共查询到19条相似文献,搜索用时 62 毫秒
1.
蓝藻藻泥好氧堆肥腐熟后还田是其打捞后资源化利用的主要途径。堆肥后仍有一定数量的微囊藻毒素(microcystin,MC)残留,大量还田是否会对作物生长和人类健康产生安全风险尚不明确。将青菜(Brassica chinensis)暴露于不同MC含量的石英砂和菜地土壤,观测植株生长状况及体内MC含量,并观测不同含量的MC在菜地土壤中的降解速率。结果发现:砂培实验结束时,青菜成株的株高和生物量随着MC暴露浓度的增加而显著降低,而植株地上部MC的含量则显著增加。在MC浓度为0.386mg·kg-1的处理中,青菜地上部MC-LR(L为亮氨酸)和MC-RR(R为精氨酸)的浓度分别达到27.45μg·kg-1(鲜质量)和1.35μg·kg-1(鲜质量)。MC-LR和MC-RR在青菜地上部的富集系数都随着砂培基质中MC浓度的增加而显著降低,且前者显著高于后者。土培青菜生长过程中吸收和累积的MC数量显著小于砂培实验。MC在菜地土壤中降解56d后,MC-LR和MC-RR的降解率均达90%以上。按普通有机肥的一般用量(2.5kg·m-2)施用充分腐熟的蓝藻堆肥成品种植青菜,食用后每人每天摄入的MC含量远低于WHO制定的饮用水中MC的指导值。研究为评估现行蓝藻堆肥工艺中残留的MC对作物生长和生物安全风险提供了科学依据。 相似文献
2.
太湖蓝藻水华及其次级代谢产物微囊藻毒素(MCs)的生物累积对生态系统和人体健康造成严重威胁,已成为最近环境科学研究的热点。本研究从太湖的不同区域(梅梁湖、西部沿岸区、南部沿岸区和湖心区)采集不同体重和体长的白鲢,利用固相萃取方法提取、高效液相色谱-质谱联用仪测定了白鲢不同器官中MCs的3种异构体MC-RR、MC-YR及MC-LR的含量,结合不同湖区的相关水质指标分析了MCs在白鲢体内的累积规律及其影响因素。研究结果表明:白鲢不同器官MCs的含量由高到低为:肠壁肾脏肝脏肌肉心脏,且肠壁累积的MCs显著高于肾脏、肝脏、肌肉和心脏。MC-RR含量是白鲢各器官累积MCs的异构体的主体,约占MCs的60%。梅梁湖鲢鱼的肌肉、肾脏和心脏中MCs均高于西部沿岸区、南部沿岸区和湖心区。生物指标(体重和体长)是影响白鲢肾脏内MCs和MC-RR含量以及肠壁内MCs含量重要因素。太湖水质指标总磷(TP)、藻细胞数量、湖泊营养指数及环节动物数量尤其是TP对白鲢肝脏累积MCs产生明显影响,TP、总氮(TN)、铵态氮(NH4-N)、内梅罗指数和环节动物数量尤其是NH4-N对肠壁累积MCs产生明显影响。 相似文献
3.
4.
5.
微囊藻毒素在土壤中的环境行为及污染风险 总被引:1,自引:0,他引:1
微囊藻毒素(Microcystins,MCs)是富营养化水体中发生蓝藻水华时所产生的一类肝毒素,在环境中大量出现时将对生态系统带来冲击并可通过食物链进入人体进而危害人类健康.关于微囊藻毒素的环境行为和污染风险近年来已成为研究热点.论文基于地表物质循环原理,分析了水体中微囊藻毒素经土壤进入人体的途径,指出了土壤在微囊藻毒素迁移转化链条中的位置,概述了微囊藻毒素在土壤中的环境化学行为、农作物的吸收特性及其生态毒理效应等方面的研究进展,提出了在微囊藻毒素迁移转化过程中土壤的净化和传递两大功能,并在此基础上展望了今后的研究方向. 相似文献
6.
为揭示微囊藻毒素(MCs)在湖泊的不同区域、杂食性鱼种的不同器官累积的规律,评价其潜在的健康风险,分别在太湖的梅梁湖、西部沿岸区、南部沿岸区和湖心区采集了鲤鱼和鲫鱼样本,利用固相萃取和高效液相色谱-质谱联用提取和测定样本中MCs的3种异构体MC-RR、MC-YR和MC-LR的含量.研究结果显示,鲫鱼与鲤鱼各器官累积MCs的程度不同,鲫鱼累积MCs含量的顺序为:肠壁肾脏心脏肝脏肌肉,而鲤鱼为:肠壁肾脏肌肉肝脏心脏.鲫鱼和鲤鱼肠壁中的MCs含量均高于其他器官.除鲤鱼肠壁中MC-LR所占MCs的比例超过50%以外,鲫鱼和鲤鱼其他各器官累积MCs均以MC-RR为主.对比鲤鱼和鲫鱼相同器官累积的MCs含量发现:鲤鱼肌肉累积MCs较高,为31.7±12.1 ng·g-1(干重);而鲫鱼肝脏、肾脏、肠壁和心脏所含MCs较高,分别为45.4±44.5、114.0±51.1、2042.9±4426.0、59.5±26.7 ng·g-1(干重).基于鲫鱼和鲤鱼肌肉累积的MCs估算的人体每日MCs摄入量已超过世界卫生组织(WTO)颁布的每日最大摄入量(0.04μg·kg-1·d-1),其中人体每日通过鲤鱼而摄入MCs的量较高,为0.0525μg MC-LR eq·kg-1·d-1,存在一定潜在健康风险. 相似文献
8.
建立了高效液相色谱/串联质谱法(LC-MS/MS)同时定量检测鲫鱼中微囊藻毒素(MC-RR,YR,LR,LW,LF)的方法,用甲醇提取卿鱼中待测物,HLB(Oasis)小柱固相萃取法净化,并对提取溶剂和淋洗液及分析条件进行了优化.该法检出限(LOD)为0.2 μg·kg-1,定量限(LOQ)为0.7 μg·kg-1,标准曲线的线性相关系数均大于0.99,回收率为85.3%-101.3%.实际鱼样未检测出MC-RR,YR,LR,LW,LF. 相似文献
9.
微囊藻毒素与孔雀石绿对唐鱼游泳行为的影响 总被引:2,自引:0,他引:2
鱼类行为能准确地反映环境变化,并且随着污染物浓度的变化而发生改变.采用人工饲养的方法,以对环境毒素敏感的唐鱼(Tanichthys albonubes)作为指示生物,检测了其行为对水体中微囊藻毒素和孔雀石绿的反应.结果表明,唐鱼对0.2μg·L-1的微囊藻毒素即有明显的行为反应,摆尾频率和游泳速度均在30min后显著下降;0.5μg·L-1微囊藻毒素处理下,摆尾频率和游泳速度均在15min后显著下降.0.5mg·L-1孔雀石绿处理下,游泳速度在30min后显著下降,而摆尾频率则无显著性变化.初步推断,以对毒素敏感的唐鱼行为作为标记,用以监测水环境安全是可行的. 相似文献
10.
为了解微囊藻毒索在鲋鱼Carassius auratus L.体内生物富集作用,用LC/MS监测不同时间的鲋鱼肝脏、肌肉,以及饲养用水中痕量的微囊藻毒素.结果显示,肌肉组织中MC-RR和MC-LR的含量在18 d时达到峰值,分别为7.87 ng·g~(-1)和2.18 ng·g~(-1);而肝脏组织中MC-RR和MC-LR的含量在鲋鱼暴露9天时达到最高值,分别为25.30 ng·g~(-1)和33.27ng·g~(-1).研究结果支持肝脏组织是MCs的主要靶向器官,并且表明肝脏组织对MC-LR的富集量远大于MC-RR,而肌肉组织更易于积累MC-RR.文章还研究了鲋鱼体内的抗氧化酶(SOD、CAT、GST、GR酶)的活性变化,对MCs介导的氧化胁迫进行了评估.通过分别测定暴露不同时间点(3、9、18 d)肝脏和肌肉组织中的抗氧化酶的活性,发现它们的活性与组织中MCs的含量基本呈正相关,可能对MCs介导的氧化胁迫有缓解作用.以上表明,MCs能在鱼体内积累,抗氧化系统虽可缓解,但不能完全降解.因此食用被MCs污染的鱼类存在潜在的食品安全风险. 相似文献
11.
12.
滦河流域鲫鱼体内重金属分布及风险评价 总被引:1,自引:0,他引:1
采集滦河流域鲫鱼样本并分析重金属元素(Cu、Zn、Cr、Pb、As、Cd)在其体内的分布特征及食用风险。实验结果表明鲫鱼体内重金属含量由高到低顺序为ZnCrCuPbAsCd,蓄积器官主要为肝脏和鳃部,Cu和Cr主要蓄积在肝脏,Zn、Pb、Cd主要富集在鳃部,As的蓄积器官随地域变化,而且下游样本中各组织器官重金属含量下游高于上游。针对鲫鱼肌肉的评价表明,Zn、Cr、Pb含量超出《无公害食品水产品中有毒有害物质限量》(NY5073—2006)、《食品污染物限量》(GB2762—2012)和《食品中锌限量卫生标准》(GB 13106—1991)规定的标准限值,超出倍数依次为Cr(3.34)Pb(2.24)Cd(1.15)。基于目标危险系数法(THQ)评价结果表明鲫鱼肌肉组织单一重金属THQ值均小于1,As导致的健康风险最高,Cr最低;总风险系数(TTHQ)显示下游的溯河(TTHQ=1.263)与陡河(TTHQ=1.381)存在食用风险,风险比重较高的元素是As、Pb、Zn。 相似文献
13.
邻苯二甲酸二乙基己酯(DEHP)对金鲫鱼脑细胞DNA的损伤 总被引:2,自引:4,他引:2
为了研究邻苯二甲酸二乙基己酯(DEHP)对金鲫鱼(Carassius auratu)脑细胞DNA的损伤作用,采用不同浓度的DEHP溶液(0、25、50、100、200mg·L-1)对体外培养脑细胞进行染毒,应用单细胞凝胶电泳(彗星实验)检测脑细胞DNA的损伤效应.结果表明,染毒1.5h后,与对照组相比,DEHP各染毒组细胞尾部DNA百分率(Tail DNA%)和尾矩(Tail Moment)均显著升高(p<0.01),即DEHP染毒引起了脑细胞DNA的严重断裂;随着DEHP浓度的增加,DNA损伤程度加剧,细胞尾部DNA百分率及尾距与DEHP染毒浓度呈明显的剂量-效应关系.以上结果表明,DEHP可导致金鲫鱼脑细胞DNA损伤。 相似文献
14.
积累在沉积物中的外源化合物会对底栖生物产生危害。本研究以泥鳅(Misgurnus anguilicaudatus)和霍甫水丝蚓(Limnodrilus hoffmeisteri)为受试生物,研究了沉积物中代表性多环芳烃类物质芘(pyrene)对这2种生物的急/慢性毒性效应。芘对泥鳅96 h的半数致死浓度LC50、平衡受损效应浓度EC10和EC50分别为548.9、63.1、254.8 mg·kg~(-1)干重,21 d的LC50为4.6 mg·kg~(-1)。沉积物中芘会导致泥鳅活动异常、泥鳅体色加深、抑制泥鳅生长。芘对霍甫水丝蚓28 d的LC50、自断效应浓度EC10和EC50分别为1 000、5.1、85.4 mg·kg~(-1)。芘也会抑制霍甫水丝蚓的生长,引起霍甫水丝蚓挖掘深度变浅、挖掘长度变短、挖掘密度变小,导致霍甫水丝蚓产生沉积物回避行为,降低霍甫水丝蚓筑巢密度和大小。霍甫水丝蚓的挖掘、沉积物回避和筑巢等行为产生不同程度的影响。泥鳅对芘的毒害响应较霍甫水丝蚓更加敏感。研究结果丰富了我国本土底栖生物毒性效应数据,为沉积物质量基准的制定奠定了基础。 相似文献
15.
16.
水稻幼苗镉积累特征和离体叶片耐镉性的基因型差异 总被引:1,自引:0,他引:1
水稻根系对镉(Cd)的富集能力和向地上部的转运效率直接决定着水稻地上部的Cd积累量,是影响稻米中镉含量的关键因素。提高水稻根系对Cd的阻控能力有助于降低南方稻区大米镉含量超标的风险。以水稻核心种质资源中的高Cd积累品种‘齐头白谷’和低Cd积累品种‘27760’的幼苗和离体叶片为材料,对其Cd吸收转运特性和耐镉能力进行了比较研究。结果表明,根系细胞壁和原生质体的Cd吸收动力学特征都符合米氏方程,‘齐头白谷’的Cd最大吸收速率F_(max)显著大于‘27760’,Km值无显著差异。当根际环境中的Cd浓度高于0.89μmol·L~(-1)时,‘齐头白谷’的细胞壁和原生质体的Cd积累速率显著高于‘27760’。地上部细胞壁和原生质体的Cd吸收速率与根系可溶性组分中的Cd浓度呈显著的线性正相关。当根系可溶性组分中的Cd浓度相近时,‘齐头白谷’地上部细胞壁和原生质体的Cd积累速率显著高于‘27760’。在0.89~8.9μmol·L~(-1)的Cd溶液中,‘齐头白谷’离体叶片的失绿速度明显低于‘27760’。‘齐头白谷’具有耐Cd能力强、Cd积累速率快和转运效率高的特点。水稻离体叶片的耐Cd能力和幼苗根系的Cd积累能力以及幼苗的Cd转运能力高度相关,它们都可作为快速鉴定低Cd积累品种的生理指标。 相似文献
17.
采用细静水生物测试法研究Cd2+对草鱼(Ctenopharyngodon idellus)的肝胰脏、肾脏和鳃组织过氧化物酶(POD)活性的影响。结果表明,在7 d的试验时间内,低浓度Cd2+胁迫时,肝胰脏和肾脏组织POD活性随时间变化均呈先降低后升高再降低的变化趋势,而高浓度Cd2+胁迫时,肝胰脏组织POD活性始终受到显著抑制(P<0.05),肾脏组织POD活性短时间内被诱导,但随着暴露时间的延长,其受到显著抑制(P<0.05);鳃组织在受到Cd2+污染时POD活性随时间变化呈先升高后降低变化趋势。草鱼鳃组织POD活性明显低于肝胰脏和肾脏组织。 相似文献
18.
西葫芦(Cucurbita pepo L.)对土壤中持久性有机氯化物的超强吸收能力已被证实,意味其具有指示区域土壤持久性有机氯化物污染状况的潜能。本研究采用农田小区试验,考察了西葫芦不同组织器官(根、过渡茎、茎、叶和果实)在6个生长期对有机氯化物的累积吸收行为;采用同位素稀释高分辨气相色谱-高分辨质谱法,分析了种植土壤及西葫芦各组织器官中的21种有机氯农药(OCPs)和18种多氯联苯(PCBs)。结果表明,西葫芦可将根吸收的OCPs和PCBs传递到过渡茎和茎。不同生长期采集的西葫芦根、过渡茎和茎中的OCPs和PCBs浓度基本稳定,无明显生物稀释效应,且此3个组织器官中OCPs和PCBs的分布模式与土壤中的分布模式基本一致。因此,可以用西葫芦根和茎中持久性有机氯化物的浓度指示土壤中持久性有机氯化物的污染水平,根和茎的采样时间可以不受西葫芦生长期的限制。 相似文献
19.
光合作用是蓝藻生长繁殖的生理基础,研究四环素胁迫下蓝藻的生长和光合作用的变化和响应,有助于揭示其作用机制。为探究四环素对微囊藻的毒性效应,对培养在0、0.1、0.2、0.5、1.0、2.0和5.0 mg·L~(-1)共7个浓度下的微囊藻的细胞数、叶绿素a含量、微囊藻光合系统Ⅱ(PSⅡ)快速光响应曲线(RLCs)及快速叶绿素荧光诱导动力学曲线(OJIP)进行了测定。结果表明,四环素处理7 d后,微囊藻的半致死浓度(LC_(50))为(0.571±0.036) mg·L~(-1)。随着四环素浓度的增加,微囊藻生长受到抑制,叶绿素含量减少,PSⅡ中单位反应中心失活。当四环素浓度高于0.5 mg·L~(-1)时,微囊藻Q_A~-到Q_B的电子传递被抑制,造成Q_A~-大量积累,影响PSⅡ的电子受体侧。然而,在低浓度四环素处理中,以吸收光能为基础的性能指数(PI_(ABS))、用于电子传递的量子产额(φ_(Eo))和最大光化学效率(φ_(Po))显著升高,用于热耗散的量子比率(φ_(Do))显著降低。这些结果表明,低浓度四环素处理时,微囊藻能通过自身调节改变PSⅡ中能量配置,改变电子传递速率,提高光合效率,从而应对低浓度四环素胁迫,而当四环素浓度较高时,微囊藻的光合作用显著降低,生长受到抑制。 相似文献