首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
2.
3.
Noroviruses (NoVs), currently recognised as the most common human food-borne pathogens, are ubiquitous in the environment and can be transmitted to humans through multiple foodstuffs. In this study, we evaluated the prevalence of human NoV genogroups I (GI) and II (GII) in 493 food samples including soft red fruits (n = 200), salad vegetables (n = 210) and bivalve mollusc shellfish (n = 83), using the Bovine Enterovirus type 1 as process extraction control for the first time. Viral extractions were performed by elution concentration and genome detection by TaqMan Real-Time RT-PCR (RT-qPCR). Experimental contamination using hepatitis A virus (HAV) was used to determine the limit of detection (LOD) of the extraction methods. Positive detections were obtained from 2 g of digestive tissues of oysters or mussels kept for 16 h in seawater containing 2.0–2.7 log10 plaque-forming units (PFU)/L of HAV. For lettuces and raspberries, the LOD was, respectively, estimated at 2.2 and 2.9 log10 PFU per 25 g. Of the molluscs tested, 8.4 and 14.4 % were, respectively, positive for the presence of GI NoV and GII NoV RNA. Prevalence in GI NoVs varied from 11.9 % for the salad vegetables samples to 15.5 % for the red soft fruits. Only 0.5 % of the salad and red soft fruits samples were positive for GII NoVs. These results highlight the high occurrence of human NoVs in foodstuffs that can be eaten raw or after a moderate technological processing or treatment. The determination of the risk of infection associated with an RT-qPCR positive sample remains an important challenge for the future.  相似文献   

4.
Foodborne illnesses associated with contaminated fresh produce are a common public health problem and there is an upward trend of outbreaks caused by enteric viruses, especially human noroviruses (HNoVs) and hepatitis A virus (HAV). This study aimed to assess the use of DNase and RNase coupled to qPCR and RT-qPCR, respectively, to detect intact particles of human adenoviruses (HAdVs), HNoV GI and GII and HAV in fresh produce. Different concentrations of DNase and RNase were tested to optimize the degradation of free DNA and RNA from inactivated HAdV and murine norovirus (MNV), respectively. Results indicated that 10 µg/ml of RNase was able to degrade more than 4 log10 (99.99%) of free RNA, and 1 U of DNase degraded the range of 0.84–2.5 log10 of free DNA depending on the fresh produce analysed. The treatment with nucleases coupled to (RT)-qPCR was applied to detect potential infectious virus in organic lettuce, green onions and strawberries collected in different seasons. As a result, no intact particles of HNoV GI and GII were detected in the 36 samples analysed, HAdV was found in one sample and HAV was present in 33.3% of the samples, without any reasonable distribution pattern among seasons. In conclusion, RT-qPCR preceded by RNase treatment of eluted samples from fresh produce is a good alternative to detect undamaged RNA viruses and therefore, potential infectious viruses. Moreover, this study provides data about the prevalence of enteric viruses in organic fresh produce from Brazil.  相似文献   

5.
6.
7.
The aim of the study was to define the occurrence of human noroviruses of genogroup I and II (NoV GI and NoV GII) and hepatitis A virus (HAV) in the Baltic Sea mussels. The shellfish samples were taken at the sampling sites located on the Polish coast. In total, 120 shellfish were tested as pooled samples using RT-PCR and hybridisation with virus specific probes. NoV GI was detected in 22 (18.3 %), NoV GII in 28 (23.3 %), and HAV in 9 (7.5 %) of the shellfish. The nucleotide sequence analysis of the detected NoV GII strains showed a 97.3–99.3 % similarity to GII.4 virus strain. This is the first report describing the NoV and HAV occurrence in wild Baltic mussels and their possible role as bioindicators of seawater contamination with human enteric viruses.  相似文献   

8.
This study evaluated different tissues of naturally contaminated oysters (Crassostrea belcheri) for the presence of noroviruses. RNA from digestive tissues, gills, and mantle of the oysters was extracted and tested for norovirus genogroup (G) I, GII, and GIV using RT-nested PCR. In spiking experiments with a known norovirus, GII.4, the detection limits were 2.97 × 102 RNA copies/g of digestive tissues, 2.62 × 102 RNA copies/g of gills, and 1.61 × 103 RNA copies/g of mantle. A total of 85 oyster samples were collected from a fresh market in Bangkok, Thailand. Noroviruses were found in the oyster samples (40/85, 47%): GI (29/85, 34.1%), GII (9/85, 10.5%), mixed GI and GII (1/85, 1.2%), and GIV (1/85, 1.2%). All three genogroups were found in the digestive tissues of oysters. Norovirus GI was present in all three tissues with the highest frequency in the mantle, and was additionally detected in multiple tissues in some oysters. GII was also detected in all three tissues, but was not detected in multiple tissues in the same oyster. For genogroup I, only GI.2 could be identified and it was found in all tissues. For genogroup II, three different genotypes were identified, namely GII.4 which was detected in the gills and the mantle, GII.17 which was detected in the digestive tissues, and GII.21 which was detected in the mantle. GIV.1 was identified in the digestive tissues of one oyster. This is the first report on the presence of human GIV.1 in oyster in Thailand, and the results indicate oyster as a possible vehicle for transmission of all norovirus genogroups in Thailand.  相似文献   

9.
Norovirus (NoV) GII.4 is the predominant genotype associated with gastroenteritis pandemics and new strains emerge every 2–3 years. Between 2008 and 2011, environmental studies in South Africa (SA) reported NoVs in 63% of the sewage-polluted river water samples. The aim of this study was to assess whether wastewater samples could be used for routine surveillance of NoVs, including GII.4 variants. From April 2015 to March 2016, raw sewage and effluent water samples were collected monthly from five wastewater treatment plants in SA. A total of 108 samples were screened for NoV GI and GII using real-time RT-qPCR. Overall 72.2% (78/108) of samples tested positive for NoVs with 4.6% (5/108) GI, 31.5% (34/108) GII and 36.1% (39/108) GI + GII strains being detected. Norovirus concentrations ranged from 1.02 × 102 to 3.41 × 106 genome copies/litre for GI and 5.00 × 103 to 1.31 × 106 genome copies/litre for GII. Sixteen NoV genotypes (GI.2, GI.3, GI.4, GI.5, GI.6, GII.2, GII.3, GII.4, GII.7, GII.9, GII.10, GII.14, GII.16, GII.17, GII.20, and GII.21) were identified. Norovirus GII.2 and GII.17 co-dominated and the majority of GII.17 strains clustered with the novel Kawasaki 2014 variant. Sewage surveillance facilitated detection of Kawasaki 2014 in SA, which to date has not been detected with surveillance in children with gastroenteritis <5 years of age. Combined surveillance in the clinical setting and environment appears to be a valuable strategy to monitor emergence of NoV strains in countries that lack NoV outbreak surveillance.  相似文献   

10.
This paper reports a study of norovirus (NoV) GII distribution and persistence in Sydney rock oysters (SRO) (Saccostrea glomerata) located in an estuary after a pump station sewage overflow. SRO were strategically placed at six sites spanning the length of the estuary from the pump station to the sea. The spatial and temporal distribution of NoV, hepatitis A virus (HAV) and Escherichia coli (E. coli) in oysters was mapped after the contamination event. NoV GI and GII, HAV and E. coli were quantified for up to 48 days in oysters placed at six sites ranging from 0.05 to 8.20 km from the sewage overflow. NoV GII was detected up to 5.29 km downstream and persisted in oysters for 42 days at the site closest to the overflow. NoV GII concentrations decreased significantly over time; a reduction rate of 8.5% per day was observed in oysters (p < 0.001). NoV GII concentrations decreased significantly as a function of distance at a rate of 5.8% per km (p < 0.001) and the decline in E. coli concentration with distance was 20.1% per km (p < 0.001). HAV and NoV GI were not detected. A comparison of NoV GII reduction rates from oysters over time, as observed in this study and other published research, collectively suggest that GII reduction rates from oysters may be broadly similar, regardless of environmental conditions, oyster species and genotype.  相似文献   

11.
The aim of this study was to evaluate the potential role of office fomites in respiratory (human parainfluenza virus 1—HPIV1, human parainfluenza virus 3—HPIV3) and enteric (norovirus GI—NoV GI, norovirus GII—NoV GII) viruses transmission by assessing the occurrence of these viruses on surfaces in office buildings. Between 2016 and 2017, a total of 130 surfaces from open-space and non-open-space rooms in office buildings located in one city were evaluated for HPIV1, HPIV3, NoV GI, and NoV GII viral RNA presence. Detection of viruses was performed by RT-qPCR method. Study revealed 27 positive samples, among them 59.3% were HPIV3-positive, 25.9% HPIV1-positive, and 14.8% NoV GII-positive. All tested surfaces were NoV GI-negative. Statistical analysis of obtained data showed that the surfaces of office equipment including computer keyboards and mice, telephones, and desktops were significantly more contaminated with respiratory viruses than the surfaces of building equipment elements such as door handles, light switches, or ventilation tracts (χ 2 p = 0.006; Fisher’s Exact p = 0.004). All examined surfaces were significantly more contaminated with HPIVs than NoVs (χ 2 p = 0.002; Fisher’s Exact p = 0.003). Office fomites in open-space rooms were more often contaminated with HPIVs than with NoVs (χ 2 p = 0.016; Fisher’s Exact p = 0.013). The highest average concentration of HPIVs RNA copies was observed on telephones (1.66 × 102 copies/100 cm2), while NoVs on the light switches (1.40 × 102 copies/100 cm2). However, the Kruskal–Wallis test did not show statistically significant differences in concentration levels of viral RNA copies on surfaces between the all tested samples. This study unequivocally showed that individuals in office environment may have contact with both respiratory and enteric viral particles present on frequently touched surfaces.  相似文献   

12.
Noroviruses are the most common cause of acute gastroenteritis associated with bivalve shellfish consumption. This study aimed to detect and characterize noroviruses in three bivalve shellfish species: oysters (Saccostrea forskali), cockles (Anadara nodifera), and mussels (Perna viridis). The virus concentration procedure (adsorption-twice elution-extraction) and a molecular method were employed to identify noroviruses in shellfish. RT-nested PCR was able to detect known norovirus GII.4 of 8.8 × 10?2 genome copies/g of digestive tissues from oyster and cockle concentrates, whereas in mussel concentrates, the positive result was seen at 8.8 × 102 copies/g of digestive tissues. From August 2011 to July 2012, a total of 300 shellfish samples, including each of 100 samples from oysters, cockles, and mussels were collected and tested for noroviruses. Norovirus RNA was detected in 12.3 % of shellfish samples. Of the noroviruses, 7.7 % were of the genogroup (G) I, 2.6 % GII, and 2.0 % were mixed GI and GII. The detection rate of norovirus GI was 2.1 times higher than GII. With regards to the different shellfish species, 17 % of the oyster samples were positive, while 14.0 and 6.0 % were positive for noroviruses found in mussels and cockles, respectively. Norovirus contamination in the shellfish occurred throughout the year with the highest peak in September. Seventeen norovirus-positive PCR products were characterized upon a partial sequence analysis of the capsid gene. Based on phylogenetic analysis, five different genotypes of norovirus GI (GI.2, GI.3, GI.4, GI.5, and GI.9) and four different genotypes of GII (GII.1, GII.2, GII.3, and GII.4) were identified. These findings indicate the prevalence and distribution of noroviruses in three shellfish species. The high prevalence of noroviruses in oysters contributes to the optimization of monitoring plans to improve the preventive strategies of acute gastroenteritis.  相似文献   

13.
14.
15.
Human enteric viruses occur in high concentrations in wastewater and can contaminate receiving environmental waters. Due to the lack of data on the prevalence of enteric viruses in New Caledonia, the presence and the concentrations of enteric viruses in wastewater and seawater were determined. Untreated wastewater and seawater samples were collected monthly for 1 year from a wastewater treatment plant (WWTP) and from the WWTP’s outlet, located directly on a popular recreational beach. Samples were tested for norovirus genogroups I and II (NoV GI and GII), astroviruses (AsV), sapoviruses (SaV), enteroviruses (EV), hepatitis A viruses (HAV), rotaviruses (RoV), human adenoviruses (HAdV) and human polyomaviruses (HPyV). To support these data, faecal samples from cases of gastroenteritis were tested for the first time for NoV and detected in the population. NoV GI, NoV GII, EV, SaV, HAdV and HPyV were detected in all wastewaters, RoV in 75 % and AsV in 67 %. HAV were not detected in wastewater. Overall, 92 % of seawater samples were positive for at least one virus. HPyV were detected most frequently in 92 % of samples and at concentrations up to 7.7 × 103 genome copies/L. NoV GI, NoV GII, EV, SaV, RoV and HAdV were found in 33, 66, 41, 33, 16 and 66 % of seawater samples, respectively. AsV were not detected in seawater. This study reports for the first time the presence of NoV and other enteric viruses in New Caledonia and highlights the year-round presence of enteric viruses in the seawater of a popular beach.  相似文献   

16.
This study investigated the level of norovirus contamination in oysters collected at a lagoon receiving urban drainage from Hue City for 17 months (August 2015–December 2016). We also investigated the genetic diversity of norovirus GI and GII in oyster and wastewater samples by using pyrosequencing to evaluate the effect of urban drainage on norovirus contamination of oysters. A total of 34 oyster samples were collected at two sampling sites (stations A and B) in a lagoon. Norovirus GI was more frequently detected than GII (positive rate 79 vs. 41%). Maximum concentrations of GI and GII were 2.4 × 105 and 2.3 × 104 copies/g, respectively. Co-contamination with GI and GII was observed in 35% of samples. Norovirus GII concentration was higher at station A in the flood season than in the dry season (P = 0.04, Wilcoxon signed-rank test). Six genotypes (GI.2, GI.3, GI.5, GII.2, GII.3, and GII.4) were identified in both wastewater and oyster samples, and genetically similar or identical sequences were obtained from the two types of samples. These observations suggest that urban drainage and seasonal flooding contribute to norovirus contamination of oysters in the study area.  相似文献   

17.
Shellfish are recognized as a potential vehicle of viral disease and despite the control measures for shellfish safety there is periodic emergence of viral outbreaks associated with shellfish consumption. In this study a total of 81 mussel samples from Ría do Burgo, A Coruña (NW Spain) were analysed. Samples were collected in seven different harvesting areas with the aim to establish a correlation between the prevalence of norovirus (NoV) and hepatitis A virus (HAV) in mussel samples and the water quality. In addition, the genogroup of the detected HAV and NoV strains was also determined. The HAV presence was detected in 18.5 % of the samples. Contamination levels for this virus ranged from 1.1 × 102 to 4.1 × 106 RNA copies/g digestive tissue. NoV were detected in 49.4 % of the cases reaching contamination levels from 5.9 × 103 to 1.6 × 109 RNA copies/g digestive tissue for NoV GI and from 6.1 × 103 to 5.4 × 106 RNA copies/g digestive tissue for NoV GII. The χ²-test showed no statistical correlation between the number of positive samples and the classification of molluscan harvesting area based on the E. coli number. All the detected HAV strains belong to genogroup IB. NoV strains were assigned to genotype I.4, II.4 and II.6.  相似文献   

18.
Noroviruses (NoVs) are important human pathogens associated with foodborne and waterborne gastroenteritis. These viruses are genetically highly heterogeneous, with more than forty genotypes within three genogroups (GI, GII, and GIV) identified in humans. However, the vast majority of human infections are associated with variants of a unique genotype, GII.4. Aside from these NoV strains of epidemiological relevance, NoV strains of genogroup GIV (Alphatron-like) are reported in a sporadic fashion and their overall prevalence in the community is unknown and this likely reflects the lack of specific diagnostic tools. We analyzed raw sewages collected from 32 wastewater treatment plants distributed throughout Italy (307 samples) and stool specimens collected from hospitalized patients with clinical signs of diarrhea of unknown etiology (285 samples). By using specific qualitative and quantitative RT-PCR assays, 21.8 % of the sewage samples and 3.2 % of the stool specimens tested positive for GIV NoVs. The number of genome copies in fecal samples ranged from 5.08 × 104 to 1.73× 106/g of feces. Sequence analysis showed limited genetic variability in human GIV viruses. The presence of GIV NoV both in sewage and in clinical samples confirms that not only GI and GII NoVs but also GIV strains are circulating in humans. Monitoring of GIV NoV is recommended in order to understand the dynamics of circulation in human populations, environmental contamination, and potential health risks.  相似文献   

19.
20.
Human noroviruses (NoVs) are a major source of foodborne illnesses worldwide. Since human NoVs cannot be cultured in vitro, methods that discriminate infectious from non-infectious NoVs are needed. The purpose of this study was to evaluate binding of NoV genotypes GI.1 and GII.4 to histo-blood group antigens expressed in porcine gastric mucin (PGM) as a surrogate for detecting infectious virus following thermal (99 °C/5 min), 70 % ethanol or 0.5 % levulinic acid (LV) plus 0.01 or 0.1 % sodium dodecyl sulfate (SDS) sanitizer treatments and to determine the limit of detection of GI.1 and GII.4 binding to PGM. Treated and control virus samples were applied to 96-well plates coated with 1 µg/ml PGM followed by RNase A (5 ng/µl) treatment for degradation of exposed RNA. Average log genome copies per ml (gc/ml) reductions and relative differences (RD) in quantification cycle (Cq) values after thermal treatment were 1.77/5.62 and 1.71/7.25 (RNase A) and 1.73/5.50 and 1.56/6.58 (no RNase A) for GI.1 and GII.4, respectively. Treatment of NoVs with 70 % EtOH resulted in 0.05/0.16 (GI.1) and 3.54/10.19 (GII.4) log reductions in gc/ml and average RD in Cq value, respectively. LV (0.5 %) combined with 0.1 % SDS provided a greater decrease of GI.1 and GII.4 NoVs with 8.97 and 8.13 average RD in Cq values obtained, respectively than 0.5 % LV/0.01 % SDS. Virus recovery after PGM binding was variable with GII.4 > GI.1. PGM binding is a promising surrogate for identifying infectious and non-infectious NoVs after capsid destruction, however, results vary depending on virus strain and inactivation method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号