首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fly- and scrubber-ash (weight ratio of approximately 1:3) from municipal solid waste incinerators (MSWI) are a major land-fill disposal problem due to their leaching of heavy metals. We uniformly mixed both types of ash with optimal amounts of waste glass frit, which was then melted into a glassy slag. The glassy slag was then pulverized to a particle size smaller than 38 μm for use as a cement substitute (20–40% of total cement) and blended with sand and cement to produce slag-blended cement-mortar (SCM) specimens. The toxicity characteristics of the leaching procedure tests on the pulverized slag samples revealed that the amount of leached heavy metals was far below regulatory thresholds. The compressive strength of the 28-day cured SCM specimens was comparable to that of ordinary Portland cement mortars, while the compressive strength of specimens cured for 60 or 90 days were 3–11% greater. The observed enhanced strength is achieved by Pozzolanic reaction. Preliminary evaluation shows that the combination of MSWI fly- and scrubber-ash with waste glass yields a cost effective and environmentally friendly cement replacement in cement-mortars.  相似文献   

2.
The urban solid waste problem has been one of the biggest environmental challenges these days. In this context, developing biocomposites with improved performance by using various sources and wastes has been intensified in the last decades for economic and environmental points of view. In this study, physical behavior, fungal decay and termite attack tests were conducted in laboratory conditions to investigate the performance of composites developed from TetraPak and textile wastes. All the results were compared to standard wood products. The water swelling properties strongly decreased in the manufactured TetraPak composites when compared with the conventional particleboard panels. The fungal decay resistance tests revealed that the stand alone TetraPak based composites were not completely resistant to wood-decaying fungi. A significant amelioration in the decay durability was observed for the manufactured TetraPak composites compared to the standard wood samples. Durability classes were determined according to the criteria given in the European standard (CEN/TS15083-1). Interestingly, the data indicated that the increment of the wool waste proportion in the produced boards lead to a significant enhancement counter the test fungi. The results of termite screening test showed further considerable resistance for whole TetraPak based composites against termites when compared to traditional wood samples. Such panels could be an available alternative without any additives for wood based composite structures and it can be used in a wide range of applications.  相似文献   

3.
COGNIS TERRAMET® soil leaching and Bescorp soil washing systems have been successfully combined to remediate an ammunition test burn area at the Twin Cities Army Ammunition Plant (TCAAP), New Brighton, Minnesota. This cleanup is the first in the country to successfully combine these two technologies, and it offers a permanent solution to heavy metal remediation. Over 20,000 tons of soil were treated in the project. The cleaned soil remained on-site, and the heavy metal contaminants were removed, recovered, and recycled. Eight heavy metals were removed from the contaminated soil achieving the very stringent cleanup criteria of <175 ppm for residual lead and achieving background concentrations for seven other project metals (antimony, cadmium, chromium, copper, mercury, nickel, and silver). Initial contaminant levels were measured as high as 86,000 ppm lead and 100,000 ppm copper, with average concentrations over 1,600 ppm each. In addition, both live and spent ordnance were removed in the soil treatment plant to meet the cleanup criteria. By combining soil washing and leaching, COGNIS and Bescorp were able to assemble a process which effectively treats all the soil fractions so that all soil material can be returned on-site, no wastewater is generated, and the heavy metals are recovered and recycled. No hazardous waste requiring landfill disposal was generated during the entire remedial operation.  相似文献   

4.
Ethylenediaminetetracetic acid (EDTA) is one of the most common chelators used to bind the metal ions in extremely stable complexes in heavy metal contaminated soils and thus to remediate such substrates. EDTA forms water soluble complexes with many metal ions and it is used to release the various metals. In this study, EDTA extraction of copper, chromium, and arsenic from chromated copper arsenate (CCA-C) treated wood was evaluated using batch leaching experiments. CCA-treated wood samples were extracted with eight different concentrations of EDTA for 4, 8, 18, and 24 h at room temperature. Exposing CCA-treated chips and sawdust to EDTA extraction enhanced removal of CCA components compared with extraction by deionized water. Grinding CCA-treated wood chips into 40-mesh sawdust provided greater access to and removal of CCA components. Extraction with 1% EDTA solution for 24 h removed 60% copper, 13% chromium, and 25% arsenic from treated chips. EDTA extraction of treated sawdust samples resulted in 93% copper, 36% chromium, and 38% arsenic removal. CCA leaching from treated wood blocks was also evaluated according to modified AWPA E11-99 standard test method of determining the leachability of wood preservatives. Leaching of CCA components from treated wood blocks with 1% EDTA solution for 14 days caused more copper leaching compared to leaching with deionized water. Leaching with 1% EDTA for 14 days removed 53% copper from the blocks whereas 14% copper was leached from the blocks with deionized water. The results suggest that EDTA extraction removes significant quantities of copper from CCA-treated wood. Thus, EDTA could be important in the remediation of wood waste treated with the newest formulations of organometalic copper compounds and other water-borne wood preservatives containing copper.  相似文献   

5.
Fixation of heavy metals in the slag produced during incineration of sewage sludge will reduce emission of the metals to the atmosphere and make the incineration process more environmentally friendly. The effects of incineration conditions (incineration temperature 500-1100°C, furnace residence time 0-60min, mass fraction of water in the sludge 0-75%) on the fixation rates and species partitioning of Cd, Pb, Cr, Cu, Zn, Mn and Ni in slag were investigated. When the incineration temperature was increased from 500 to 1100°C, the fixation rate of Cd decreased from 87% to 49%, while the fixation rates of Cu and Mn were stable. The maximum fixation rates for Pb and Zn and for Ni and Cr were reached at 900 and 1100°C, respectively. The fixation rates of Cu, Ni, Cd, Cr and Zn decreased as the residence time increased. With a 20min residence time, the fixation rates of Pb and Mn were low. The maximum fixation rates of Ni, Mn, Zn, Cu and Cr were achieved when the mass fraction of water in the sludge was 55%. The fixation rate of Cd decreased as the water mass fraction increased, while the fixation rate of Pb increased. Partitioning analysis of the metals contained in the slag showed that increasing the incineration temperature and residence time promoted complete oxidation of the metals. This reduced the non-residual fractions of the metals, which would lower the bioavailability of the metals. The mass fraction of water in the sludge had little effect on the partitioning of the metals. Correlation analysis indicated that the fixation rates of heavy metals in the sludge and the forms of heavy metals in the incinerator slag could be controlled by optimization of the incineration conditions. These results show how the bioavailability of the metals can be reduced for environmentally friendly disposal of the incinerator slag.  相似文献   

6.
Chromated copper arsenate (CCA)-treated wood is a preservative treated wood construction product that grew in use in the 1970s for both residential and industrial applications. Although some countries have banned the use of the product for some applications, others have not, and the product continues to enter the waste stream from construction, demolition and remodeling projects. CCA-treated wood as a solid waste is managed in various ways throughout the world. In the US, CCA-treated wood is disposed primarily within landfills; however some of the wood is combusted in waste-to-energy (WTE) facilities. In other countries, the predominant disposal option for wood, sometimes including CCA-treated wood, is combustion for the production of energy. This paper presents an estimate of the quantity of CCA-treated wood entering the disposal stream in the US, as well as an examination of the trade-offs between landfilling and WTE combustion of CCA-treated wood through a life-cycle assessment and decision support tool (MSW DST). Based upon production statistics, the estimated life span and the phaseout of CCA-treated wood, recent disposal projections estimate the peak US disposal rate to occur in 2008, at 9.7 million m(3). CCA-treated wood, when disposed with construction and demolition (C&D) debris and municipal solid waste (MSW), has been found to increase arsenic and chromium concentrations in leachate. For this reason, and because MSW landfills are lined, MSW landfills have been recommended as a preferred disposal option over unlined C&D debris landfills. Between landfilling and WTE for the same mass of CCA-treated wood, WTE is more expensive (nearly twice the cost), but when operated in accordance with US Environmental Protection Agency (US EPA) regulations, it produces energy and does not emit fossil carbon emissions. If the wood is managed via WTE, less landfill area is required, which could be an influential trade-off in some countries. Although metals are concentrated in the ash in the WTE scenario, the MSW landfill scenario releases a greater amount of arsenic from leachate in a more dilute form. The WTE scenario releases more chromium from the ash on an annual basis. The WTE facility and subsequent ash disposal greatly concentrates the chromium, often oxidizing it to the more toxic and mobile Cr(VI) form. Elevated arsenic and chromium concentrations in the ash leachate may increase leachate management costs.  相似文献   

7.
One of the major problems in copper-producing countries is the treatment of the large amount of copper slag or copper flotation waste generated from copper slag which contains significant amounts of heavy metals such as Cu, Zn, Pb and Co. Dumping or disposal of such large quantities of flotation waste from copper slag causes environmental and space problems. In this study, the treatment of flotation waste from copper slag by a thermal method and its use as an iron source in the production of inorganic brown and black pigments that are used in the ceramic industry were investigated. The pigments were produced by calcining different amounts of flotation waste and chromite, Cr2O3, ZnO and CoO mixtures. The pigments obtained were added to transparent ceramic glazes and porcelainized tile bodies. Their colours were defined by L*a*b* measurements with a spectrophotometer. The results showed that flotation waste from copper slag could be used as an iron source to produce brown and black pigments in both ceramic body and glazes.  相似文献   

8.
In this paper, wood waste (RWW) recovered for heat production in Sweden was studied. Previous research has concluded that RWW contains elevated amounts of heavy metals, causing environmental problems during waste management. This study extends previous work on RWW by analysing which pollution sources cause this contamination. Using existing data on the metal contents in various materials, and the amounts of these materials in RWW, the share of the elevated amounts of metals in RWW that these materials explain was quantified. Six different materials occurring in RWW were studied and the results show that they explain from 70% to 100% of the amounts of arsenic, chromium, lead, copper and zinc in RWW. The most important materials contributing to contamination of RWW are surface-treated wood, industrial preservative-treated wood, plastic and galvanised fastening systems. These findings enable the development and evaluation of strategies aiming to decrease pollution and resource loss from handling RWW. It is argued that source separation and measures taken further downstream from the generation site, such as treatment, need to be combined to substantially decrease the amount of heavy metals in RWW.  相似文献   

9.
Most ashes contain a significant amount of heavy metals and when released from disposed or used ash materials, they can form a major environmental concern for underground waters. The use of water extracts to assess the easily mobilisable content of heavy metals may not provide an appropriate measure. This study describes the patterns of heavy metal release from ash materials in context with results from the German standard extraction method DIN-S4 (DIN 38 414 S4). Samples of four different ashes (municipal solid waste incineration ash, wood ash, brown coal ash and hard coal ash) were subjected to a number of serial batch tests with liquid renewal, some of which involved the addition of acid to neutralize carbonates and oxides. Release of heavy metals showed different patterns depending on the element, the type of material, the method of extraction and the type of the extractant used. Only a small fraction of the total heavy metal contents occurred as water soluble salts; of special significance was the amount of Cr released from the wood ash. The reaction time (1, 24 or 72 h between each extraction step with water) had only a small effect on the release of heavy metals. However, the release of most of the heavy metals was governed by the dissolution processes following proton inputs, indicating that pH-dependent tests such as CEN TC 292 or others are required to estimate long-term effects of heavy metal releases from ashes. Based on the chemical characteristics of ash materials in terms of their form and solubility of heavy metals, recommendations were made on the disposal or use of the four ash materials.  相似文献   

10.
Wood treated by preservatives is commonly found in solid waste. Among the different types of preserved wood, chromated copper arsenate (CCA) treated wood recently has received much attention due to the scale of usage and its significant role in soil and water contamination. As the ash of CCA treated wood would be hazardous if the wood were to be incinerated, this is not a good alternative, and the best available disposal method is thus landfilling in the US, Canada and Australia. Leaching of the metals from preserved wood that is disposed in unlined landfills for construction debris pollutes the soil and water environments. Several factors affecting leaching of the metals from wood, including pH of the leachant, temperature, the duration of leaching and the type of leachant, were investigated. These factors affect each of the metals, chromium, copper and arsenic, differently. A comparison of these effects on each metal was performed. The results of the experiments showed that the pH of the leachants has a significant effect on the leaching process, and sulfuric acid (pH 3) is the most effective leachant compared to nitric and acetic acid (pH 3-4-5). The amounts of leached chromium, copper and arsenic by sulfuric acid (pH 3) during 15 days were, respectively, 0.2, 0.14 and 0.15 mg more than leachates by nitric acid (pH 5) on the basis of 1g of wood (initial contents of 1.03 mg, 0.42 g and 0.8 mg per g of wood). Most of the leaching occurs in the first 5 days, and the rate of leaching decreases significantly after 5 days. Increasing temperature increases the amount of leached metals, and arsenic is the least resistant metal to the leaching when the temperature increases. Increasing the temperature from 15 degrees C to 35 degrees C during 15 days increases the amount of leached chromium, copper and arsenic by acetic acid at pH 5 by about 0.1, 0.4 and 1.2mg per g of wood, respectively.  相似文献   

11.
A system to turn a potentially harmful stream of solid waste into a set of substreams with either commercial value or highly concentrated residual streams is presented. The waste which is considered is metal impregnated (in particular Chromated Copper Arsenate (CCA) treated) wood waste and timber, such as telephone poles, railway sleepers, timber from landscape and cooling towers, wooden silos, hop-poles, cable drums and wooden playground equipment. These waste streams sum up to several 100,000 tons of material per year currently to be dumped in every major country of the European Community (EC). Technologies need to be developed to reduce this CCA treated wood waste, such that all of the metals are contained in a marketable product stream, and the pyrolysis gases and/or pyrolysis liquid are used to their maximum potential with respect to energy recuperation. Pyrolysing the CCA treated wood waste may be a good solution to the growing disposal problem since low temperatures and no oxidising agents are used, which result in lower loss of metals compared to combustion. An experimental labscale pyrolysis system has been developed to study the influence of the pyrolysis temperature and the duration of the pyrolysis process on the release of metals and the mass reduction. The macrodistribution and microdistribution of the metals in the solid pyrolysis residue is studied using Inductively Coupled Plasma Mass Spectrometry (ICP–MS) and Scanning Electron Microscopy coupled with Energy Dispersive X-ray Analysis (SEM–EDXA). Furthermore, a complete mass balance is calculated over the pyrolysis system. Based on these results a semi-industrial pyrolysis system (pilot plant scale) has been developed consisting of three stages: grinding, packed bed pyrolysis and metal separation. Special types of equipment have been developed to carry out the three stages. A new grinding system has been developed, based on a crushing mechanism rather than a cutting mechanism. The crushed wood is introduced by means of a screw feeding system into a reaction column. In this pyrolysis reactor the wood is heated by subjecting it to a flow of hot gases. This causes an adiabatic pyrolysis, which results in volatilisation of the volatile compounds whereas the mineral compounds (containing the metals) remain entrapped in a coal-type residue which is very rich in carbon. The condensable compounds in the pyrolysis gas condense while leaving the reaction zone due to the inverse temperature gradient. The pyrolysis gas leaving the reactor is used as fuel for the hot gas generator. The charcoal which is extracted at the bottom of the reactor, is cooled, compressed, removed and stored, ready to feed the subsequent stage. A specially developed grinder is used to remove the metal particles from the charcoal and the separation between metal and charcoal particles is accomplished in a pneumatic centrifuge as a result of the difference in density. Using this system the ultimate waste is less than 3% of the initial wood mass. Results obtained with a semi-industrial scale prototype confirm the effectiveness of the process.  相似文献   

12.
Stabilization/solidification (S/S) processes have been used as the final treatment step for hazardous wastes prior to land disposal. Fly ash is a by-product of coal-fired power generation; a significant proportion of this material is low-grade, reject material (rFA) that is unsuitable as a cement replacement due to its high carbon content and large particle size (>45 microm). Flue gas desulphurization (FGD) sludge is a by-product from the air pollution control systems used in coal-fired power plants. The objective of this work was to investigate the performance of S/S waste binder systems containing these two waste materials (rFA and FGD). Strength tests show that cement-based waste forms with rFA and FGD replacement were suitable for disposal in landfills. The addition of an appropriate quantity of Ca(OH)2 and FGD reduces the deleterious effect of heavy metals on strength development. Results of TCLP testing and the progressive TCLP test show that cement-rFA-Ca(OH)2 systems with a range of FGD additions can form an effective S/S binder. The Leachability Index indicates that cement-based waste forms with rFA replacement were effective in reducing the mobility of heavy metals.  相似文献   

13.
蚀刻液水合肼还原除铜   总被引:2,自引:0,他引:2  
将电路板厂废弃的蚀刻液,经氢氧化铜沉淀法回收大部分铜后,再采用水合肼还原,进一步除铜。反应温度为50℃,水合肼质量分数为3.0%,溶液pH为6.0,废液中铜的去除率可达98.5%,处理后废液中铜的质量浓度低于0.2g/L,可作为碱性蚀刻液重复利用。  相似文献   

14.
The flash smelting process has been used in the copper industry for a number of years and has replaced most of the reverberatory applications, known as conventional copper smelting processes. Copper smelters produce large amounts of copper slag or copper flotation waste and the dumping of these quantities of copper slag causes economic, environmental and space problems. The aim of this study was to perform a laboratory investigation to assess the feasibility of immobilizing the heavy metals contained in copper flotation waste. For this purpose, samples of copper flotation waste were immobilized with relatively small proportions of red mud and large proportions of clinoptilolite. The results of laboratory leaching demonstrate that addition of red mud and clinoptilolite to the copper flotation waste drastically reduced the heavy metal content in the effluent and the red mud performed better than clinoptilolite. This study also compared the leaching behaviour of metals in copper flotation waste by short-time extraction tests such as the toxicity characteristic leaching procedure (TCLP), deionized water (DI) and field leach test (FLT). The results of leach tests showed that the results of the FLT and DI methods were close and generally lower than those of the TCLP methods.  相似文献   

15.
The global crisis of the hazardous electronic waste (E-waste) is on the rise due to increasing usage and disposal of electronic devices. A process was developed to treat E-waste in an environmentally benign process. The process consisted of thermal plasma treatment followed by recovery of metal values through mineral acid leaching. In the thermal process, the E-waste was melted to recover the metal values as a metallic mixture. The metallic mixture was subjected to acid leaching in presence of depolarizer. The leached liquor mainly contained copper as the other elements like Al and Fe were mostly in alloy form as per the XRD and phase diagram studies. Response surface model was used to optimize the conditions for leaching. More than 90% leaching efficiency at room temperature was observed for Cu, Ni and Co with HCl as the solvent, whereas Fe and Al showed less than 40% efficiency.  相似文献   

16.
Chromated copper arsenate (CCA) wood preservative can form insoluble sludges when the hexavalent chromium component is reduced by wood extractives, wood particles and preservative additives in the solution. This sludge accumulates in treating solution work tanks, sumps and in-line filters and must be disposed of as hazardous wastes by waste disposal companies at high costs. A number of commercial sludges were investigated and found to contain 18-94% copper, chromium and arsenic as oxides combined with sand, oil, wood particles, additives and wood extractives. We have developed a multi-stage recycling process whereby approximately 97% of the CCA components are recovered from the sludge. It involves extraction with sodium hypochlorite to remove and oxidize chromium (more than 90%) and extract most of the arsenic (approx. 80%) followed by extraction of the copper and remaining arsenic and chromium with phosphoric acid. The phosphoric acid extract contains some trivalent chromium, which is subsequently oxidized by sodium hypochlorite. The combined oxidized extract containing CrVI, CuII and AsV was compatible with CCA treating solutions and could be re-used commercially for treating wood without having a significant effect on the preservative fixation rate or the leach resistance of the treated wood. A cost analysis showed that the economic savings from recovery of CCA chemicals and reduced landfill costs exceeded the variable costs for materials and energy for the process by as much as Can $966 per tonne of sludge if sodium sulfite can be acquired in bulk quantities for the process.  相似文献   

17.
Remediation processes for recovery and reuse of chromated-copper-arsenate- (CCA) treated wood are not gaining wide acceptance because they are more expensive than landfill disposal. One reason is the high cost of the nutrient medium used to culture the metal-tolerant bacterium, Bacillus licheniformis, which removes 70-100% of the copper, chromium, and arsenic from CCA-treated southern yellow pine (CCA-SYP) in a two-step process involving oxalic acid extraction and bacterial culture. To reduce this cost, the nutrient concentration in the culture medium and the ratio of wood to nutrient medium were optimized. Maximum metal removal occurred when B. licheniformis was cultured in 1.0% nutrient medium and at a wood to nutrient medium ratio of 1:10. Also, malted barley, an abundant by-product of brewing, was evaluated as an alternative nutrient medium. Tests were done to determine absorption of metals by barley, and the results indicate that the barley acted as a biosorbent, removing heavy metals from the liquid culture after their release from CCA to SYP. For comparison, tests were also performed with no nutrient medium. Following bacterial remediation, 17% copper and 15% arsenic were removed from an aqueous slurry of CCA-SYP (no medium). When oxalic acid extraction preceded the aqueous bacterial culture, 21% copper, 54% chromium, and 63% arsenic were removed. The two-step process (oxalic acid extraction and bacterial culture with nutrient medium) appears to be an effective, yet costly, way to remove metals.  相似文献   

18.
Hazardous waste incineration (HWI) in rotary kilns and the disposal of the residual slag on landfills play an important role in German waste treatment. In order to save disposal costs the elution behaviour of HWI-slag should be further optimised. Quality-improved slag may be disposed off on cheaper landfill sites still applying to landfill regulations. In a new process-integrated approach hazardous waste is mixed with limestone, which initiates chemical reactions with heavy metals in the rotary kiln yielding new compounds of different solubility. In this work HWI-slag/limestone mixtures are thermally treated and then examined by elution tests. Experimental data indicate that the heavy metals pertinent to landfill class assignment of a HWI-slag share a solubility minimum at a CaO-content of about 15%. Such improved HWI-slags are allowed to be disposed off on cheaper landfill sites. Furthermore, a new combination of thermodynamic calculation methods is applied to predict heavy metal solubility for different process conditions. Used models hold the opportunity to explain the tendencies of heavy metal leaching and propose plausible chemical reactions. With it, a new tool to examine the impact of temperature treatment and slag composition on heavy metal elution from HWI-slag is presented.  相似文献   

19.
Copper waste is iron-rich hazardous waste containing heavy metals such as Cu, Zn, Co, Pb. The results of leaching tests show that the concentration of these elements exceeds the Turkish and EPA regulatory limits. Consequently, this waste cannot be disposed of in its present form and therefore requires treatment to stabilize it or make it inert prior to disposal. Vitrification was selected as the technology for the treatment of the toxic waste under investigation. During the vitrification process significant amounts of the toxic organic and inorganic chemical compounds could be destroyed, and at the same time, the metal species are immobilized as they become an integral part of the glass matrix. The copper flotation waste samples used in this research were obtained from the Black Sea Copper Works of Samsun, Turkey. The samples were vitrified after being mixed with other inorganic waste and materials. The copper flotation waste and their glass-ceramic products were characterized by X-ray analysis (XRD), scanning electron microscopy and by the toxicity characteristic leaching procedure test. The products showed very good chemical durability. The glass-ceramics fabricated at 850 degrees C/2 h have a large application potential especially as construction and building materials.  相似文献   

20.
In the present work, bottom and fly ash, generated from incinerated medical waste, was used as a raw material for the production of geopolymers. The stabilization (S/S) process studied in this paper has been evaluated by means of the leaching and mechanical properties of the S/S solids obtained. Hospital waste ash, sodium hydroxide, sodium silicate solution and metakaolin were mixed. Geopolymers were cured at 50 °C for 24 h. After a certain aging time of 7 and 28 days, the strength of the geopolymer specimens, the leachability of heavy metals and the mineralogical phase of the produced geopolymers were studied. The effects of the additions of fly ash and calcium compounds were also investigated. The results showed that hospital waste ash can be utilized as source material for the production of geopolymers. The addition of fly ash and calcium compounds considerably improves the strength of the geopolymer specimens (2–8 MPa). Finally, the solidified matrices indicated that geopolymerization process is able to reduce the amount of the heavy metals found in the leachate of the hospital waste ash.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号