首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract:  Introducing rare plants to new sites for conservation to offset effects of habitat destruction requires detailed knowledge of habitat requirements, plant demography, and management needs. We conducted a factorial experiment replicated at three coastal prairie sites to test the effects of clipping frequency and litter accumulation on seed germination, seedling survival, reproduction, and seedling recruitment of introduced populations of the endangered, tall-stature, annual forb, Holocarpha macradenia (DC.) E. Greene. Clipping favored H. macradenia , primarily by enhancing seed germination and flower production. Litter accumulation had no effect on seed germination, even after 5 years of treatments. Seedling recruitment was highly site specific with large numbers of recruits recorded at only one of three sites. Although recruitment of seedlings was higher in clipped plots for 2–3 years, by 4–5 years after introduction very few seedlings survived to reproduction in any treatment. We attribute this result to a combination of poor habitat quality, small population size, and lack of a seed bank. We were unsuccessful in introducing this relatively well-studied species of concern to apparently suitable habitat at multiple sites in multiple years, which suggests that translocating rare plant populations to mitigate for habitat destruction is an expensive and highly uncertain endeavor.  相似文献   

2.
Paine CE  Beck H 《Ecology》2007,88(12):3076-3087
Seed dispersal and seedling recruitment (the transition of seeds to seedlings) set the spatiotemporal distribution of new individuals in plant communities. Many terrestrial rain forest mammals consume post-dispersal seeds and seedlings, often inflicting density-dependent mortality. In part because of density-dependent mortality, diversity often increases during seedling recruitment, making it a critical stage for species coexistence. We determined how mammalian predators, adult tree abundance, and seed mass interact to affect seedling recruitment in a western Amazonian rain forest. We used exclosures that were selectively permeable to three size classes of mammals: mice and spiny rats (weighing <1 kg), medium-sized rodents (1-12 kg), and large mammals (20-200 kg). Into each exclosure, we placed seeds of 13 tree species and one canopy liana, which varied by an order of magnitude in adult abundance and seed mass. We followed the fates of the seeds and resulting seedlings for at least 17 months. We assessed the effect of each mammalian size class on seed survival, seedling survival and growth, and the density and diversity of the seedlings that survived to the end of the experiment. Surprisingly, large mammals had no detectable effect at any stage of seedling recruitment. In contrast, small- and medium-sized mammals significantly reduced seed survival, seedling survival, and seedling density. Furthermore, predation by small mammals increased species richness on a per-stem basis. This increase in diversity resulted from their disproportionately intense predation on common species and large-seeded species. Small mammals thereby generated a rare-species advantage in seedling recruitment, the critical ingredient for frequency dependence. Predation by small (and to a lesser extent, medium-sized) mammals on seeds and seedlings significantly increases tree species diversity in tropical forests. This is the first long-term study to dissect the effects of various mammalian predators on the recruitment of a diverse set of tree species.  相似文献   

3.
Theimer TC  Gehring CA  Green PT  Connell JH 《Ecology》2011,92(8):1637-1647
Although birds and mammals play important roles in several mechanisms hypothesized to maintain plant diversity in species-rich habitats, there have been few long-term, community-level tests of their importance. We excluded terrestrial birds and mammals from fourteen 6 x 7.5 m plots in Australian primary tropical rain forest and compared recruitment and survival of tree seedlings annually over the subsequent seven years to that on nearby open plots. We re-censused a subset of the plots after 13 years of vertebrate exclusion to test for longer-term effects. After two years of exclusion, seedling abundance was significantly higher (74%) on exclosure plots and remained so at each subsequent census. Richness was significantly higher on exclosure plots from 1998 to 2003, but in 2009 richness no longer differed, and rarefied species richness was higher in the presence of vertebrates. Shannon's diversity and Pielou's evenness did not differ in any year. Vertebrates marginally increased density-dependent mortality and recruitment limitation, but neither effect was great enough to increase richness or diversity on open plots relative to exclosure plots. Terrestrial vertebrates significantly altered seedling community composition, having particularly strong impacts on members of the Lauraceae. Overall, our results highlight that interactions between terrestrial vertebrates and tropical tree recruitment may not translate into strong community-level effects on diversity, especially over the short-term, despite significant impacts on individual species that result in altered species composition.  相似文献   

4.
The initial recovery of vegetation after a wildfire in a coastal dune area in NW Jutland, Denmark, was studied over a 5-yr period by means of permanent plots representing various dune communities along a topographical gradient. The impact of the fire varied with the position of the plots. Fens and south-facing dunes were little affected while dune heath plots were severely affected including loss of the O-horizon. Post-fire conditions included presence of remaining soil organic matter, a soil seed bank and surviving below-ground plant parts. The soil surface remained stable during the study period. The initial five years of recovery comprised of an initial three-year recruitment phase during which cover and number of species increased and the quantitative species composition changed markedly, followed by two years of a declining rate of change. 38 species of vascular plants were recorded, 35 are regular components in dune, dune heath and heath fen and were recruited from the seed bank, from locally dispersed seeds and/or by sprouting from surviving vegetative parts. The remaining three species were ‘aliens’, dispersed from sources outside the area. Crustose lichens had an important role in the initial recovery by stabilizing the surface and probably inhibiting seed germination, whereas mosses mostly had a subordinate role. The seral position of the plots, as well as the expected time needed for full recovery of pre-fire vegetation, vary with topography and initial soil conditions. Five years after the fire the fen and the south-facing dune probably need less than a decade for full recovery. The remaining plots are judged to be relatively early seral; their full recovery into mature dry or moist dune heath vegetation and O-horizon is expected to need several centuries.  相似文献   

5.
We measured spatial and temporal patterns of seed dispersal and seedling recruitment for 58 species in a grassland community to test whether seed dispersal could predict patterns of invasion after disturbance. For the 12 most abundant grasses, recruitment of native species was dependent on the propagule supply of both native and exotic species. Variability in seed rain on small spatial (1-10 m) and temporal (within season) scales led to qualitative differences in the outcome of disturbance colonization such that native species dominated disturbances when exotic seed supply was low but failed to establish when exotic seed supply was high. Local dispersal and spatial heterogeneity in species composition promoted coexistence of native and exotic species by creating refuges from high exotic seed supply within native dominated patches. Despite this, copious exotic seed production strongly limited recruitment of native species in exotic dominated patches. Most grasslands in California are presently dominated by exotic species, suggesting that competition at the seedling stage is a major barrier to native species restoration.  相似文献   

6.
Clark CJ  Poulsen JR  Levey DJ 《Ecology》2012,93(3):554-564
In tropical forests, resource-based niches and density-dependent mortality are mutually compatible mechanisms that can act simultaneously to limit seedling populations. Differences in the strengths of these mechanisms will determine their roles in maintaining species coexistence. In the first assessment of these mechanisms in a Congo Basin forest, we quantified their relative strengths and tested the extent to which density-dependent mortality is driven by the distance-dependent behavior of seed and seedling predators predicted by the Janzen-Connell hypothesis. We conducted a large-scale seed addition experiment for five randomly selected tropical tree species, caging a subset of seed addition quadrats against vertebrate predators. We then developed models to assess the mechanisms that determine seedling emergence (three months after seed addition) and survival (two years after seed addition). As predicted, both niche differentiation and density-dependent mortality limited seedling recruitment, but predation had the strongest effects on seedling emergence and survival. Seedling species responded differently to naturally occurring environmental variation among sites, including variation in light levels and soil characteristics, supporting predictions of niche-based theories of tropical tree species coexistence. The addition of higher densities of seeds into quadrats initially led to greater seedling emergence, but survival to two years decreased with seed density. Seed and seedling predation reduced recruitment below levels maintained by density-dependent mortality, an indication that predators largely determine the population size of tree seedlings. Seedling recruitment was unrelated to the distance to or density of conspecific adult trees, suggesting that recruitment patterns are generated by generalist vertebrate herbivores rather than the specialized predators predicted by the Janzen-Connell hypothesis. If the role of seed and seedling predation in limiting seedling recruitment is a general phenomenon, then the relative abundances of tree species might largely depend on species-specific adaptations to avoid, survive, and recover from damage induced by vertebrate herbivores. Likewise, population declines of herbivorous vertebrate species (many of which are large and hunted) may trigger shifts in species composition of tropical forests.  相似文献   

7.
Are trade-offs in plant resprouting manifested in community seed banks?   总被引:2,自引:0,他引:2  
Clarke PJ  Dorji K 《Ecology》2008,89(7):1850-1858
Trade-offs in allocation to resprouting vs. seedling regeneration in plants are predicted to occur along fire disturbance gradients. Increased resprouting ability should be generally favored in plant communities with a high probability of crown fire return. Hence, communities dominated by resprouters are predicted to have smaller seed banks than those dominated by species killed by fire. We tested whether there were trait shifts in resprouting ability among growth forms (short-lived herbaceous vs. ground-dwelling perennials vs. shrubs) and among communities (rocky outcrop vs. sclerophyll forest) with contrasting probabilities of crown fire return. Resprouting was more common in ground-dwelling perennials and in the sclerophyll forest community with a high probability of crown fire. Soil seed banks were sampled in rocky outcrop and sclerophyll forest communities in recently burned (18 months) and long-since-burned (12 years) locations at interspersed replicated sites. Collected seed banks were treated with orthogonal treatments of fire stimuli or no stimuli, and seedling emergence was measured in controlled conditions. Seed bank composition reflected the pattern of extant vegetation, with resprouting species being more common in the community with a higher probability of crown fire. Overall, however, resprouting species were poorly represented in the seed bank compared to those species killed by fire. Predicted shifts in allocation to seed production were strongly manifested in community seed banks across the disturbance gradient. Fewer species, seedlings, and seedlings per adult emerged from seed banks in the sclerophyll forest. This suggests that the dominance of resprouting species influences recruitment at the community scale. Community patterns in the seed bank also reflected predicted trade-offs with plant size and growth rate. Short-lived species that are killed by fire dominated the seed bank on rocky outcrops, while longer-lived resprouting species were found in low abundance. Life history trade-offs in persistence and regeneration strongly contribute to coexistence patterns between and within communities with contrasting probabilities of fire return.  相似文献   

8.
Bricker M  Maron J 《Ecology》2012,93(3):532-543
Loss of seeds to consumers is common in plant communities, but the degree to which these losses influence plant abundance or population growth is often unclear. This is particularly the case for postdispersal seed predation by rodents, as most studies of rodent seed predation have focused on the sources of spatiotemporal variation in seed loss but not quantified the population consequences of this loss. In previous work we showed that seed predation by deer mice (Peromyscus maniculatus) substantially reduced seedling recruitment and establishment of Lithospermum ruderale (Boraginaceae), a long-lived perennial forb. To shed light on how rodent seed predation and the near-term effects on plant recruitment might influence longer-term patterns of L. ruderale population growth, we combined experimental results with demographic data in stage-based population models. Model outputs revealed that rodent seed predation had a significant impact on L. ruderale population growth rate (lambda). With the removal of postdispersal seed predation, the projected population growth rates increased between 0.06 and 0.12, depending on site (mean deltalambda across sites = 0.08). Seed predation shifted the projected stable stage distribution of populations from one with a high proportion of young plants to one in which larger adult size classes dominate. Elasticities of vital rates also changed, with germination and growth of seedlings and young plants becoming more important with the removal of seed predation. Simulations varying the magnitude of seed predation pressure while holding other vital rates constant showed that seed predation could lower lambda even if only 40% of available seeds were consumed. These results demonstrate that rodent granivory can be a potent force limiting the abundance of a long-lived perennial forb.  相似文献   

9.
According to estimates from the Danish Meteorological Institute global warming until 2080 may cause a relative sea-level rise in Danish waters of 33–46 cm. In the present paper the possible impact of a sea-level rise of this magnitude on coastal habitat types is discussed for three case studies, based on previous investigations of vegetation, topography and soil of localities at the Baltic coast of Denmark. The case studies include the following types of localities and habitats: (1) an off-shore barrier complex: sandy beach, sand dune, geolittoral, brackish, low-tidal meadow, reed bed; (2) a protected bay: geolittoral, brackish meadow, coastal grassland; (3) a dune area: mobile and fixed dune communities, and adjoining sea wall: coastal grassland. In the geolittoral meadow and coastal grassland habitats the sea-level rise is expected to cause a horizontal displacement of vegetation zones and a reduction in area, depending on accretion rate (sedimentation, peat formation), local topography and inland land-use. In the beach and sand dune habitats the sea-level rise is expected to cause a change in groundwater level, influencing slack vegetation, and a change in the erosion/accretion pattern, resulting in landward rebuilding of the mobile dune as well as in a more or less diffuse inland sand drift, causing destabilization of fixed dune vegetation.  相似文献   

10.
Abstract: The dry forests of southern India, which are endangered tropical ecosystems and among the world's most important tiger (Panthera tigris) habitats, are extensively invaded by exotic plants. Yet, experimental studies exploring the impacts of these invasions on native plants in these forests are scarce. Consequently, little is known about associated implications for the long‐term conservation of tigers and other biodiversity in these habitats. I studied the impacts of the exotic plant Lantana camara on understory vegetation in a dry‐forest tiger habitat in southern India. I compared the richness, composition, and abundance of tree seedlings, herbs, and shrubs and the abundance of grass among plots in which Lantana was cleared or left standing. These plots were distributed across two blocks—livestock free and livestock grazed. Removal of Lantana had an immediate positive effect on herb–shrub richness in the livestock‐free block, but had no effect on that of tree seedlings in either livestock block. Tree‐seedling and herb–shrub composition differed significantly between Lantana treatment and livestock block, and Lantana removal significantly decreased survival of tree seedlings. Nevertheless, the absence of trees, in any stage between seedling and adult, indicates that Lantana may stall tree regeneration. Lantana removal decreased the abundance of all understory strata, probably because forage plants beneath Lantana are less accessible to herbivores, and plants in Lantana‐free open plots experienced greater herbivory. Reduced access to forage in invaded habitats could negatively affect ungulate populations and ultimately compromise the ability of these forests to sustain prey‐dependent large carnivores. Additional research focused on understanding and mitigating threats posed by exotic plants may be crucial to the long‐term protection of these forests as viable tiger habitats.  相似文献   

11.
Howe HF  Zorn-Arnold B  Sullivan A  Brown JS 《Ecology》2006,87(12):3007-3013
We ask whether vole herbivory in experimental grassland plots is sufficient to create an unpalatable community. In a six-year experiment, meadow voles (Microtus pennsylvanicus) reduced plant standing crop between 30% and 72%, well within the range of ungulate effects. Moreover, meadow voles reduced their available forage species by changing the plant community composition: four grass species and a legume upon which they foraged declined sharply in cover and/or number of individuals, five forbs avoided by voles increased, and two forbs neither declined nor increased with either measure. Reductions of diversity occurred when voles first defoliated the plots in 2000 but disappeared as plant species avoided by voles replaced vulnerable plants. Within six years, meadow voles created plant communities dominated by species that they did not eat.  相似文献   

12.
The encroachment of some tall grass species in open dune vegetation, as observed in a Dutch dry dune area, is considered unfavourable from a conservation viewpoint. This paper investigates differences in vegetation and soil properties between grass-dominated and still existing open dune grassland plots at four locations along the coast. Soil properties studied include nitrogen and phosphorus pools and nitrogen availability by mineralization. Vegetation properties included are above and below-ground biomass and nitrogen and phosphorus concentrations in above-ground biomass. Systematic differences in N-pools between grass-dominated and open dune grassland plots were not observed. However, N-availability by mineralization and its turnover rates are higher in grass-dominated plots than in open dune grassland plots, as well as above and below-ground biomass. In open dune grassland plots, atmospheric N-input is an important source of N, whereas in grass-dominated plots mineralization largely exceeds atmospheric N-input. However, these observations do not explain the mosaic-like vegetation pattern. Grazing intensity is most likely the determinant factor in the dry dune system. It is concluded, that grass encroachment is probably triggered by atmospheric deposition and is enhanced by positive feedbacks in the N-cycle. The relevance of these results for restoration management is briefly discussed.  相似文献   

13.
Metz MR  Sousa WP  Valencia R 《Ecology》2010,91(12):3675-3685
Negative density-dependent mortality can promote species coexistence through a spacing mechanism that prevents species from becoming too locally abundant. Negative density-dependent seedling mortality can be caused by interactions among seedlings or between seedlings and neighboring adults if the density of neighbors affects the strength of competition or facilitates the attack of natural enemies. We investigated the effects of seedling and adult neighborhoods on the survival of newly recruited seedlings for multiple cohorts of known age from 163 species in Yasuni National Park, Ecuador, an ever-wet, hyper-diverse lowland Amazonian rain forest. At local scales, we found a strong negative impact on first-year survival of conspecific seedling densities and adult abundance in multiple neighborhood sizes and a beneficial effect of a local tree neighborhood that is distantly related to the focal seedling. Once seedlings have survived their first year, they also benefit from a more phylogenetically dispersed seedling neighborhood. Across species, we did not find evidence that rare species have an advantage relative to more common species, or a community compensatory trend. These results suggest that the local biotic neighborhood is a strong influence on early seedling survival for species that range widely in their abundance and life history. These patterns in seedling survival demonstrate the role of density-dependent seedling dynamics in promoting and maintaining diversity in understory seedling assemblages. The assemblage-wide impacts of species abundance distributions may multiply with repeated cycles of recruitment and density-dependent seedling mortality and impact forest diversity or the abundance of individual species over longer time scales.  相似文献   

14.
Tropical forest recovery in pastures is slowed by a number of biotic and abiotic factors, including a lack of adequate seed dispersal and harsh microclimatic extremes. Accordingly, methods to accelerate forest recovery must address multiple impediments. Here, we evaluated the ability of "tree islands" to serve as "recruitment foci" in a two-year study at three sites in northern Honduras. Islands of three sizes (64, 16, and 4 m2) and at two distances to secondary forest (20 and 50 m) were created by planting 2 m tall vegetative stakes of two native species: Gliricidia sepium (Fabaceae) and Bursera simaruba (Burseraceae), each in monoculture. Open-pasture "islands" of equal sizes served as controls. Tree islands reduced temperature and light (PAR) extremes as compared to open pasture, creating a microenvironment more favorable to seedling establishment. Seed-dispersing birds (quantified at one site only) showed an overwhelming preference for islands; 160 visits were recorded to islands compared with one visit to open pasture. Additionally, frugivores visited large islands more often, and for longer time periods, than small islands, thereby increasing the likelihood of a dispersal event there. In total, 144 140 seeds belonging to 186 species were collected in islands; more than 80% were grasses. Tree islands increased zoochorous tree seed rain; seed density and species richness were greater in tree islands than in open pasture, and large islands had greater seed density than smaller islands (Gliricidia only), suggesting that they are more effective for restoration. Distance to forest did not affect seed rain. A total of 543 seedlings and 41 species established in islands; > 85% were zoochorous. Seedling density did not differ among treatments (mean 0.2 seedlings/m2 for islands vs. 0.1 seedlings/m2 for pasture), although an increasing trend in tree islands over the course of two years suggests that seedling recruitment is accelerated there. Lastly, similar seedling densities were censused in the 1 m perimeter surrounding islands, suggesting that islands can expand outward into pasture. Planting vegetative stakes to create tree islands in pastures accelerates forest recovery by overcoming a number of impediments, and presents a simple, broadly applicable alternative for facilitating forest regeneration in abandoned pastures.  相似文献   

15.
Russell FL  Rose KE  Louda SM 《Ecology》2010,91(10):3081-3093
Understanding spatial and temporal variation in factors influencing plant regeneration is critical to predicting plant population growth. We experimentally evaluated seed limitation, insect herbivory, and their interaction in the regeneration and density of tall thistle (Cirsium altissimum) across a topographic ecosystem productivity gradient in tallgrass prairie over two years. On ridges and in valleys, we used a factorial experiment manipulating seed availability and insect herbivory to quantify effects of: seed input on seedling density, insect herbivory on juvenile density, and cumulative impacts of both seed input and herbivory on reproductive adult density. Seed addition increased seedling densities at three of five sites in 2006 and all five sites in 2007. Insect herbivory reduced seedling survival across all sites in both years, as well as rosette survival from the previous year's seedlings. In both years, insecticide treatment of seed addition plots led to greater adult tall thistle densities in the following year, reflecting the increase in juvenile thistle densities in the experimental year. Seedling survival was not density dependent. Our analytical projection model predicts a significant long-term increase in adult densities from seed input, with a greater increase under experimentally reduced insect herbivory. While plant community biomass and water stress varied significantly between ridges and valleys, the effects of seed addition and insect herbivory did not vary with gradient position. These results support conceptual models that predict seedling and adult densities of short-lived monocarpic perennial plants should be seed limited. Further, the experiment demonstrates that even at high juvenile plant densities, at which density dependence potentially could have overridden herbivore effects on plant survival, insect herbivory strongly affected juvenile thistle performance and adult densities of this native prairie species.  相似文献   

16.
Abstract:  Although land preservation and promotion of successful regeneration are important conservation actions, their ability to increase population growth rates of slow-growing, long-lived trees is limited. We investigated the demography of Taxus floridana Nutt., a rare understory conifer, in three populations in different ravine forests spanning its entire geographic range along the Apalachicola River Bluffs in northern Florida (U.S.A.). We examined spatial and temporal patterns in demographic parameters and projected population growth rates by using four years of data on the recruitment and survival of seedlings and established stems, and on diameter growth from cross-sections of dead stems. All populations experienced a roughly 10-fold increase in seedling recruitment in 1996 compared with other years. The fates of seedlings and stems between 8 and 16 mm differed among populations. The fates of stems in two other size classes (the 2- to 4-mm class and the 4- to 8-mm class) differed among both populations and years. Individual stems in all populations exhibited similarly slow growth rates. Stochastic matrix models projected declines in all populations. Stochastic matrix analysis revealed the high elasticity of a measure of stochastic population growth rate to perturbations in the stasis of large reproductive stems for all populations. Additional analyses also indicated that occasional episodes of high recruitment do not greatly affect population growth rates. Conservation efforts directed at long-lived, slow-growing rare plants like Taxus floridana should both protect established reproductive individuals and further enhance survival of individuals in other life-history stages, such as juveniles, that often do not appear to contribute greatly to population growth rates.  相似文献   

17.
The intentional introduction of specialist insect herbivores for biological control of exotic weeds provides ideal but understudied systems for evaluating important ecological concepts related to top-down control, plant compensatory responses, indirect effects, and the influence of environmental context on these processes. Centaurea stoebe (spotted knapweed) is a notorious rangeland weed that exhibited regional declines in the early 2000s, attributed to drought by some and to successful biocontrol by others. We initiated an experiment to quantify the effects of the biocontrol agent, Cyphocleonus achates, on Ce. stoebe and its interaction with a dominant native grass competitor, Pseudoroegneria spicata, under contrasting precipitation conditions. Plots containing monocultures of each plant species or equal mixtures of the two received factorial combinations of Cy. achates herbivory (exclusion or addition) and precipitation (May-June drought or "normal," defined by the 50-year average) for three years. Cy. achates herbivory reduced survival of adult Ce. stoebe plants by 9% overall, but this effect was stronger under normal precipitation compared to drought conditions, and stronger in mixed-species plots compared to monocultures. Herbivory had no effect on Ce. stoebe per capita seed production or on recruitment of seedlings or juveniles. In normal-precipitation plots of mixed composition, greater adult mortality due to Cy. achates herbivory resulted in increased recruitment of new adult Ce. stoebe. Due to this compensatory response to adult mortality, final Ce. stoebe densities did not differ between herbivory treatments regardless of context. Experimental drought reduced adult Ce. stoebe survival in mixed-species plots but did not impede recruitment of new adults or reduce final Ce. stoebe densities, perhaps due to the limited duration of the treatment. Ce. stoebe strongly depressed P. spicata reproduction and recruitment, but these impacts were not substantively alleviated by herbivory on Ce. stoebe. Population-level compensation by dominant plants may be an important factor inhibiting top-down effects in herbivore-driven and predator-driven cascades.  相似文献   

18.
Orrock JL  Witter MS  Reichman OJ 《Ecology》2008,89(4):1168-1174
Biological invasions can change ecosystem function, have tremendous economic costs, and impact human health; understanding the forces that cause and maintain biological invasions is thus of immediate importance. A mechanism by which exotic plants might displace native plants is by increasing the pressure of native consumers on native plants, a form of indirect interaction termed "apparent competition." Using experimental exclosures, seed addition, and monitoring of small mammals in a California grassland, we examined whether exotic Brassica nigra increases the pressure of native consumers on a native bunchgrass, Nassella pulchra. Experimental plots were weeded to focus entirely on indirect effects via consumers. We demonstrate that B. nigra alters the activity of native small-mammal consumers, creating a gradient of consumption that dramatically reduces N. pulchra establishment. Previous work has shown that N. pulchra is a strong competitor, but that it is heavily seed limited. By demonstrating that consumer pressure is sufficient to curtail establishment, our work provides a mechanism for this seed limitation and suggests that, despite being a good competitor, N. pulchra cannot reestablish close to B. nigra within its old habitats because exotic-mediated consumption preempts direct competitive exclusion. Moreover, we find that apparent competition has a spatial extent, suggesting that consumers may dictate the rate of invasion and the area available for restoration, and that nonspatial studies of apparent competition may miss important dynamics.  相似文献   

19.
We monitored the short term behavioral and demographic responses of gray-tailed voles (Microtus canicaudus) to the reduction and fragmentation of their habitat. Our objectives were (1) to test whether animals perished or moved into remaining fragments after 70% of their habitat was removed; and (2) to test the null hypothesis that the social structure and demography of animals would not differ between habitats consisting of one large continuous fragment (625 m2), a mosaic of 25 small fragments (each 25 m2) separated by 4 m of bare ground, and control, unmanipulated habitats (1850 m2). We conducted the experiment in 12, 0.2-ha enclosures planted with alfalfa with four replicates for each of two manipulated treatments and a control. A 70% reduction in habitat did not adversely affect adult survival, reproductive rate, juvenile recruitment, or population size. However, an influx of unrelated females into habitat fragments resulted in decreased juvenile recruitment in those fragments. Voles from cleared habitat moved into the remaining habitat and did not measurably affect the resident population. Similarly, the demography of voles did not differ significantly among the large-fragment, small-fragment, and control enclosures. Peak density estimates based on the amount of habitat in each enclosure were 545 animals per hectare in control, 1056 in large-fragment, and 2880 in small-fragment enclosures. Reduced movement of animals among the small fragments was the most obvious effect of habitat fragmentation. Six percent of females and 15% of males moved among small fragments within a week compared to approximately 60% moving comparable distances in large-fragment and control enclosures. Rates of juvenile dispersal and sexual maturation declined throughout the summer on all treatments, were associated with season and density, and were only marginally associated with habitat loss and fragmentation. We conclude that at the time of habitat removal and fragmentation, populations were small enough to accommodate a 70% reduction in habitat and still continue to increase in numbers. The social system of gray-tailed voles was sufficiently flexible to accommodate an influx of animals to withstand densities> 1000 voles per ha. The behavioral and demographic features of gray-tailed voles are similar to those reported for other small mammals, thus confirming the use of voles for ecological model systems in habitat fragmentation studies.  相似文献   

20.
Factors affecting survival and recruitment of 3531 individually mapped seedlings of Myristicaceae were examined over three years in a highly diverse neotropical rain forest, at spatial scales of 1-9 m and 25 ha. We found convincing evidence of a community compensatory trend (CCT) in seedling survival (i.e., more abundant species had higher seedling mortality at the 25-ha scale), which suggests that density-dependent mortality may contribute to the spatial dynamics of seedling recruitment. Unlike previous studies, we demonstrate that the CCT was not caused by differences in microhabitat preferences or life history strategy among the study species. In local neighborhood analyses, the spatial autocorrelation of seedling survival was important at small spatial scales (1-5 m) but decayed rapidly with increasing distance. Relative seedling height had the greatest effect on seedling survival. Conspecific seedling density had a more negative effect on survival than heterospecific seedling density and was stronger and extended farther in rare species than in common species. Taken together, the CCT and neighborhood analyses suggest that seedling mortality is coupled more strongly to the landscape-scale abundance of conspecific large trees in common species and the local density of conspecific seedlings in rare species. We conclude that negative density dependence could promote species coexistence in this rain forest community but that the scale dependence of interactions differs between rare and common species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号