首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
鉴于城市生活污水缺乏易降解的碳源,且处理过程中可能导致碳排放量和运行成本的增加,提出基于厌氧氨氧化技术的城市生活污水处理方法。从城市生活污水处理的技术革新与污水自身产生能源的开发再利用两个角度出发,提出厌氧硝化反应—短程硝化反应—厌氧氨氧化反应结合的新工艺,成功运用厌氧氨氧化工艺处理城市生活污水,并对反应过程的沿程水质与COD、氮素去除效果进行检测。结果表明:当TN去除率达到91.8%时,反应过程中TN出水量低至3.7 mg/L,此时NH3-N和NO2--N去除率分别为99.6%与97.0%,且NH3-N与NO2--N能量损耗比值为1∶0.96;当出水溶解性的COD浓度低于12 mg/L时,去除率可以达到98.9%;使用厌氧氨氧化技术后,TN的容积负荷与去除容积后的负荷分别为0.92 kg/(m3·d)与0.79 kg/(m3·d),比同类生活污水处理的效果要好。  相似文献   

2.
厌氧氨氧化反应器的启动及运行   总被引:11,自引:0,他引:11  
采用污泥混合接种的方法 ,成功地启动了实验室规模的厌氧氨氧化反应器 ,启动后含氨模拟废水运行的进水氨浓度和进水亚硝基氮浓度均为 2 0mmol/L ,氨氮、亚硝基氮和总氮的容积负荷率为 10 6 9mmol/L .d、12 2 6mmol/L .d和 394 5 5mg/L .d ,氨氮、亚硝基氮和总氮的去除率保持在 90 %、99%和 95 %以上。对运行条件研究表明 ,厌氧氨氧化反应的最适pH为 7~ 7 5 ,最适温度约在30± 1℃。厌氧氨氧化随亚硝酸盐浓度的升高而下降 ,氨的厌氧转化随COD浓度的增加也呈抑制型曲线 ,当COD浓度为 80 0±5 0mg/L时 ,厌氧氨氧化速率达到最大。  相似文献   

3.
以生物滤池为反应器,以NH_4~+-N、NO_2-~-N的浓度变化为指标,对厌氧氨氧化菌种的活性恢复进行试验。结果表明:厌氧氨氧化菌种的活性恢复具有一定的稳定适应期,本试验条件下适应期为14d,24d即可完成活性恢复,NH_4~+-N、NO_2-~-N去除量比值为(1∶1.27)~(1∶1.32),接近厌氧氨氧化过程1∶1.31的理论值。  相似文献   

4.
以砾石为填料采用生物滤池法和以纤维束为填料采用生物接触氧化法,分别预处理沈抚灌渠污水。试验结果表明,在水力停留时间在3.5h,控制气水比分别为5:1和4:1的反应条件下,砾石填料对COD和NH3-N的平均去除率分别为53.9%和53.6%;纤维束软填料对COD和NH3-N的平均去除率分别为55.7%和47.7%。前者对COD和NH3-N的处理效果都达到了预定要求,而后者对NH3-N的处理效果没有达到要求。  相似文献   

5.
通过对已建污水处理工程无动力厌氧+人工湿地组合模式的处理效果进行监测,结果表明:正常运行情况下,该处理模式化学需氧量的去除率在28%~90%之间,平均为66%;氨氮的去除率在7%-66%之间,平均34%;总磷的去除率在5%~84%之间,平均42%;90%以上出水水质达到三级排放标准;厌氧池对污染物去除的贡献率基本与后段的人工湿地持平;入水污染物负荷量与去除率呈显著正相关关系。  相似文献   

6.
本试验采用UASB—接触氧化工艺对沤麻废水的处理进行了研究,系统启动两个月后达到稳定的处理效果,厌氧段进水COD浓度为700mg/1,有机负荷为9.25kgCOD/m3·d,停留时间为24小时,COD去除率可达到89.3%,好氧段接触氧化池的有机负荷为2.IkgCOD/m3·d,处理时间为10小时,整个系统总的COD去除率可达到97%,该工艺是处理高浓度沤麻废水行之有效的方法。  相似文献   

7.
为加快厌氧氨氧化(Anammox)工艺启动和了解菌群特性,以普通活性污泥为培养对象,利用EDTA与Fe~(2+)形成稳定的螯合物,研究Fe~(2+)和EDTA的添加以及它们的浓度变化对厌氧氨氧化工艺启动快慢的影响,并且在生物特性方面加以鉴定,为快速启动厌氧氨氧化工艺做出理论指导。  相似文献   

8.
于清华 《四川环境》2012,31(3):9-12
为改进现有二滩库区垃圾处理填埋场垃圾渗滤液处理工艺,研究絮凝—吸附法预处理工艺,试验以聚合氯化铝作为絮凝剂,最佳投放量为600mg/L,以粉煤灰作为吸附剂,最佳投放量为200g/L。结果表明:CODcr去除率达到79.64%;NH3-N去除率达到83.23%;悬浮物去除率达到58.75%;色度去除率达到92.56%;重金属离子去除率为60.37%~96.33%;研究证明:渗滤液经预处理后可以与城市生活污水合并处理。  相似文献   

9.
本文介绍了一种新型仿生态氧化沟工艺及其在养殖废水厌氧处理后的应用,该工艺吸收了氧化沟、接触氧化技术及人工湿地的特点,NH3-N、CODcr的去除率可分别达70%和60%。具有设计科学、构造简单、投资较省、管理方便、处理效果稳定等优点,在养殖废水后续处理中具有广阔的应用前景。  相似文献   

10.
生物膨胀床技术处理含氨臭气研究   总被引:3,自引:0,他引:3  
杨自伟  李顺义  王岩 《四川环境》2007,26(3):15-17,24
针对传统生物除臭方法的一些不足,本试验提出采用生物膨胀床技术处理含氨臭气。文中系统研究了不同填料、进气浓度、停留时间等因素对处理效果的影响。结果表明:采用兰石和活性炭的混合物做填料时膨胀床对氨的去除率较高;当进气浓度低于100mg/m^3时,反应器对氨气的去除率在98%以上;适宜停留时间是28.6s。对反应器溶液中各形态氮浓度的分析可知氨在反应器中的转化以硝化反应为主,主要被氧化为硝酸根。  相似文献   

11.
Internal cycling of nutrients from the sediment and water column can be an important contribution to the total nutrient load of an aquatic ecosystem. Our objective was to estimate the internal nutrient loading of the Lower St. Johns River (LSJR). Dissolved reactive phosphorus (DRP) and ammonium (NH(4)-N) flux from sediments were measured under aerobic and anaerobic water column conditions using intact cores, to estimate the overall contribution of the sediments to P and N loading to the LSJR. The DRP flux under aerobic water column conditions averaged 0.13 mg m(-2) d(-1), approximately 37 times lower than that under anaerobic conditions (4.77 mg m(-2) d(-1)). The average NH(4)-N released from the anaerobic cores (18.03 mg m(-2) d(-1)) was also significantly greater than in the aerobic cores for all sites and seasons, indicating the strong relationship between nutrient fluxes and oxygen availability in the water column. The mean annual internal DRP load was estimated to be 330 metric tons (Mg) yr(-1), 21% of the total P load to the river, while the mean annual internal load of NH(4)-N was determined to be 2066 Mg yr(-1), 28% of the total N load to the LSJR estuary. As water resource managers reduce external loading to the LSJR the frequency of anaerobic events should decline, thereby reducing nutrient fluxes from the sediment to the water column, reducing the internal loading of DRP and NH(4)-N. Results from this study demonstrate that the internal flux of nutrients from sediments may be a significant portion of the total load and should be accounted for in the total nutrient budget of the river for successful restoration.  相似文献   

12.
Agriculture in the U.S. Midwest faces the formidable challenge of improving crop productivity while simultaneously mitigating the environmental consequences of intense management. This study examined the simultaneous response of nitrate nitrogen (NO3-N) leaching losses and maize (Zea mays L.) yield to varied fertilizer N management using field observations and the Integrated BIosphere Simulator (IBIS) model. The model was validated against six years of field observations in chisel-plowed maize plots receiving an optimal (180 kg N ha(-1)) fertilizer N application and in N-unfertilized plots on a silt loam soil near Arlington, Wisconsin. Predicted values of grain yield, harvest index, plant N uptake, residue C to N ratio, leaf area index (LAI), grain N, and drainage were within 20% of observations. However, simulated NO3-N leaching losses, NO3-N concentrations, and net N mineralization exhibited less interannual variability than observations, and had higher levels of error (20-65%). Potential effects of 30% higher (234 kg N ha(-1)) and 30% lower (126 kg N ha(-1)) fertilizer N use (from optimal) on NO3-N leaching loss and maize yield were simulated. A 30% increase in fertilizer N use increased annual NO3-N leaching by 56%, while yield increased by only 1%. The NO3-N concentration in the leachate solution at 1.4 m below the soil surface was 30.7 mg L(-1). When fertilizer N use was reduced by 30% (from optimal), annual NO3-N leaching losses declined by 42% after seven years, and annual average yield only decreased by 8%. However, NO3-N concentration in the leachate solution remained above 10 mg L(-1) (11.3 mg L(-1)). Clearly, nonlinear relationships existed between changes in fertilizer use and NO3-N leaching losses over time. Simulated changes in NO3-N leaching were greater in magnitude than fertilizer N use changes.  相似文献   

13.
IABR-IBAF工艺处理猪场稳定塘废水的实验研究   总被引:1,自引:0,他引:1  
难降解有机物含量高且碳氮比失调是造成养猪场稳定塘废水难于处理的主要原因。本文采用基于固定化微生物技术的厌氧折流板(IABR)与曝气生物滤池(IBAF)组合工艺处理稳定塘废水,对比了IABR-IABF组合工艺与单一IBAF工艺的处理效果,研究了碱度和碳源对硝化反硝化过程的影响。组合工艺平均进水COD1532.6mg/L,平均出水为332.7mg/L,去除率为78%,NH3-N平均进水538.6mg/L,平均出水为12.3mg/L,去除率97.7%。以新鲜废水做反硝化阶段的碳源时TN去除率93%,可有效解决脱氮过程中的碳源成本问题。  相似文献   

14.
洪大林  刘丹 《四川环境》2006,25(2):1-2,5
通过室内模拟试验,在渗滤液回灌的厌氧填埋柱基本进入稳定状态后,改用准好氧运行方式。同时监测了渗滤液中有机物浓度以压温度、pH值的变化。改变模拟垃圾柱的运行方式两个月以后。氨氯浓度由2000mg/L迅速下降至101.48mg/L,试验结果显示,准好氧运行方式可以解决生物反应器填埋场进入稳定阶段后存在的氨氮浓度高的问题,加速填埋场的稳定。  相似文献   

15.
Biosolids deep-row incorporation (DRI) provides high levels of nutrients to the reclamation sites; however, additions of N in excess of the vegetation requirements can potentially impair water quality. The effects of anaerobically digested (AD) and lime stabilized (LS) DRI biosolids and inorganic N fertilizer were compared on C and N transformations and transport at a reclaimed mineral sands mining site. Biosolids were applied at 213 and 426 Mg AD biosolids ha(-1) and 328 and 656 Mg LS biosolids ha)(-1) (dry mass), and inorganic N fertilizer was applied at 0 (control) and 504 kg N ha-(-1) yr(-1). Zero tension lysimeters were installed to collect leachate for determination of vertical N transport, and the biosolids seams were analyzed for N and C transformations after 28 mo aging. The leachijng masses from the DRI biosolids treatments were 139 to 291 kg ha(-1) NO3-N, 61 to 243 kg ha(-1) NH4-N, and 61 to 269 kg ha(-1) organic N, while the fertilizer treatment did not differ from the control. Aged biosolids analysis showed that total N lost over the course of 2 yr was 15.2 Mg ha(-1) and 10.9 Mg ha(-1) for LS and AD biosolids, respectively, which was roughly 50% of the N applied. Organic C losses were 81 Mg ha(-1) and 33 Mg ha(-1) for LS and AD biosolids, respectively. Our results indicated that entrenchment of biosolids in coarse-textured media should not be used as a mined land reclamation technique because the anaerobic conditions required to limit mineralization and nitrification cannot be maintained in such permeable soils.  相似文献   

16.
Anaerobic lagoons are commonly used for the treatment of swine wastewater. Although these lagoons were once thought to be relatively simple, their physical, chemical, and biological processes are very complex. This study of anaerobic lagoons had two objectives: (i) to quantify denitrification enzyme activity (DEA) and (ii) to evaluate the influence of lagoon characteristics on the DEA. The DEA was measured by the acetylene inhibition method. Wastewater samples and physical and chemical measurements were taken from the wastewater column of nine anaerobic swine lagoons from May 2006 to May 2009. These lagoons were typical for anaerobic swine lagoons in the Carolinas relative to their size, operation, and chemical and physical characteristics. Their mean value for DEA was 87 mg N2O-N m(-3) d(-1). In a lagoon with 2-m depth, this rate of DEA would be compatible with 1.74 kg N ha(-1) d(-1) When nonlimiting nitrate was added, the highest DEA was compatible with 4.38 kg N ha(-1) d(-1) loss. Using stepwise regression for this treatment, the lagoon characteristics (i.e., soluble organic carbon, total nitrogen, temperature, and NO3-N) provided a final step model R2 of 0.69. Nitrous oxide from incomplete denitrification was not a significant part of the system nitrogen balance. Although alternate pathways of denitrification may exist within or beneath the wastewater column, this paper documents the lack of sufficient denitrification enzyme activity within the wastewater column of these anaerobic lagoons to support large N2 gas losses via classical nitrification and denitrification.  相似文献   

17.
Soil and plant indices of soil fertility status have traditionally been developed using conventional soil and crop management practices. Data on managing N fertilizer for corn (Zea mays L.) produced on soils amended with C-rich organic materials, such as oily food waste (OFW) is scarce. Identification of a reliable method for making N fertilizer recommendations under these conditions is imperative. The objective of this research was to evaluate soil NO(3)-N (0- to 30-cm depth) at preplant and presidedress (PSNT) times of sampling for predicting N requirements for corn grown on fields receiving OFW. Experiments were conducted at two locations in Ontario, Canada over 3 yr (1995-1997) where OFW was applied at different rates (0, 10, and 20 Mg ha(-1)), times (fall and spring), and slope positions (upper, mid, and lower) within the same field. Presidedress soil NO(3)-N contents were higher compared with preplant time of sampling under all OFW management conditions. Corn grain yields were significantly affected by OFW management and N fertilizer application rates. Maximum economic rate of N application (MERN) varied depending on OFW management conditions. Presidedress soil NO(3)-N contents had a higher inverse relationship with MERN (r = -0.88) compared with soil NO(3)-N at preplant (r = -0.74) time of sampling. A linear regression model (Y = 180.1 - 8.22 NO(3)-N at PSNT) is proposed for making N fertilizer recommendations to corn grown on soils amended with OFW in this geographical region.  相似文献   

18.
In some high-fertility, high-stocking-density grazing systems, nitrate (NO(3)) leaching can be great, and ground water NO(3)-N concentrations can exceed maximum contaminant levels. To reduce high N leaching losses and concentrations, alternative management practices need to be used. At the North Appalachian Experimental Watershed near Coshocton, OH, two management practices were studied with regard to reducing NO(3)-N concentrations in ground water. This was following a fertilized, rotational grazing management practice from which ground water NO(3)-N concentrations exceeded maximum contaminant levels. Using four small watersheds (each approximately 1 ha), rotational grazing of a grass forage without N fertilizer being applied and unfertilized grass forage removed as hay were used as alternative management practices to the previous fertilized pastures. Ground water was sampled at spring developments, which drained the watershed areas, over a 7-yr period. Peak ground water NO(3)-N concentrations before the 7-yr study period ranged from 13 to 25.5 mg L(-1). Ground water NO(3)-N concentrations progressively decreased under each watershed and both management practices. Following five years of the alternative management practices, ground water NO(3)-N concentrations ranged from 2.1 to 3.9 mg L(-1). Both grazing and haying, without N fertilizer being applied to the forage, were similarly effective in reducing the NO(3)-N levels in ground water. This research shows two management practices that can be effective in reducing high NO(3)-N concentrations resulting from high-fertility, high-stocking-density grazing systems, including an option to continue grazing.  相似文献   

19.
陈玉谷  白威 《四川环境》1992,11(4):8-13
采用中温(34±2℃)全混合式厌氧反应器处理蒽酸和硫化烧碱草浆造纸黑液。对比厌氧发酵结合物化前或后处理两种方法进行试验,厌氧生物降解COD_(er)去除率分别为61.2~75.3%和34.9~46.2%,COD_(er)总去除率分别为80.0~87.6%和68.4~75.8%。在厌氧发酵稳态运行条件下,对发酵污泥中主要微生物类群和数量进行了研究。  相似文献   

20.
Residual soil nitrate after potato harvest   总被引:1,自引:0,他引:1  
Nitrogen loss by leaching is a major problem, particularly with crops requiring large amounts of N fertilizer. We evaluated the effect of N fertilization and irrigation on residual soil nitrate following potato (Solanum tuberosum L.) harvests in the upper St-John River valley of New Brunswick, Canada. Soil nitrate contents were measured to a 0.90-m depth in three treatments of N fertilization (0, 100, and 250 kg N ha(-1)) at two on-farm sites in 1995, and in four treatments of N fertilization (0, 50, 100, and 250 kg N ha(-1)) at four sites for each of two years (1996 and 1997) with and without supplemental irrigation. Residual soil NO3-N content increased from 33 kg NO3-N ha(-1) in the unfertilized check plots to 160 kg NO3-N ha(-1) when 250 kg N ha(-1) was applied. Across N treatments, residual soil NO3-N contents ranged from 30 to 105 kg NO3-N ha(-1) with irrigation and from 30 to 202 kg NO3-N ha(-1) without irrigation. Residual soil NO3-N content within the surface 0.30 m was related (R2 = 0.94) to the NO3-N content to a 0.90-m depth. Estimates of residual soil NO3-N content at the economically optimum nitrogen fertilizer application (Nop) ranged from 46 to 99 kg NO3-N ha(-1) under irrigated conditions and from 62 to 260 kg NO3-N ha(-1) under nonirrigated conditions, and were lower than the soil NO3-N content measured with 250 kg N ha(-1). We conclude that residual soil NO3-N after harvest can be maintained at a reasonable level (<70 kg NO3-N ha(-1)) when N fertilization is based on the economically optimum N application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号