首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
污染水体中三氮转化过程的模拟研究   总被引:1,自引:0,他引:1  
以城市河涌污染水体为研究对象,通过模拟实验,研究了水体中的三氮转化规律及其与环境条件的关系。实验结果表明:室内和室外条件下氨氮转化十分迅速,亚硝酸盐氮和硝酸盐氮没有出现明显的累积现象;而在培养箱中,亚硝酸盐氮和硝酸盐氮则出现明显的累积现象。此外还研究了光合细菌对水体三氮转化的影响,发现其在室内和室外条件下有利于水体中的三氮转化,而对培养箱条件下的三氮转化起抑制作用。  相似文献   

2.
从时空角度对岩溶区不同赋存条件水体进行研究,目的为掌握无机三氮变化规律、探究影响其转换的环境条件,为喀斯特山区水资源保护与利用提供理论依据。采用标准方法检测水体氨氮、亚硝酸盐氮、硝酸盐氮、DO、CODcr、TP、TN等相关指标,研究表明:①自然环境越是相对封闭,三种无机氮形态总体年内变幅也越小,其中亚硝酸盐氮表现最为显著。②赋存封闭的地下水体氨氮、亚硝酸盐氮与硝酸盐氮含量依次是未检出、0. 006和1. 469 mg/L,其浓度依次增高的特点与亚热带喀斯特山区地层溶蚀孔隙和漏斗等地貌形态的充分发育和淋溶土对氨氮的吸附作用是密切关联的。对于该水体亚硝酸盐氮,初秋时节出现浓度峰值,与夏季农业施肥与土壤下渗补给存在2~3个月时间滞后有关。③地表半开放水体清荷园氨氮和亚硝酸盐氮也表现为夏季含量低的特点。低温影响到AOB活性则成为亚硝酸盐氮冬季含量低的主导因素。春秋季气温回升(相比冬季)而降水不大(相比夏季),故各出现一个峰值。其硝酸盐氮曲线夏季仍然平稳,表征NOB增殖的瓶颈因素不是温度,而与溶解氧有关。④地表开放水体流仓桥河段夏季氨氮浓度低主要与降水稀释和水生植物对氨氮有最大吸收偏好有关。夏季陡变的自然环境条件(栖息环境突变、碳源不足等)和NOB自身适应环境能力差等因素,都会造成其增殖受限、硝化受阻而亚硝酸盐氮累积现象的发生。表现为亚硝酸盐氮峰值时节基本对应着硝酸盐氮低谷时段。且地表径流如要激发NOB活性,DO和环境温度的阈值分别应在4 mg/L和10℃以上。  相似文献   

3.
亚硝酸盐氮是氮循环的中间产物,水体中的亚硝酸盐氮可由氨氮氧化产生,也可由硝酸盐氮还原产生,随水环境不同而异。亚硝酸盐氮在水系中不稳定,在含氧和微生物作用下,可氧化为硝酸盐氮,在缺氧或无氧条件下可被还原为氨氮。目前尚未见有关自来水中亚硝酸盐氮的形成与归趋方面的文献报道。S水库是某市的主要饮用水源,近几年来由于上游水下断受到含氮有机物污染,导致春夏之际水库水氨氮浓度升高,有时高达2.5mg/L,亚硝酸盐氮在自来水中的浓度也相应提高,且亚硝酸盐氮浓度随水样放置时间而变化,这一点对凡能引起自来水停留时间过长…  相似文献   

4.
在2010~2012年进行的上海某水源地水质监测资料的基础上,应用纳氏试剂分光光度法等分析方法研究该水源地2011年1~10月总氮、氨氮、硝酸盐氮、亚硝酸盐氮等不同形态的氮素在水体中的空间分布规律及时间变化规律。并就其氮的来源、迁移转化机理和对氮的迁移转化有较大影响的因素进行研究和分析,得出该水库水体中各种形态氮以硝酸盐氮为主,平均占总氮的71.6%,氨氮及亚硝酸盐氮各占总氮的4.39%及0.95%;水体中的温度、光照条件、溶解氧、点位位置分布、水深等是影响各氮形态含量与分布的重要环境因子。  相似文献   

5.
为了考察提供氧分子以外的其它电子受体时微生物对石油污染的修复效果,在缺氧和厌氧条件下,采用批式试验方法研究了活性污泥在供给硝酸盐、亚硝酸盐、EDTA铁盐或硝酸盐+EDTA铁盐条件下对苯的降解效果,探讨了这些电子受体对缺氧和厌氧微生物降解苯的影响以及这些电子受体之间的相互作用.结果表明:①在供给硝酸盐时,苯的生物降解作用、硝酸盐还原和亚硝酸盐暂时累积现象同时出现;②当供给亚硝酸盐时,苯的生物降解作用不明显;③在供给EDTA铁盐为电子受体时,苯的生物降解作用明显,亚铁盐浓度逐渐升高;④当同时供给硝酸盐和EDTA铁盐时,苯的生物降解作用明显.并且没有出现明显的亚硝酸盐和亚铁盐累积现象.这表明,同时供给硝酸盐和EDTA铁盐时,伴随苯的降解首先硝酸盐和铁盐还原产生亚硝酸盐和亚铁盐,随后亚硝酸盐将亚铁盐氧化为铁盐.氧化产生的铁盐又继续作为苯降解的电子受体来降解苯;铁离子和亚铁离子之间构成的氧化还原循环,从而促进了苯的缺氧降解和硝酸盐还原.  相似文献   

6.
X33 9702711自来水中亚硝酸盐氮的来源及归趋研究/刘丽君…(深圳市自来水公司水质化验中心)//环境科学与技术/湖北省环保所一1997,(1)一8~11 环信X一21 研究了自来水中亚硝酸盐氮的来源及归趋,分析了氨氮氧化为亚硝酸盐氮的可能途径、加氯消毒对自来水中亚硝酸盐氮归趋的影响。结论:1.当水源水受到含氮有机物污染后,经常规处理生产的自来水有可能产生亚硝酸盐氮,其来源于氨氮的氧化。2.水体中的溶解氧、液氯消毒均不是氨氮氧化为亚硝酸盐氮的直接原因,但余氛对三氮(氨氮、亚硝酸盐氮、硝酸盐氮)的转化有明显的影响。3.消毒完全的水样在存放…  相似文献   

7.
依据本单位多年对北京地下水的水质监测数据,选取4个氨氮污染较严重地区的水样进行研究,分析了地下水中氨氮、亚硝酸盐和硝酸盐的转化过程,结果显示:水样中的氨氮先转化成亚硝酸盐氮,亚硝酸盐氮再转化成硝酸盐氮;温度是影响地下水中三氮转化的主要因素,光源对三氮转化也有一定影响;随着水样保存天数的增加,pH开始逐渐升高,达到8~9后基本保持不变。  相似文献   

8.
氨氮的污染是影响珠江广州河段水体中溶解氧低、水质差的主要原因^[1]。通过三氮(氨氮、亚硝酸盐氮、硝酸盐氮)转化的实验分析,进一步揭示了氨氮是水体中关键的污染物,它是水体中主要的耗氧污染物。要降低氨氮对河水的污染,必须减少氨氮的人河负荷量。在污水处理中要注意保证充分的溶解氧,溶解氧越多硝化反应的速度就越快,处理后排放的尾水中氨氮的含量就越低。该三氮转化的研究实验结果可为城市污水处理提供科学依据。  相似文献   

9.
污水反硝化过程中亚硝酸盐的积累规律   总被引:5,自引:2,他引:5  
采用SBR反应器,以甲醇为碳源,研究了污水反硝化过程中的亚硝酸盐积累现象.在试验温度为14℃,初始pH值为7.33,污泥浓度为1 000 mg·L<'-1>条件下,反硝化过程中出现了明显的亚硝酸盐积累,亚硝酸盐浓度随着硝酸盐的不断还原而逐渐增加,2.5 h时,硝酸盐基本消耗完毕,亚硝酸盐浓度达到最大值22.35 mg·...  相似文献   

10.
水源水生物处理工艺启动中氨氮的去除   总被引:4,自引:0,他引:4  
通过沉淀槽与生化槽串联的试验系统,分析了微污染水源水生物接触氧化处理工艺启动过程氨氮和亚硝酸盐氮的变化规律。研究结果表明,在无暴气条件下和曝气条件下,填料上硝酸盐细菌的生长均依赖于亚硝酸盐细菌转化氨氮为亚硝酸盐氮的过程。启动中氨氮去除效果趋于稳定的过程是两类硝化细菌在生长速率和转化能力上趋于稳定的过程。提供生化槽充足的曝光气量是保证填料上硝化细菌稳定生长,顺利完全启动过程的必要条件。  相似文献   

11.
厌氧氨氧化污泥中氨氧化的潜在电子受体   总被引:1,自引:1,他引:0  
李祥  林兴  王凡  袁砚  黄勇  袁怡  毕贞  刘忻  杨朋兵 《环境科学》2017,38(7):2941-2946
通过接种亚硝酸盐型厌氧氨氧化污泥,投加潜在电子受体(亚硝酸盐、Fe~(3+)和硫酸盐)研究了厌氧条件下氨氮氧化的潜在电子受体.结果表明,亚硝酸盐是厌氧氨氧化最适合的电子受体,能够与氨氮在短暂的时间内完全反应;在亚硝酸盐缺乏的情况下,厌氧氨氧化污泥中微生物利用自身细胞有机物将产物硝酸盐转化为亚硝酸盐参与氨氮转化;Fe~(3+)与硫酸盐在氨氮氧化后期出现转化,但是直接还是间接参与还需进一步研究.厌氧氨氧化污泥对氨氮产生过量氧化之前必须以亚硝酸盐为电子受体进行微生物活性激活,并且好氧氨氧化菌和亚硝化菌出现增长,推测微生物产生了H_2O_2.该现象并不可长久持续.虽然其氧化速率较慢,但是过量氧化现象较为明显.因此厌氧氨氧化污泥中肯定存在氨氮过量氧化的现象.厌氧氨氧化污泥对电子的利用顺序是亚硝酸盐、硝酸盐、Fe~(3+)和硫酸盐.  相似文献   

12.
地下水硝酸盐污染生物修复中的亚硝态氮积累研究   总被引:2,自引:2,他引:0  
针对地下水硝酸盐污染生物修复过程中出现的亚硝态氮积累问题,试验分析在以硝酸盐和亚硝酸盐为主要电子受体的两个体系中,硝酸盐氮和亚硝酸盐氮的去除速率以及磷源对二者的影响,从而探究硝酸盐生物修复过程中亚硝态氮积累的因素。结果表明:在碳源不足的情况下,硝酸盐还原菌对碳源的竞争能力强于亚硝酸盐还原菌,此时将会出现亚硝酸盐的积累。碳源充足时,亚硝酸盐为主要电子受体的体系中亚硝酸盐氮的还原速率约为以硝酸盐为主要电子受体的体系中硝酸盐氮还原速率的1.7倍。磷浓度也是影响反硝化过程中亚硝酸盐积累的重要原因。在其他条件不变的情况下,添加磷源后,硝酸盐为主要电子受体的体系中硝酸盐氮的还原速率约为未添加时的1.16倍;亚硝酸盐为主要电子受体的体系中亚硝酸盐氮的还原速率约为未添加时的1.23倍。  相似文献   

13.
基于连续流A/O流离生物膜反应器内同步硝化反硝化的研究结果,以流离生物膜内菌群为整体研究对象,在富氧条件下,对依赖不同氮源生存的细菌的活性、以及具有的反硝化特征进行了研究.研究结果表明,温度25~30℃、溶解氧4.0~6.0 mg·L-1条件下,低碳氮比废水在硝化菌和好氧反硝化菌共同作用下,总氮和氨氮浓度稳步下降,亚硝酸盐和硝酸盐在试验持续时间内无明显积累现象.再分别以硝酸盐氮和亚硝酸盐氮为氮源,在高温(40℃)条件下18 h内即被完全去除,证明流离生物膜内的好氧反硝化菌脱氮效果好,且对高温水环境耐受力强.相对于单一菌群的反硝化研究,以多种细菌整体为研究对象的试验研究具备实际应用的可能性.  相似文献   

14.
苦草对不同浓度氮净化效果及其形态转化规律   总被引:7,自引:3,他引:4  
王沛芳  王超  王晓蓉  薛艳  杨爱 《环境科学》2008,29(4):890-895
为研究不同营养程度下水生植物对污染物的净化效果,选择长江中下游河流和湖泊水体中典型沉水植物苦草作为研究对象,在2006-09-07~2006-09-22期间开展了7种氮浓度条件下,苦草对水体氮的净化效应及氮在植物体内累积分布规律研究,并分析了水体中氮形态的转化特征.结果表明,试验期内苦草在氮浓度低于60.0 mg/L范围内表现为对水体中氮较强的净化作用,且对总氮的净化效果具有相似的规律性.但是当水体氮浓度大于80.0 mg/L时,苦草对水体氮净化的贡献无明显的规律性.氮在植物体内的累积与水体中氮浓度相关,但其在地下部和地上部的分配规律与浓度的差异无关.水体中氮的形态转换与总氮浓度相关,水中氮浓度低于20.0 mg/L时,氨氮浓度迅速降低,但随着氮浓度的增加,氨氮所占比例明显增大,表明苦草对不同氮浓度条件氮净化具有明显的差异和影响.  相似文献   

15.
微污染水源水生物处理中硝酸盐氮的变化   总被引:2,自引:0,他引:2  
通过中试系统和大型工程 ,探讨了微污染水源水生物处理工艺中硝酸盐氮的变化规律。研究表明 ,微污染水源水生物处理工艺中硝酸盐氮的增加是氨氮生物硝化的结果 ;处理系统启动中硝酸盐氮变化率的变化反映了两类硝化细菌在生长速率和转化能力上的协调关系以及生物膜的成熟过程 ,启动结束时硝酸盐氮变化率趋于 1.0 0 ;稳定运行阶段各工况下处理系统硝酸盐氮变化率均在 1.0 0附近 ;水源水中少量的有机氮和亚硝酸盐氮对氨氮硝化过程无明显影响。硝酸盐氮变化率是描述微污染水源水生物处理系统氨氮硝化状况的重要参数。  相似文献   

16.
亚硝酸盐是氮循环的中间产物.不稳定。根据水环境条件,可被氧化成硝酸盐,也可被还原为氨,硝酸盐在无氧环境中也可受微生物作用而还原为亚硝酸盐。亚硝酸盐可使人体正常的血红蛋白(低铁血红蛋白)氧化成高铁血红蛋白,发生高铁血红蛋白症,失去血红蛋白在体内运送氧的能力,出现组织性缺氧症状。亚硝酸盐可与仲胺类反应生成具有致癌性的亚硝胺类物质。某些深层地下水硝酸盐含量较高。  相似文献   

17.
ANAMMOX菌利用零价铁转化氨和硝酸盐实验   总被引:4,自引:4,他引:0  
周健  黄勇  袁怡  刘忻  李祥  沈杰  杨朋兵 《环境科学》2015,36(12):4546-4552
研究在自养条件下,零价铁促使厌氧氨氧化菌同步转化硝酸盐和氨氮的性能.添加零价铁,温度35℃±0.5℃,进水p H7~8,进水氨氮、硝态氮分别为50~100 mg·L~(-1)、50~100 mg·L~(~(-1))条件下,添加ANAMMOX菌后硝酸盐的还原加快8.2倍,并且出现硝酸盐和氨的同步转化,其转化速率最高达17.2 mg·(L·h)~(-1).改变反应时间及进水n(NH+4):n(NO-3),两者摩尔转化比于1.2~3.5范围内波动,该反应并非基元反应.实验证明,氨与硝酸盐同步转化途径为零价铁作用首先将硝酸盐还原为亚硝酸盐,生成的亚硝酸盐再与氨发生厌氧氨氧化反应.  相似文献   

18.
为削减微污染水库中氮污染负荷,从西安市李家河和黑河水库沉积物中驯化筛分出在低C/N条件下能够高效脱氮的亚铁氧化硝酸盐还原混合菌群,并将其命名为Z13.利用硝酸盐氮为唯一氮源、亚铁与乙酸作为共同电子供体的反硝化基础培养基,研究了亚铁氧化硝酸盐还原混合菌群Z13对氮素、亚铁和有机物等的代谢特征.考察了不同温度、初始pH值、C/N、Fe2+浓度对亚铁氧化硝酸盐还原混合菌群Z13脱氮性能及亚铁氧化的影响.结果表明,低C/N条件下亚铁氧化硝酸盐还原混合菌群Z13在78h时硝酸盐氮去除率为99.85%,总氮去除率为89.91%.Fe2+的总去除率为99.86%,其中生物氧化率为82.70%,无亚硝酸盐氮和氨氮的累积.单因素实验表明,在温度30℃,pH 6.5,C/N 1.821,Fe2+浓度30mg/L时,亚铁氧化硝酸盐还原混合菌群Z13对亚铁氧化和氮素的去除效果最好.亚铁氧化硝酸盐还原混合菌群Z13在微污染水体生物脱氮领域中具有很大的应用潜力.  相似文献   

19.
硝酸盐和亚硝酸盐是生物圈中氮循环的重要组成部分。空气中的氮在闪电时生成亚硝酸盐、硝酸盐,并随雨水转移到水、土壤里,为植物所利用。合成为植物蛋白质。动物通过摄食将之转化为动物蛋白质。动、植物蛋白质被水,土壤中的微生物分解为氨,再经硝化菌的作用生成亚硝酸盐、硝酸盐见下图。  相似文献   

20.
水源水生物处理工艺中亚硝酸盐氮的去除   总被引:6,自引:1,他引:6  
通过中试规模试验系统 ,分析了不同运行条件下微污染水源水生物接触氧化处理工艺中亚硝酸盐氮的去除状况 ,探讨了亚硝酸盐氮积累量与氨氮去除率之间的关系。指出处理系统中硝酸盐细菌对亚硝酸盐细菌生化过程的依赖作用是亚硝酸盐氮积累的内因 ,而工艺参数等运行条件的变化是亚硝酸盐氮积累的外因 ,提高氨氮去除率是去除亚硝酸盐氮的关键。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号