首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Concentrations of Cu and Pb were determined in the roots and shoots of six salt marsh plant species, and in sediment taken from between the roots of the plants, sampled from the lower salt marsh zone at four sites along the Suir Estuary in autumn 1997. Cu was mainly accumulated in the roots of monocotyledonous and dicotyledonous species. Pb was mainly accumulated in the roots of monocotyledons, while dicotyledons tended to accumulate Pb in the shoots. In the case of Aster tripolium there was a clear differentiation in the partitioning of Pb within the plant, between low and high salinity sites. At the low salinity sites, Pb accumulated only in the roots while at the high salinity sites there was a marked translocation to the shoots. The increase in Pb concentrations in roots and shoots of A. tripolium was accompanied by a concomitant decrease in sediment concentrations of Pb. This inverse correlation between sediment and plant concentrations of Pb was also recorded for Spartina spp. and Schoenoplectus tabernaemontani but in the case of these species the roots contained higher concentrations of Pb regardless of salinity levels. These differences in accumulation of Cu and Pb in various salt marsh species, and the influence of salinity on the translocation of Pb in A. tripolium in particular, should be taken into account when using these plants for biomonitoring purposes.  相似文献   

2.

Loessal soil is one of the main cultivated soils in northwest China. Part of its distribution area was irrigated with industrial wastewater in past three decades. This caused heavy metal contamination in the soil. It had induced toxicity on crops and also threatened local human health for now. Based on a field plot experiment, effects of different Cu concentrations (from 45 to 2000 mg kg?1) in loessal soil on spinach plant growth and uptake of mineral nutrients (Zn, Fe, Mg, K, and Ca) by spinach were investigated. The Cu addition increased available concentrations of mineral nutrients in loessal soil and concentrations of Cu, Zn, Mg, and Ca in roots. The translocation of mineral nutrients from roots to leaves was inhibited under Cu addition, inducing their decrease in leaves. The EC10 and EC50 of soil Cu in relative dry weights of leaves were 240.33 mg kg?1 and 1205.04 mg kg?1, respectively. The PLS-PM analysis showed that available concentrations of nutrients in soil were only affected by Cu in soil positively, nutrients in roots were mainly affected by Cu in soil and Cu in leaves positively, nutrients in leaves were mainly affected by Cu in roots negatively, translocation of nutrients in spinach and plant growth were principally affected by Cu in leaves negatively, and the total effect of Cu in leaves on nutrients in roots and leaves, translocation of nutrients in spinach, and plant growth was the highest. Our results indicated that the phytotoxicity of Cu including spinach growth inhibition and mineral disorder in spinach was mainly affected by the Cu concentrations in leaves.

  相似文献   

3.
To determine the extent of metal accumulation in some aquatic macrophytes from contaminated urban streams in southeast Queensland, plants were sampled from six sites, along with contiguous sediments. In all, 15 different species were collected, the most common genera being Typha (Cattails or Bulrushes) and Persicaria (Knotweeds). Before heavy metal analysis, plants were further separated into various morphological tissues, and five selected samples were separated into various physiological tissues. The cadmium, copper, lead and zinc content of the plants were analysed using flames AAS. In general, plant roots exhibited higher metal concentrations than the contiguous sediments. Of the metals of interest, only for zinc was there a relatively clear pattern of increasing accumulation in aquatic macrophytes with increasing sediment metal concentrations. Comparison between morphological tissues of the sampled plants found that roots consistently presented higher metal concentrations than either the stems or leaves, however unlike previous studies, this investigation revealed no consistent trend of stems accumulating more metals than the leaves. For Typha spp., metal concentrations followed the order of roots > rhizomes > leaves, while for Persicaria spp. the order was roots > leaves > stems. The submerged species Myriophyllum aquaticum accumulated the highest levels of metals overall (e.g. Zn 4300 micrograms g-1 dry weight and Cd 6.5 micrograms g-1), and the emergent macrophytes also exhibited relatively high metal contents in their roots. The leaves of the submerged and floating-leafed species collected contained relatively high quantities of the four metals of interest, compared with the leaves of emergent aquatic macrophytes. In the Typha rhizome and Persicaria stem samples analysed for internal variation in metal content, there was a pattern of increasing metal concentrations towards the external sections of the stem, both for subterranean stems (rhizomes) and above-substrate stems. For Persicaria stems, no clear pattern was observed for cadmium and lead, the two metals investigated that are not required by plants for survival.  相似文献   

4.
Abstract

Fourteen cultivars of bai cai (Brassica campestris L. ssp. chinensis var. communis) were grown in the nutrient solutions containing 0–0.5 μg mL?1 of cadmium (Cd) to investigate genotypic differences in the effects of Cd exposure on the plant growth and uptake and distribution of Cd in bai cai plants. The Cd exposure significantly reduced the dry and fresh weights of roots and shoots, the dry weight ratio of shoot/root (S/R), total biomass, and chlorophyll content (SPAD value). Cd concentrations in bai cai ranged from 13.3 to 74.9 μg g?1 DW in shoots and from 163.1 to 574.7 μg g?1 DW in roots under Cd exposure, respectively. The considerable genotypic differences of Cd concentrations and accumulations in both shoots and roots were observed among 14 bai cai cultivars. Moreover, Cd mainly accumulated in the roots. Cd also caused the changes of uptake and distribution of nutrients in bai cai and under the influence of cadmium, the concentration of potassium (K) decreased in shoot and increased in root. However, the concentrations of magnesium (Mg), phosphorus (P), manganese (Mn), boron (B), and iron (Fe) increased in shoots and decreased in roots. In addition, Cd exposure resulted in an increase in calcium (Ca), sulphur (S), and zinc (Zn) concentrations in both shoots and roots but had no significant effects on the whole uptake of the examined mineral nutrients except for S.  相似文献   

5.
One-month old horsegram (Macrotyloma uniflorum (Lam.) Verdc. cv VZM1) and bengalgram (Cicer arietinum L. cv Annogiri) were exposed to different regimes of lead stress as Pb(NO3)2 at 0, 200, 500 and 800 ppm concentrations. The extent of oxidative damage as the rate of lipid peroxidation, antioxidative response and the accumulation of lead in roots and shoots of both plants were evaluated after 12 days of lead stress. Lead (Pb) treated plants showed increased levels of lipid peroxidation as evidenced from the increased malondialdehyde content coupled with the increase in the activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), glutathione reductase (GR), glutathione S-transferase (GST) compared to control (untreated) plants. Lead stress caused significant changes in the activity of antioxidative enzymes. The effect of lead was found to be concentration dependent. Higher concentration of lead (800 ppm) resulted 2- to 3-fold increase in SOD, catalase and peroxidase activities, 3- to 5-fold increase in GR activity and 3- to 4-fold increase in GST activity in roots and leaves of both horsegram and bengalgram plants. Lead stress caused a significant increase in the rate of peroxidation as showed in the levels of malondialdehyde content in roots and leaves of both plant species. Horsegram registered lower Pb accumulation than bengalgram, however localization of Pb was greater in roots than leaves in both plants. In general, lipid peroxide levels and antioxidative enzyme activities were higher in horsegram than bengalgram and also more in roots than leaves which best concordance with the lead contents of both the plants and organs. These results suggest that Pb toxicity causes oxidative stress in plants and the antioxidative enzymes SOD, CAT, POD, GR, GST could play a pivotal role against oxidative injury.  相似文献   

6.
This study quantified Cd, Pb, and Cu content, and the soil–plant transfer factors of these elements in rice paddies within Cam Pha, Quang Ninh province, northeastern Vietnam. The rice paddies are located at a distance of 2 km from the large Coc Sau open-pit coal mine. Electron microprobe analysis combined with backscattered electron imaging and energy-dispersive spectroscopy revealed a relatively high proportion of carbon particles rimmed by an iron sulfide mineral (probably pyrite) in the quartz–clay matrix of rice paddy soils at 20–30 cm depth. Bulk chemical analysis of these soils revealed the presence of Cd, Cu, and Pb at concentrations of 0.146?±?0.004, 23.3?±?0.1, and 23.5?±?0.1 mg/kg which exceeded calculated background concentrations of 0.006?±?0.004, 1.9?±?0.5, and 2.4?±?1.5 mg/kg respectively at one of the sites. Metals and metalloids in Cam Pha rice paddy soils, including As, Cd, Cr, Cu, Hg, Mn, Ni, Pb, and Zn, were found in concentrations ranging from 0.2?±?0.1 to 140?±?3 mg/kg, which were in close agreement with toxic metal contents in mine tailings and Coc Sau coal samples, suggesting mining operations as a major cause of paddy soil contamination. Native and model Oryza sativa L. rice plants were grown in the laboratory in a growth medium to which up to 1.5 mg/kg of paddy soil from Cam Pha was added to investigate the effects on plant growth. A decrease in growth by up to 60 % with respect to a control sample was found for model plants, whereas a decrease of only 10 % was observed for native (Nep cai hoa vang variety) rice plants. This result suggests an adaptation of native Cam Pha rice plants to toxic metals in the agricultural lands. The Cd, Cu, and Pb contents of the native rice plants from Cam Pha paddies exceeded permitted levels in foods. Cadmium and Pb were highest in the rice plant roots with concentrations of 0.84?±?0.02 and 7.7?±?0.3 mg/kg, suggesting an intake of these metals into the rice plant as shown, for example, by Cd and Pb concentrations of 0.09?±?0.01 and 0.10?±?0.04 mg/kg respectively in the rice grain endosperm. The adaptation of native rice plants, combined with bioaccumulation ratios of 1?±?0.6 to 1.4?±?0.7 calculated for Cd transfer to the rice grain endosperm, and maximum Cd transfer factors of 4.3?±?2.1 to the plant roots, strongly suggest a continuous input of some toxic metals from coal-mining operations to agricultural lands in the region of Cam Pha. In addition, our results imply a sustained absorption of metals by native rice plant varieties, which may lead to metal accumulation (e.g., Cd) in human organs and in turn to severe disease.  相似文献   

7.
The low bioavailability of Pb and low number of Pb-tolerant plant species represent an important limitation for Pb phytoextraction. It was recently suggested that halophyte plant species may be a promising material for this purpose, especially in polluted salt areas while Pb mobility may be improved by synthetic chelating agents. This study aims to evaluate Pb extraction by the halophyte Sesuvium portulacastrum in relation to the impact of EDTA application. Seedling were cultivated during 60 days on Pb artificially contaminated soil (200, 400, and 800 ppm Pb) in the presence or in the absence of EDTA (3 g kg?1 soil). Results showed that upon to 400 ppm, Pb had no impact on plant growth. However, exogenous Pb induce a decrease in shoot K+ while it increased shoot Mg2+ and had no impact on shoot Ca2+ concentrations. Lead concentration in the shoots increased with increasing external Pb doses reaching 1,390 ppm in the presence of 800 ppm lead in soil. EDTA addition had no effect on plant growth but strongly increased Pb accumulation in the shoot which increased from 1,390 ppm in the absence of EDTA to 3,772 ppm in EDTA-amended plants exposed to 800 ppm exogenous Pb. Both Pb absorption and translocation from roots to shoots were significantly enhanced by EDTA application, leading to an increase in the total amounts of extracted Pb per plant. These data suggest that S. portulacastrum is very promising species for decontamination of Pb2+-contaminated soil and that its phytoextraction potential was significantly enhanced by addition of EDTA to the polluted soil.  相似文献   

8.
In the last 5 years, naproxen, ibuprofen and diclofenac have been the subject of investigation in the South African water resources. In this study, their occurrence in river water, sediments and aquatic plants was investigated. The concentrations of compounds detected in river water and sediments varied from 0.59 to 2.3 µg L?1 and 0.2 to 9.2?ng g?1, respectively. The partitioning coefficients (L kg?1) for naproxen, ibuprofen and diclofenac varied from one sampling location to the other in ranges of 3.36–4, 1.3–1.9 and 0.13–0.91, respectively. This indicates that the fate of these pharmaceuticals can be influenced by the surrounding conditions such as climate and presence of other water pollutants as well as differences in physicochemical parameters. In the aquatic plant species (Eichhornia crassipes), the concentrations of target compounds varied in different parts of the plant material (roots, stems and leaves). Naproxen was the most abundant in Eichhornia crassipes, with the maximum concentration of 12.0?ng g?1 found in leaves. In this initial assessment, we found no rational trend for the concentrations detected in various parts of Eichhornia crassipes, however, it is speculated that these pharmaceuticals diffuse from water into the roots of the aquatic plants and get translocated into the stem and leaves. Overall, the occurrence of naproxen, ibuprofen and diclofenac in river water, sediments and Eichhornia crassipes was observed, which is an indication that Eichhornia crassipes has the ability to reduce water pollution through the uptake of pharmaceuticals through plant roots.  相似文献   

9.
The ability of individual species to tolerate or accumulate heavy metal pollutants has been investigated widely. Although invasive species may become established more easily in disturbed environments, relatively little is known about how an ability to tolerate pollutants might give invasive species a competitive advantage. This study is part of a series of experiments investigating native and invasive species interactions with chemical pollution and other forms of disturbance. The purpose of this experiment was to investigate the effects of lead on the growth of Lythrum salicaria. We exposed plants to different concentrations of lead and measured different growth parameters, such as biomass, length, leaf number, and biomass allocation to roots. For most measures, plants grown in lead-free conditions were larger than plants exposed to lead. Plants in the low (500 mg/l) and medium (1,000 mg/l) lead treatments did not differ from each other, while plants in the high (2,000 mg/l) lead treatment were significantly smaller. However, the biomass allocation to roots was not significantly different among treatments. Although their growth is affected, individuals of Lythrum salicaria demonstrated tolerance to lead contamination, which may aid in their colonization in lead-polluted wetlands.  相似文献   

10.
Bo Ngam lead mine soils contain high concentrations of lead (up 1% total Pb) and low amounts of organic matter and major nutrients (N, P, K). A glasshouse study was conducted to compare growth performance, metal tolerance and metal uptake by two grasses, Thysanolaena maxima (Roxb.) O. Kuntze and four ecotypes of Vetiveria zizanioides (L.) Nash, syn. Chrysopogon zizanioides (L.) Roberty (three from Thailand: Surat Thani, Songkhla and Kamphaeng Phet, and one from Sri Lanka) and to study the effects of pig manure (20% and 40% w/w) and inorganic fertilizer (75 and 150 mg kg(-1)) amendments to this lead mine soil. The results showed that both T. maxima and V. zizanioides (Surat Thani and Songkhla) could tolerate high Pb concentrations in soil (10750 mg kg(-1)) and had very good growth performance. Application of pig manure increased electrical conductivity (EC) and reduced DTPA-extractable Pb concentration in the soils. Pig manure application improved the growth of vetiver, especially at 20%, application dosage. Vetiver had the highest biomass. T. maxima could not tolerate high EC values. The uptake by roots and transport of Pb to shoots of both species was reduced when soils were amended with pig manure. Application of inorganic fertilizer did not improve growth of vetiver but did improve that of T. maxima. Fertilizer application did not have any great influence on the Pb uptake in vetiver while T. maxima took up more Pb as a result of the fertilizer enhancing its biomass yield. Both species transported low Pb concentrations to shoots (8.3-179 mg kg(-1)) and accumulated higher concentrations in roots (107-911 mg kg(-1)). In summary, both species may be species well suited for phytostabilization in tropical lead mine areas.  相似文献   

11.
Metal contamination is a recurring problem in Peru, caused mainly by mine tailings from a past active mining activity. The Ancash region has the largest number of environmental liabilities, which mobilizes high levels of metals and acid drainages into soils and freshwater sources, posing a standing risk on human and environmental health. Native plant species spontaneously growing on naturally acidified soils and acid mine tailings show a unique tolerance to high metal concentrations and are thus potential candidates for soil phytoremediation. However, little is known about their propagation capacity and metal accumulation under controlled conditions. In this study, we aimed at characterizing nine native plant species, previously identified as potential hyperaccumulators, from areas impacted by mine tailings in the Ancash region. Plants were grown on mine soils under greenhouse conditions during 5 months, after which the concentration of Cd, Cu, Ni, Pb, and Zn was analyzed in roots, shoots, and soils. The bioaccumulation (BAF) and translocation factor (TF) were calculated to determine the amount of each metal accumulated in the roots and shoots and to identify which species could be better suited for phytoremediation purposes. Soil samples contained high Cd (6.50–49.80 mg/kg), Cu (159.50–1187.00 mg/kg), Ni (3.50–8.70 mg/kg), Pb (1707.00–4243.00 mg/kg), and Zn (909.00–7100.00 mg/kg) concentrations exceeding national environmental quality standards. After exposure to mine tailings, concentrations of metals in shoots were highest in Werneria nubigena (Cd, 16.68 mg/kg; Cu, 41.36 mg/kg; Ni, 26.85 mg/kg; Zn, 1691.03 mg/kg), Pennisetum clandestinum (Pb, 236.86 mg/kg), and Medicago lupulina (Zn, 1078.10 mg/kg). Metal concentrations in the roots were highest in Juncus bufonius (Cd, 34.34 mg/kg; Cu, 251.07 mg/kg; Ni, 6.60 mg/kg; Pb, 718.44 mg/kg) and M. lupulina (Zn, 2415.73 mg/kg). The greatest BAF was calculated for W. nubigena (Cd, 1.92; Cu, 1.20; Ni, 6.50; Zn, 3.50) and J. bufonius (Ni, 3.02; Zn, 1.30); BCF for Calamagrostis recta (Cd, 1.09; Cu, 1.80; Ni, 1.09), J. bufonius (Cd, 3.91; Cu, 1.79; Ni, 18.36), and Achyrocline alata (Ni, 137; Zn, 1.85); and TF for W. nubigena (Cd, 2.36; Cu, 1.70; Ni, 2.42; Pb, 1.17; Zn, 1.43), A. alata (Cd, 1.14; Pb, 1.94), J. bufonius (Ni, 2.72; Zn, 1.63), and P. clandestinum (Zn, 1.14). Our results suggest that these plant species have a great potential for soil phytoremediation, given their capability to accumulate and transfer metals and their tolerance to highly metal-polluted environments in the Andean region.  相似文献   

12.
Fast-growing metal-accumulating woody plants are considered potential candidates for phytoextraction of metals. Shuikoushan mining, one of the biggest Pb and Zn production bases in China, presents an important source of the pollution of environment during the last 100 years. Over 150 km2 of fertile soil have been contaminated by the dust, slag, and tailings from this mining. The goal of the present work has been to determine the content of Pb, Zn, Cd, and Cu in wild woody plants (18 species) naturally growing in this area. Two hundred five plant and soil samples from 11 contaminated sites were collected and analyzed. In addition, to assess the ability of multi-metal accumulation of these trees, we proposed a predictive comprehensive bio-concentration index (CBCI) based on fuzzy synthetic assessment. Our data suggest some adult trees could also accumulate a large amount of metals. Pb concentrations in leaves of Paulownia fortunei (Seem.) Hemsl. (1,179 mg/kg) exceeded the hyperaccumulation threshold (1,000 mg/kg). Elevated Pb concentrations (973.38 mg/kg) were also found in the leaves of Broussonetia papyrifera (L.) Vent., with a Pb bio-concentration factor of up to 0.701. Endemic species, Zenia insignis Chun exhibited huge potential for Zn and Cd phytoextraction, with the highest concentrations of Zn (1,968 mg/kg) and Cd (44.40 mg/kg), characteristic root nodules, and fast growth rates in poor soils. As for multi-metal accumulation ability, native species B. papyrifera was calculated to have the most exceptional ability to accumulate various metals simultaneously (CBCI 2.93), followed by Amorpha fruticosa L. (CBCI 2.72) and Lagerstroemia indica L. (CBCI 2.53). A trend of increasing metal from trunks to leaves (trunks?<?branches?<?leaves) and towards fine roots has been shown by metal partitioning between tissues. The proposed CBCI would allow for the selection of suitable trees for phytoremediation in the future.  相似文献   

13.
Synchrotron X-ray microfluorescence and X-ray absorption near-edge microstructure spectroscopy techniques were applied to Typha latifolia (cattail) root sections and rhizosphere soils collected from a brownfield site in New Jersey to investigate lead (Pb) accumulation in T. latifolia roots and the role of iron (Fe) plaque in controlling Pb uptake. We found that Pb and Fe spatial distribution patterns in the root tissues are similar with both metals present at high concentrations mainly in the epidermis and at low concentrations in the vascular tissue (xylem and phloem), and the major Pb and Fe species in T. latifolia root are Pb(II) and Fe(III) regardless of concentration levels. The sequestration of Pb by T. latifolia roots suggests a potential low-cost remediation method (phytostabilization) to manage Pb-contaminated sediments for brownfield remediation while performing wetland rehabilitation.  相似文献   

14.
Plants grown in contaminated areas may accumulate trace metals to a toxic level via their roots and/or leaves. In the present study, we investigated the distribution and sources of Pb and Cd in maize plants (Zea mays L.) grown in a typical zinc smelting impacted area of southwestern China. Results showed that the smelting activities caused significantly elevated concentrations of Pb and Cd in the surrounding soils and maize plants. Pb isotope data revealed that the foliar uptake of atmospheric Pb was the dominant pathway for Pb to the leaf and grain tissues of maize, while Pb in the stalk and root tissues was mainly derived from root uptake. The ratio of Pb to Cd concentrations in the plants indicated that Cd had a different behavior from Pb, with most Cd in the maize plants coming from the soil via root uptake.  相似文献   

15.
We investigated the occurrence of cadmium (Cd), copper (Cu), chromium (Cr), nickel (Ni), lead (Pb), Znic (Zn), iron (Fe), manganese (Mn), and magnesium (Mg) in sediments, as well as in related soils and aquatic plants in the Liangtan River, a typical secondary anabranch of the Yangtze River in the Three Gorges Reservoir Region (TGRR) of China. We found that sediments accumulated more metals than soils and aquatic plants. Concentrations of the nine metals in sediments and soils followed the same sequence, while their concentrations in aquatic plants followed a different sequence. Potential adverse effects of contaminated sediments on benthic fauna were evaluated, and the results showed that the toxic effect on benthic organisms followed the sequence Zn?>?Ni?>?Cr?>?Cu?>?Cd?>?Pb. The potential ecological risk index analysis indicated that Cd in sediments had considerable ecological risk, whereas Cr, Cu, Zn, Ni, and Pb had low ecological risk. The potential ecological risk index (RI) of the heavy metals in sediments of the Liangtan River was 174.9, indicating moderate ecological risk. The transfer factor trend of metals for aquatic plants showed that Cd and Ni had the most and least accumulation, respectively. For Cu, Cd, Mg, Pb, and Cr, a significant positive correlation of the metal concentrations was observed between sediments and soils, but no correlations (excluding Cr) were detected between sediments and aquatic plants. Our study indicated that anthropogenic input may be the primary source of metal contamination in the Liangtan River, and that Zn and Cd pollution in the Liangtan River should be further explored.  相似文献   

16.
Chemical compositions of soil samples are multivariate in nature and provide datasets suitable for the application of multivariate factor analytical techniques. One of the analytical techniques, the positive matrix factorization (PMF), uses a weighted least square by fitting the data matrix to determine the weights of the sources based on the error estimates of each data point. In this research, PMF was employed to apportion the sources of heavy metals in 104 soil samples taken within a 1-km radius of a lead battery plant contaminated site in Changxing County, Zhejiang Province, China. The site is heavily contaminated with high concentrations of lead (Pb) and cadmium (Cd). PMF successfully partitioned the variances into sources related to soil background, agronomic practices, and the lead battery plants combined with a geostatistical approach. It was estimated that the lead battery plants and the agronomic practices contributed 55.37 and 29.28 %, respectively, for soil Pb of the total source. Soil Cd mainly came from the lead battery plants (65.92 %), followed by the agronomic practices (21.65 %), and soil parent materials (12.43 %). This research indicates that PMF combined with geostatistics is a useful tool for source identification and apportionment.  相似文献   

17.
Assessment of comparative toxicities of lead and copper using plant assay   总被引:3,自引:0,他引:3  
An YJ 《Chemosphere》2006,62(8):1359-1365
The acute toxicities of lead (Pb) and copper (Cu) to important crop plants Sorghum bicolor, Cucumis sativus, Triticum aestivum, and Zea mays were compared. The EC50 values (the concentration of metals in the soil that reduces the growth of shoots and roots by 50%) were derived using the Trimmed Spearman-Karber method. The EC50s-shoot (root) in mg Pb kg-1 dry soil and mg Cu kg-1 dry soil were in the range of 519 to >1280 (285-445), and 48-232 (<40-110), respectively. Those concentrations are likely to occur in some abandoned mine areas in Korea. The figures indicate that Cu is more toxic than Pb to the plants in this study, and that root growth is more sensitive to the toxicity endpoint than shoot growth in Cu- or Pb-amended soils. On the other hand, seed germination is insensitive to both Pb and Cu toxicities. The Pb- and Cu-sensitive plants were also identified. Among the plants tested, T. aestivum and S. bicolor were most sensitive to Pb and Cu, respectively. Z. mays was most resistant to both Pb and Cu. The combined effects of Pb and Cu depend on the plant species, and no general phenomenon was observed. Bioaccumulations of Pb and Cu were observed in all test species, and they are concentration-dependent. These differences in the toxicities of Pb and Cu in plant species should be taken into account in biomonitoring and ecological risk assessment.  相似文献   

18.
Chen X  Wu C  Tang J  Hu S 《Chemosphere》2005,60(5):665-671
A sand culture experiment was conducted to investigate whether mycorrhizal colonization and mycorrhizal fungal vesicular numbers were influenced by metal lead, and whether mycorrhizae enhance host plants tolerance to metal lead. Metal lead was applied as Pb(NO3)2 in solution at three levels (0, 300 and 600 mg kg(-1) sand). Five mycorrhizal host plant species, Kummerowia striata (Thunb.) Schindl, Ixeris denticulate L., Lolium perenne L., Trifolium repens L. and Echinochloa crusgalli var. mitis were used to examine Pb-mycorrhizal interactions. The arbuscular mycorrhizal inoculum consisted of mixed spores of mycorrhizal fungal species directly isolated from orchard soil. Compared to the untreated control, both Pb concentrations reduced mycorrhizal colonization by 3.8-70.4%. Numbers of AM fungal vesicles increased by 13.2-51.5% in 300 mg Pb kg(-1) sand but decreased by 9.4-50.9% in 600 mg Pb kg(-1) sand. Mycorrhizae significantly enhanced Pb accumulation both in shoot by 10.2-85.5% and in root by 9.3-118.4%. Mycorrhizae also enhanced shoot biomass and shoot P concentration under both Pb concentrations. Root/shoot ratios of Pb concentration were higher in highly mycorrhizal plant species (K.striata, I. denticulate, and E. crusgalli var. mitis) than that in poorly mycorrhizal ones (L. perenne and T. repens,). Mycorrhizal inoculation increased the root/shoot ratio of Pb concentration of highly mycorrhizal plant species by 7.6-57.2% but did not affect the poorly mycorrhizal ones. In the treatments with 300 Pb mg kg(-1) sand, plant species with higher vesicular numbers tended to show higher root/shoot ratios of the Pb concentration. We suggest that under an elevated Pb condition, mycorrhizae could promote plant growth by increasing P uptake and mitigate Pb toxicity by sequestrating more Pb in roots.  相似文献   

19.
Compared to traditional chemical or physical treatments, phytoremediation has proved to be a cost-effective and environmentally sound alternative for remediation of contaminated dredged sediment. A field study was conducted in a sediment disposal site predominantly colonized by Typha angustifolia under different sediment moisture conditions to estimate the phytoremediation effects of dredged sediment. The moisture content was 37.30 % and 48.27 % in aerated and waterlogged sediment, respectively. Total nitrogen (TN) content was higher in the waterlogged sediment than in the aerated sediment. The total Cd contents were lower in aerated sediment, which was mainly resulted from the lower exchangeable fraction of Cd. The bioaccumulation of P, Cu and Pb in T. angustifolia was promoted by waterlogging, and the belowground tissue concentrations and accumulation factors (AFs) of Cu were higher than that of other metals, which can be explained by that Cu is an essential micronutrient for plants. Consistent with many previous studies, T. angustifolia showed higher metal levels in roots than in above-ground tissues at both the sediment conditions. Due to the improved biomass produced in the aerated sediment, the removals of nutrients and the metals by plant harvest were higher from aerated sediment than from waterlogged sediment. It was indicated that maintaining the dredged sediment aerated can avoid release risk and plant uptake of metals, while the opposite management option can promote phytoextraction of these contaminants.  相似文献   

20.
Wetland plants are biological filters that play an important role in maintaining aquatic ecosystem and can take up toxic metals from sediments and water. The present study investigated the seasonal variation in the accumulation potential of heavy metals by Cyperus articulatus in contaminated watercourses. Forty quadrats, distributed equally in 8 sites (six contaminated sites along Ismailia canal and two uncontaminated sites along the River Nile), were selected seasonally for sediment, water, and plant investigations. Autumn was the flourishing season of C. articulatus with the highest shoot density, length, and diameter as well as aboveground biomass, while summer showed the least growth performance. The photosynthetic pigments were markedly reduced under contamination stress. C. articulatus plants accumulated concentrations of most heavy metals, except Pb, in their roots higher than the shoots. The plant tissues accumulated the highest concentrations of Fe, Cd, Ni, and Zn during autumn, while Cu and Mn during spring, and Cr and Co during winter. It was found that Cd, Cu, Ni, Zn, Pb, and Co had seasonal bioaccumulation factor (BF) > 1 with the highest BF for Cd, Ni, and Zn during autumn, Co, Cu, and Pb in winter, spring, and summer, respectively. The translocation factor of most heavy metals, except Pb in spring, was <1 indicating potential phytostabilization of these metals. In conclusion, autumn is an ideal season for harvesting C. articulatus in order to monitor pollution in contaminated wetlands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号