首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sustainable development requires methods and tools to measure and compare the environmental impacts of human activities for the provision of goods and services (both of which are summarized under the term "products"). Environmental impacts include those from emissions into the environment and through the consumption of resources, as well as other interventions (e.g., land use) associated with providing products that occur when extracting resources, producing materials, manufacturing the products, during consumption/use, and at the products' end-of-life (collection/sorting, reuse, recycling, waste disposal). These emissions and consumptions contribute to a wide range of impacts, such as climate change, stratospheric ozone depletion, tropospheric ozone (smog) creation, eutrophication, acidification, toxicological stress on human health and ecosystems, the depletion of resources, water use, land use, and noise-among others. A clear need, therefore, exists to be proactive and to provide complimentary insights, apart from current regulatory practices, to help reduce such impacts. Practitioners and researchers from many domains come together in life cycle assessment (LCA) to calculate indicators of the aforementioned potential environmental impacts that are linked to products-supporting the identification of opportunities for pollution prevention and reductions in resource consumption while taking the entire product life cycle into consideration. This paper, part 1 in a series of two, introduces the LCA framework and procedure, outlines how to define and model a product's life cycle, and provides an overview of available methods and tools for tabulating and compiling associated emissions and resource consumption data in a life cycle inventory (LCI). It also discusses the application of LCA in industry and policy making. The second paper, by Pennington et al. (Environ. Int. 2003, in press), highlights the key features, summarises available approaches, and outlines the key challenges of assessing the aforementioned inventory data in terms of contributions to environmental impacts (life cycle impact assessment, LCIA).  相似文献   

2.
This study was conducted to assess the impact of cereals (wheat and barley) production on environment under rainfed and irrigated farming systems in northeast of Iran. Life cycle assessment (LCA) was used as a methodology to assess all environmental impacts of cereal grain production through accounting and appraising the resource consumption and emissions. The functional unit considered in this study was one ton grain yield production under different rates of nitrogen application. All associated impacts of different range of N fertilizer application were evaluated on the basis of the functional unit. In this study, three major impact categories considered were climate change, acidification, and eutrophication. In order to prepare final evaluation of all impacts on environment, the EcoX was determined. Results represented that, under low consumption of N fertilizer, the environmental impacts of both rainfed farming systems of wheat and barley was less than irrigated farming systems. Considering grain yield as response factor to different fertilizer application level, irrigated farming systems of wheat and barley with the range of 160–180 and?>220 (Kg?N?ha?1) showed the maximum impact on environment. It seems LCA is an appropriate method to quantify the impact of utilized agricultural inputs and different managements on environment.  相似文献   

3.
将时间因素和生物碳通量纳入林产品生命周期碳足迹评估,通过动态生命周期分析法(Dynamic Life Cycle Assessment,DLCA),确定林产品生产、使用和废弃阶段替代化石能源的净温室气体减排和对森林碳损失的净弥补时间。首先,建立温室气体排放和封存的动态生命周期清单,评估刨花板全生命周期的碳动态和碳足迹;其次,根据ISO 14040和PAS 2050标准提供的静态生命周期分析法分别核算包含与不包含碳储计算的碳足迹,量化时间因素和生物碳通量对于碳足迹结果差异的影响程度;最后,对比自然生长状态的森林碳汇情境,评估刨花板使用和废弃阶段替代化石燃料实现净气候减排所需的时间。研究表明:①时间因素和生物碳通量核算对碳足迹结果影响较大(223.34%),忽视时间因素会低估刨花板的减排贡献(18.98%)。②动态生命周期分析法可准确评估生物碳和温室气体排放的时间问题,但对时间范围非常敏感(75.19%和113.25%)。③生产、使用林产品以及林产品对化石能源的替代是实现长期气候减排的有效方式,在100a的时间范围能够弥补因森林砍伐造成的碳损失,从而实现碳中性。  相似文献   

4.
Based on the theory of life cycle assessment (LCA), this article analyzes the influence factors on carbon emissions from residential buildings. In the article, the life cycle of residential buildings has been divided into five stages: building materials production period, construction period, operation and maintenance period, demolition period, and solid waste recycle and disposal period. Based on this definition, the authors provide a theoretical model to calculate carbon emissions of residential building life cycle. In particular, the factor of human activities was introduced in the calculation of carbon emissions from the buildings. Furthermore, the authors put forward a model for calculation with the unit of carbon emissions for per-capita living space.  相似文献   

5.
Different solid waste management system scenarios were developed and compared for the Municipal Solid Waste Management System of Ankara by using the life cycle assessment (LCA) methodology. The solid waste management methods considered in the scenarios were collection and transportation of wastes, source reduction, Material Recovery Facility (MRF)/Transfer Stations (TS), incineration, anaerobic digestion and landfilling. The goal of the study was to determine the most environmentally friendly option of MSWM system for Ankara. The functional unit of the study was the amount of solid waste generated in the system area of concern, which are the districts of Ankara. The life cycle inventory analysis was carried out by IWM Model-1. The inputs and outputs of each management stage were defined and the inventory emissions calculated by the model were classified in to impact categories; non-renewable energy sources exhausting potential, final solid waste as hazardous and non-hazardous, global warming, acidification, eutrophication and human toxicity. The impacts were quantified with the weighing factors of each category to develop the environmental profiles of each scenario. In most of the categories, Source Reduction Scenario was found to be the most feasible management method, except the global warming category. The lowest contribution to GWP was calculated for the anaerobic digestion process. In the interpretation and improvement assessment stage, the results were further evaluated and recommendations were made to improve the current solid waste management system of Ankara.  相似文献   

6.
以火法炼铜全生命周期过程为研究对象,采用生命周期评价(LCA)方法,定量评价不同熔炼工艺生产铜过程的能源消耗和温室气体排放,并应用情景分析法,对2020年我国火法炼铜不同工艺技术结构下的能耗与碳排放强度进行比较,旨在为铜冶炼行业的结构调整与优化升级提供决策支持。结果表明,基于鼓风熔炼、闪速熔炼和熔池熔炼工艺的火法生产铜过程的能耗分别为147.80×103,96.68×103,104.20×103MJ;其碳排放强度分别为15.32×103,8.99×103,10.01×103kg CO2当量。设定的4种情景的能耗分别为111.60×103,103.37×103,101.19×103,99.69×103MJ;其碳排放强度分别为10.87×103,9.87×103,9.60×103,9.40×103kg CO2当量。由此可知,传统工艺鼓风炉熔炼较闪速熔炼及熔池熔炼的能耗更高,且导致了更多的温室气体排放。因此,大力发展闪速熔炼及熔池熔炼技术对降低铜生命周期的能耗及碳排放具有重要意义,彻底淘汰传统熔炼工艺,推广先进熔炼技术是减少火法铜生产环境影响的迫切任务。  相似文献   

7.
The issue of sustainable design and assessment of the residential building envelope is a complex process that requires considering many factors including life cycle performance. As such, in an effort to develop an integrated approach that combines relevant sustainable development factors and life cycle concepts for sustainable designs, an integrated performance model (IPM) was developed. The IPM is an essential tool to aid the sustainable design of the residential building envelope, reduce the carbon emission and the whole residential building energy consumption, thereby ensuring sustainable performance of the building envelope and building sustainability. The IPM application indicates that sustainable performance of the building envelope in extreme weather and climatic condition is significantly influenced by the energy efficiency performance of the development.  相似文献   

8.
城市是人类生产和生活的中心,超过75%的温室气体从城市产生,其中又以城市产业部门能源消费和工业过程非能源产生的CO2为主。本文基于投入产出模型,评价城市产业部门3个不同层次的CO2排放。以重庆为案例,核算其2002-2008年产业部门三个层次的CO2排放,包括能源消费直接排放、购买电力间接排放和全生命周期排放,并进行多层次对比。结果显示传统能源消耗和购买电力为对象的核算方法低估了产业部门CO2排放水平。2002-2008年,重庆各产业部门排放量逐年增加,碳排放强度整体呈现下降趋势。煤炭开采和洗选业、非金属矿采选业、非金属矿物制品业、电力、热力的生产和供应业,化学工业、金属冶炼及压延加工业、交通运输、仓储及邮电通讯业部门共7大行业是重庆碳排放的重点行业。部门交通设备制造业是重庆的优势产业,排放总量大,但是排放强度却相对较小,因此应大力发展该产业以促进重庆市低碳经济的发展。  相似文献   

9.
Particulate matter (PM) causes severe damage to human health globally. Airborne PM is a mixture of solid and liquid droplets suspended in air. It consists of organic and inorganic components, and the particles of concern range in size from a few nanometers to approximately 10 μm. The complexity of PM is considered to be the reason for the poor understanding of PM and may also be the reason why PM in environmental impact assessment is poorly defined. Currently, life cycle impact assessment is unable to differentiate highly toxic soot particles from relatively harmless sea salt. The aim of this article is to present a new impact assessment for PM where the impact of PM is modeled based on particle physico-chemical properties. With the new method, 2781 characterization factors that account for particle mass, particle number concentration, particle size, chemical composition and solubility were calculated. Because particle sizes vary over four orders of magnitudes, a sound assessment of PM requires that the exposure model includes deposition of particles in the lungs and that the fate model includes coagulation as a removal mechanism for ultrafine particles. The effects model combines effects from particle size, solubility and chemical composition. The first results from case studies suggest that PM that stems from emissions generally assumed to be highly toxic (e.g. biomass combustion and fossil fuel combustion) might lead to results that are similar compared with an assessment of PM using established methods. However, if harmless PM emissions are emitted, established methods enormously overestimate the damage. The new impact assessment allows a high resolution of the damage allocatable to different size fractions or chemical components. This feature supports a more efficient optimization of processes and products when combating air pollution.  相似文献   

10.
Recognition has grown among policy-makers that early in the decision-making process, there is a need for an environmental assessment of the effects of the policy, plan, and program (PPP) and their alternatives. Strategic environmental assessment (SEA) is widely recognized as a supporting tool that systematically integrates environmental aspects into strategic decision-making processes, thereby contributing to sustainable development. In this study, SEA was applied for an integrated assessment of environmental, social, and economic impacts of a wide range of scenarios for transport-related air quality policies to help decision-makers in identifying the most sustainable scenario with the purpose of reducing carbon monoxide (CO) concentrations from transport emissions in Hanoi City, Vietnam. In conducting SEA process, the urban air dispersion model MUAIR was used as a quantitative tool in prediction of CO concentrations. To evaluate the predicted impacts of scenarios, the SEA objectives concerning sustainability and the corresponding sustainable indicators were identified. Based on the likely significant predicted impacts on landscape, biodiversity, and health benefits, mitigation measures were proposed. These included planning in infrastructure development and implementation of public education campaign. The results of predicted and evaluated impacts of scenarios as well as proposed mitigation measures were taken into account for supporting sound decision-making that is consistent with the principles of sustainable development. Considering sustainable impacts of the scenarios, the SEA result clearly indicates that a combination of policy for public transport development and policy for installation of oxidation catalytic converter for motorcycles is the most sustainable scenario for reducing CO concentrations from transport emissions.  相似文献   

11.
近年来,电动汽车因其在行驶过程中无任何尾气排放,被各国政府视为推动交通部门清洁、低碳发展的重要途径,主要发达国家纷纷推出了各自的电动汽车发展战略。但是,由于电力属于二次能源,其上游电力生产阶段的能源消费是否清洁将对电动汽车的减排效果产生重要影响。考虑到目前中国绝大部分电力源于煤炭,电动汽车是否真正有益于减排还有待进一步验证。目前一些专家和学者基于传统的过程生命周期评价方法对电动汽车的能源消费、温室气体排放做了一些研究,但研究结果差异较大。为了对电动汽车的减排效果进行更精确的研究,本文采用混合生命周期方法对电动汽车的能源消费、温室气体排放进行了计算。同时,在考虑电动汽车的燃料生命周期、车辆制造生命周期的基础上,将相关配套充电设施建设生命周期纳入到电动汽车的全生命周期系统边界内,以使对电动汽车全生命周期的研究结果更加完整、精确。研究结果显示,纯电动汽车并非是"零排放"的,在燃料周期,虽然纯电动汽车的单位里程能源消费强度较小,约为传统汽油车的94.6%,但以煤为主的高碳电力结构导致目前纯电动汽车燃料周期的单位里程温室气体排放强度约为传统汽油车的1.12倍;车辆周期内,纯电动汽车的能源消费和温室气体排放量也略高于传统汽油车;此外,配套充电设施的建设也将增加纯电动汽车全生命周期的能源消费和温室气体排放量。综合燃料、车辆及充电设备的全生命周期,在当前的电源结构及技术条件下,电动汽车虽然具有较高的能源效率和较好的石油替代效果,但其全生命周期内的煤炭消费较高,导致其温室气体排放量高于传统汽油车,在当前的情况下大规模发展电动汽车并不利于温室气体减排。  相似文献   

12.
畜牧业“碳排放”到“碳足迹”核算方法的研究进展   总被引:1,自引:0,他引:1  
全球变暖趋势日益加剧,不仅影响农业可持续发展,而且威胁到人类生存。畜牧业碳排放因其在农业碳排放中乃至全球碳排放中占比较大而日益备受关注。准确核算畜牧业碳排放是制定切实可行的碳减排政策的前提,也为我国在气候变化下承担共同但有差别的减排责任提供话语权。本文基于研究范式的演进,对畜牧业碳排放到碳足迹核算方法的研究发展进行了系统梳理,研究表明,在学者的不断研究与质疑下,畜牧业碳排放到碳足迹的核算方法经历了从OECD核算法、IPCC系数法到生命周期法与投入-产出法的演变与完善,学术界认为区域异质性、养殖规模与管理方式均影响碳足迹;散养比规模化养殖产生更多的碳排放,舍饲比户外放牧排放更多的碳。畜牧业碳足迹核算能够更加全面地反映畜牧业全生命周期的碳排放情况,但由于研究假设、研究方法及研究样本等差异导致不同区域、不同畜产品的碳排放核算结果存在不确定性。运用生命周期法和投入-产出法对欧盟成员国畜牧业碳排放的核算结果基本一致,但运用IPCC系数法和全生命周期法对中国畜牧业碳排放核算中,牛、猪和羊的碳排放量排序结果不尽一致。鉴于核算结果的差异性,本研究对不同核算方法的起源、最早采用时间、特点、局限性等方面进行了归纳总结,并建议后续研究探讨基于生命周期评价的畜牧业碳足迹研究边界的延伸性,标准化畜牧业碳排放或碳足迹核算,避免学者重复核算畜牧业碳排放,以便深入展开畜牧业碳排放其他方面的研究。  相似文献   

13.
居民消费碳排放是国内外温室气体排放研究的重要问题。利用1997~2010年上海市统计数据,分别采用改进的投入产出模型法、碳排放系数法核算了上海市居民间接和直接能源消费产生的碳排放,分析了上海市居民消费的碳排放变化、居民消费碳排放的城乡差异、各部门对居民间接能源消费碳排放的贡献。结果表明:(1)1997~2010年上海市居民消费产生的碳排放呈逐年上升趋势,间接能源消费是居民消费的碳排放的主要来源,在居民消费碳排放总量中占有较大比重;(2)1997~2010年上海市城镇居民消费碳排放呈逐年上升,农村居民消费碳排放呈下降趋势,居民消费碳排放存在着显著的城乡差异;(3)14个部门对居民消费碳排放的贡献大小不同,其中文教卫生商务及其他服务、交通运输仓储及信息服务、食品制造及烟草加工业3个部门对城乡居民消费碳排放的贡献最大;(4)提高各部门能源利用效率、降低部门单位产出的碳排放、引导居民向低碳产品消费的转变是居民消费碳减排的有效措施。研究结果可为上海市居民生存碳排放的评估提供数据支持,为政府部门制定碳减排措施、引导居民低碳消费提供理论指导。  相似文献   

14.
高炉渣是钢铁厂高炉炼铁产生的矿渣,具有较高的资源化价值,可用于生产多种绿色建材产品。熔融高炉渣经水急冷后形成的粒化高炉矿渣,粉磨成矿渣微粉可作为水泥混合材和混凝土掺合料。以高炉渣资源化过程为研究对象,采用生命周期清单分析方法,并基于GaBi 4软件平台,对我国某建材企业综合利用高炉渣生产矿渣硅酸盐水泥和商品混凝土全过程的能源消耗、原材料消耗和温室气体排放进行了分析,进而从节能、降耗和碳减排三方面评估其环境效益。结果表明,与普通硅酸盐水泥相比,矿渣硅酸盐水泥可分别实现节约能源1 911 MJ/t(节能26%),降低原材料消耗1 158 kg/t(降耗27%),减少碳排放236 kg/t(碳减排26%);与复合硅酸盐水泥相比,矿渣硅酸盐水泥可实现节约能源352 MJ/t(节能6%),降低原材料消耗278 kg/t(降耗8%),减少碳排放47 kg/t(碳减排7%)。与不掺加矿粉的普通商品混凝土比较,掺矿粉的商品混凝土可实现节约能源97 MJ/m3(节能5%),降低原材料消耗7 kg/m3(降耗0.3%),减少碳排放12 kg/m3(碳减排5%)。高炉渣资源化生产矿渣硅酸盐水泥和商品混凝土具有明显的环境效益。  相似文献   

15.
In order to understand the characteristics of spatial and temporal variation, as well as provide effective ideas on carbon emissions and regulatory policy in Yantai, this article analyzed spatial and temporal variation of carbon emissions in Yantai based on energy consumption statistics for a variety of energy sorts together with industrial sectors from 2001 to 2011. The results were as following: First of all, Yantai’s carbon emissions grew by an average of 5.5% per year during the last 10 years, and there was a peak of 10.48 million carbon in the year of 2011. Second, compared with the gross domestic product (GDP) growth rate, the figures for energy carbon emissions growth rate were smaller; however the problem of carbon emissions were still more obvious. Furthermore, carbon emissions in Yantai increased rapidly before 2008; while after 2008, it increased more slowly and gradually become stable. Third, the energy consumption was different among regions in Yantai. For instance, the energy consumption in Longkou city was the largest, which occupied 50% of the total carbon emissions in Yantai; and the energy consumption in Chang Island was generally less than 1% of the Longkou consumption. Finally, there were relative close relationships among the spatial difference of carbon emissions, regional resources endowment, economic development, industrial structure, and energy efficiency.  相似文献   

16.
1949年以来中国环境与发展关系的演变   总被引:2,自引:0,他引:2  
从IPAT方程出发,发现了环境影响随着经济发展或时间的演变依次遵循三个"倒U型"曲线规律,即环境影响强度的倒U型曲线、人均环境影响的倒U型曲线和环境影响总量的倒U型曲线。根据此规律,可以将该演化过程划分为四个阶段即:环境影响强度高峰前阶段、环境影响强度高峰到人均环境影响量高峰阶段、人均环境影响量高峰到环境影响总量高峰阶段以及环境影响总量稳定下降阶段。在环境演变的不同阶段,主要驱动力存在着明显的差异。在环境影响强度高峰前阶段,资源消耗或污染物排放增长更多地由资源或污染密集型技术进步驱动;在资源消耗或污染物强度高峰到人均资源消耗或污染物排放高峰阶段,主要由经济增长驱动;而在人均资源消耗或污染物排放高峰到资源消耗或污染物排放总量高峰阶段以及总量高峰以后的发展阶段,则主要由节约高效技术或污染减排技术进步来驱动。实证分析表明,中国目前环境与发展关系基本上处于经济增长主要驱动的环境影响强度高峰向人均环境影响高峰过渡阶段,这同时意味着中国要在短期内实现人均环境影响和环境影响总量高峰的跨越是异常困难的。  相似文献   

17.
The estimation of the sustainability performance of products requires tools to provide systematic approaches to the definition of impacts, indicators and comparative scenarios from early design stages. This paper illustrates the Relative Assessment of Indicators in Sustainability Enhancement (RAISE) methodology that is based on the measure of negative impacts generated during any product life cycle stage. This approach includes a systematic process for the definition and evaluation of indicators to compare the sustainability performance of products considering each indicator individually and using a holistic index of sustainability to entail an overall comparison between products from manufacturing scenarios. The RAISE method is developed with the aim of assessing sustainability performance of product life cycle stages and incorporating this assessment into the decision-making process when comparing different manufacturing scenarios. A guitar capo manufactured in polymeric material is used as case study to demonstrate the use of the method. In this paper, only the manufacturing stage is considered; however, the method can also be employed in other stages of the life cycle.  相似文献   

18.
Nowadays, many countries are looking towards sustainability as a goal because our world has limited resources and serious environmental impacts. In the construction industry, the process of sustainable selection of structural material is considered one of the keys to achieve more sustainable construction. In this paper, the theories of decision making are utilised to develop an approach for evaluation and ranking the structural materials over their total life based on sustainability criteria using multi-attribute decision-making methods. One of them is Analytical Hierarchy Process which is utilised to build the problem hierarchical structure and assign weights of the predetermined sustainable factors. The other is Technique for Order Preference by Similarity to the Ideal Solution which is utilised to rank the structural materials within both each material life cycle phase and the complete material life cycle phases. The third is the concept of entropy by Shannon to evaluate the weight factor for each phase of material life cycle. The proposed approach presents an objective, systematic and comprehensive method for the sustainable ranking of materials that links between the structural element design and the sustainable selection of materials.  相似文献   

19.
The building sector has been regarded as a potential sector where there is large capacity to reduce the climate change effect. This study has proposed solutions to mitigate environmental impacts and achieve low CO2 emission from residential sector. Therefore, full life cycle assessment (LCA) has been run to assess the CO2 emission and its effect on the atmosphere and climate change. Based on the result, timber scheme is the best choice due to releasing less CO2 emissions to the atmosphere. However, house builders in Malaysia have almost completely neglected timber as a building material, with timber use as building components reduced to 5%. In this study, LCA Software was used to assess CO2 emissions from different wall construction. The alternative building scheme has been made by reinforce steel stud, wooden beam and timber wall (S8) to improve the scheme deficiency while releasing less CO2 emissions compared to other schemes. Therefore, S8 has a decreased CO2 effect by 85% less than precast concrete frame and 90% less than brick over their lifetime. (S8) increased the load bearing compared to conventional timber beam. Thus, new scheme S8 could be replaced by current scheme and promote more adjustable scheme for Malaysian housing.  相似文献   

20.
本文根据与青海省城乡居民生活能源消费相关的8个部门的能源消费数据,采用统计分析方法,从最终需求的角度评估了2000-2008年城乡居民生活能源消费及其碳排放。研究发现2000-2008年青海省城镇与农村居民生活用能在总量和人均水平上均相差很大,并且由此产生的碳排放是城镇居民远高于农村居民,其中,城镇居民生活用能主要集中在食品、娱乐教育文化服务、衣着3个部门,占总能源消费的61.02%,而农村居民生活用能主要集中在食品、居住和交通通讯3个部门,占总能源消费的71.77%。如果青海省农村居民能源消费水平达到青海省城镇居民能源消费的最低水平,会引起能源消费量及碳排量的急剧增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号