O5, CnH2n+2O6, CnH2n+2O7, CnH2nO, CnH2nO2, and HO(CH2CH2O)nH ethylene glycol oligomers. The Li+ ion adduct mass spectra showed a characteristic profile in terms of both the appearance of unique components and the distribution of pyrolysis products. Among the products of the thermal decomposition of PEG, formaldehyde (HCHO) and organic peroxides were particularly interesting. Formaldehyde, one of the 10 most abundant products, is a known human carcinogen. The detection of peroxides suggests that they may form during the incineration of PEG, which may have important environmental implications. The existence of peroxide products may have implications for chemical evolution in incinerator systems.  相似文献   

14.
Total column abundances of CO, HCN, C2H6, and C2H2 have been retrieved from infrared solar spectra observed at Moshiri (44.4°N) and Rikubetsu (43.5°N) in northern Japan from 1997 to 2005. The spectra were recorded with high spectral resolution ground-based Fourier transform infrared (FTIR) spectrometers and total column abundances were calculated by SFIT1 version 1.09e. Deviations of these species relative to their seasonal mean values (ΔCO, ΔHCN, ΔC2H6, and ΔC2H2) were derived, which showed short-time enhancements in 1998, 2002, and 2003. Good correlations among ΔCO, ΔHCN, ΔC2H6, and ΔC2H2 in a few months of each year were seen. Since the number of forest fires in Siberia had large enhancements in 1998, 2002, and 2003, trajectory analyses were performed in order to assess the influence of forest fires and it was confirmed that air masses passing over the location of burning points in Siberia reached Moshiri and Rikubetsu. This paper shows that enhancements of these species were driven by biomass burning in Siberia.  相似文献   

15.
O,O,O-triethyl phosphorothioate ((C2H5O)3PS, TEPT) is a widely used organophosphorus insecticide. TEPT may be released into the atmosphere where it can undergo transport and chemical transformations, which include reactions with OH radicals, NO3 radicals and O3. The mechanism of the atmospheric reactions of TEPT has not been fully understood due to the short-lifetime of its oxidized radical intermediates, and the extreme difficulty in detection of these species experimentally. In this work, we carried out molecular orbital theory calculations for the OH radical-initiated atmospheric photooxidation of TEPT. The profile of the potential energy surface was constructed, and the possible channels involved in the reaction are discussed. The theoretical study shows that OH addition to the PS bond and H abstractions from the CH3CH2O moiety are energetically favorable reaction pathways. The dominant products TEP and SO2 arise from the secondary reactions, the reactions of OH-TEPT adducts with O2. The experimentally uncertain dominant product with molecular weight 170 is mostly due to (C2H5O)2P(S)OH and not (C2H5O)2P(O)SH.  相似文献   

16.
The solubilities of acetone, ethanol and acetaldehyde in cold ternary solutions composed of 38.4–75.0 wt% sulfuric acid in water with additional dissolved organic material have been measured over the temperature range 214.4–238.5 K using a Knudsen cell reactor. The solubility of acetaldehyde in H2SO4/H2O is enhanced by an order of magnitude by the presence of ethanol or acetone. The reactive uptake of acetaldehyde is enhanced by the presence of formaldehyde in acid solution. No significant formation of acetals from ethanol with carbonyl partners was observed. The solubility of acetone is unaffected by the presence of ethanol in solution and vice versa. Only polymerization of small aldehydes offers a potentially significant route to the accretion of organic material into acidic particles in the upper troposphere. The acid-catalyzed polymerization of aldehydes, RC(H)O + R′C(H)O, proceeds through the hydrated forms of the aldehydes, is optimized at acidities around 40 wt% H2SO4, and can potentially accumulate significant amounts (>20%) of organic material by mass in upper tropospheric particles.  相似文献   

17.
This paper describes a study of the products of the Cl-atom-initiated oxidation of three alkyl iodides, RI=CH3I, C2H5I, and 2-C3H7I, carried out in synthetic air at atmospheric pressure and at room temperature. Fourier-transform infrared spectroscopy was used to follow the decay of reactants and subsequent formation of products. The primary step proceeds via two channels, one of which yields HCl and an iodinated alkyl radical, and the other I atoms and an alkyl chloride. Quantitative analysis of the product yields, together with an assessment of the formation of HCl in secondary processes, allowed the fractional branching into the two channels to be calculated. The channel yielding HCl from RI constitutes a fraction 0.59, 0.93, and 0.68 for R=CH3, C2H5, and 2-C3H7. The iodinated alkyl radical forms first a peroxy, and then an alkoxy, radical in the presence of air. The final products CH2O, CH3CHO, and CH3COCH3 were observed as expected for the decomposition of these radicals with RI=CH3I, C2H5I, and 2-C3H7I, and the fractions of the alkoxy radicals fragmenting to the carbonyl compounds were 0.88, 0.57, and 0.86, respectively. Atomic iodine is formed concomitantly with the carbonyl species, so that these fractions also indicate the yield of I atoms in the secondary process. Alternative reaction pathways for the iodinated alkoxy radicals, in particular reaction with O2, are evaluated and discussed. The yields of I atoms in the primary and secondary steps, taken in combination with kinetic data, make it possible to estimate the contribution of the Cl-initiated oxidation of the alkyl halides to I-atom production in the atmosphere (and, making certain assumptions, the analogous contribution from OH-initiated oxidation). Radical-initiated processes might augment the photolytic yield of I atoms from simple alkyl iodides: the maximum enhancements lie between 5% (CH3I) and more than 30% (2-C3H7I).  相似文献   

18.
The Indo-Gangetic plain (IGP) has received extensive attention of the global scientific community due to higher levels of trace gases and aerosols over this region. Satellite retrievals and model simulations show that, in particular, the eastern part IGP is highly polluted. Despite this attention, in situ measurements of trace gases are very limited over this region. This paper presents measurements of SO2, CO, CH4, and C2–C5 NMHCs during March 2012–February 2013 over Kolkata, a megacity in the eastern IGP, with a focus on processes impacting their levels. The mean SO2 and C2H6 concentrations during winter and post-monsoon periods were eight and three times higher compared to pre-monsoon and monsoon. Early morning enhancements in SO2 and several NMHCs during winter connote boundary layer effects. Daytime elevations in SO2 during pre-monsoon and monsoon suggest impacts of photo-oxidation. Inter-species correlations and trajectory analysis evince transport of SO2 from regional combustion sources (e.g., coal burning in power plants, industries) along the east of the Indo-Gangetic plain impacting SO2 levels at the site. However, C2H2 to CO ratio over Kolkata, which are comparable to other urban regions in India, show impacts of local biofuel combustions. Further, high levels of C3H8 and C4H10 evince the dominance of LPG/petrochemicals over the study location. The suite of trace gases measured during this study helps to decipher between impacts of local emissions and influence of transport on their levels.  相似文献   

19.
The wastewater discharged from leather industries lack biodegradability due to the presence of xenobiotic compounds. The primary clarification and aerobic treatment in Bacillus sp. immobilized Chemo Autotrophic Activated Carbon Oxidation (CAACO) reactor removed considerable amount of pollution parameters. The residual untreated organics in the wastewater was further treated in algal batch reactor inoculated with Synechocystis sp. Sodium nitrate, K2HPO4, MgSO4.7H2O, NH4Cl, CaCl2·2H2O, FeCl3 (anhydrous), and thiamine hydrochloride, rice husk based activated carbon (RHAC), immobilization of Bacillus sp. in mesoporous activated carbon, sand filter of dimensions diameter, 6 cm and height, 30 cm; and the CAACO reactor of dimensions diameter, 5.5 cm and height, 30 cm with total volume 720 ml, and working volume of 356 ml. In the present investigation, the CAACO treated tannery wastewater was applied to Synechocystis sp. inoculated algal batch reactor of hydraulic residence time 24 h. The BOD5, COD, and TOC of treated wastewater from algal batch reactor were 20?±?7, 167?±?29, and 78?±?16 mg/l respectively. The integrated CAACO system and Algal batch reactor was operated for 30 days and they accomplished a cumulative removal of BOD5,COD, TOC, VFA and sulphide as 98 %, 95 %, 93 %, 86 %, and 100 %, respectively. The biokinetic constants for the growth of algae in the batch reactor were specific growth rate, 0.095(day?1) and yield coefficient, 3.15 mg of algal biomass/mg of COD destructed. The degradation of xenobiotic compounds in the algal batch reactor was confirmed through HPLC and FT-IR techniques. The integrated CAACO–Algal reactor system established a credible reduction in pollution parameters in the tannery wastewater. The removal mechanism is mainly due to co-metabolism between algae and bacterial species and the organics were completely metabolized rather than by adsorption.  相似文献   

20.
The present paper presents results from the analysis of 29 individual C2–C9 hydrocarbons (HCs) specified in the European Commission Ozone Directive. The 29 HCs are measured in exhaust from common, contemporary vehicle/engine/fuel technologies for which very little or no data is available in the literature. The obtained HC emission fingerprints are compared with fingerprints deriving from technologies that are being phased out in Europe. Based on the total of 138 emission tests, thirteen type-specific fingerprints are extracted (Mean ± SD percentage contributions from individual HCs to the total mass of the 29 HCs), essential for receptor modelling source apportionment. The different types represent exhaust from Euro3 and Euro4 light-duty (LD) diesel and petrol-vehicles, Euro3 heavy-duty (HD) diesel exhaust, and exhaust from 2-stroke preEuro, Euro1 and Euro2 mopeds. The fuels comprise liquefied petroleum gas, petrol/ethanol blends (0–85% ethanol), and mineral diesel in various blends (0–100%) with fatty acid methyl esters, rapeseed methyl esters palm oil methyl esters, soybean oil methyl or sunflower oil methyl esters. Type-specific tracer compounds (markers) are identified for the various vehicle/engine/fuel technologies.An important finding is an insignificant effect on the HC fingerprints of varying the test driving cycle, indicating that combining HC fingerprints from different emission studies for receptor modelling purposes would be a robust approach.The obtained results are discussed in the context of atmospheric ozone formation and health implications from emissions (mg km?1 for LD and mopeds and mg kW h?1 for HD, all normalised to fuel consumption: mg dm?3 fuel) of the harmful HCs, benzene and 1,3-butadiene.Another important finding is a strong linear correlation of the regulated “total” hydrocarbon emissions (tot-HC) with the ozone formation potential of the 29 HCs (ΣPO3 = (1.66 ± 0.04) × tot-RH; r2 = 0.93). Tot-HC is routinely monitored in emission control laboratories, whereas C2–C9 are not. The revealed strong correlations broadens the usability of data from vehicle emission control laboratories and facilitates the comparison of the ozone formation potential of HCs in exhaust from of old and new vehicle/engine/fuel technologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号