首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
已二酸生产副产物——混合二元酸的综合利用   总被引:1,自引:1,他引:0  
采用一水合硫酸氢钠作为催化剂,催化己二酸生产副产物——混合二元酸与甲醇反应合成混合二元酸二甲酯。优化工艺条件为:混合二元酸加入量0.1mol,无水甲醇加入量0.5mol,一水合硫酸氢钠加入量4.0g,环己烷加入量20mL,反应时间1.5h。合成混合二元酸二甲酯的酯化反应收率大于97%。经气相色谱检测,产物中酯的质量分数为98.91%。一水合硫酸氢钠可重复使用3次。  相似文献   

2.
采用混合二元酸和正丁醇为原料,以自制磷钨酸为催化剂,甲苯为带水剂,合成了混合二元酸二丁酯.通过均匀设计和单因素实验研究得到混合二元酸二丁酯合成的最佳工艺条件:n(正丁醇):n(混合二元酸)为3.0,催化剂与混合二元酸的质量比为2.2%,甲苯在反应体系中的质量分数为22%,反应时间为2.0 h.在最佳工艺条件下反应的酯化率为99.44%.  相似文献   

3.
硫酸生产中废钒催化剂回收工艺研究   总被引:2,自引:0,他引:2  
采用H2SO4浸取、NH4HSO3还原、NH4NO3氧化、KOH精制的方法回收废钒催化剂中的V2O5。实验结果表明,还原反应的最佳条件为:n(NH4HSO3)/n(V2O5)=1.10,还原反应温度90℃,还原反应时间2.0h。氧化反应的最佳条件为:n(KOH)/n(VO^+)=1.10,氧化反应温度60℃,液固比8,氧化反应时间60min。该方法V2O5回收率达90.3%以上,V2O5纯度达82%以上。  相似文献   

4.
纳米Fe2O3-TiO2催化剂的制备及其对甲基橙的降解   总被引:1,自引:1,他引:0  
以钛酸四丁酯为主要原料、冰醋酸为抑制剂,采用溶胶-凝胶法制备纳米Fe2O3-TiO2复合催化剂,并用X射线衍射(XRD)、透射电子显微镜(TEM)和荧光光谱(FS)分析了催化剂的晶体结构、形貌和光谱特征。以甲基橙溶液为处理对象,在可见光下研究了不同n(Fe2O3):n(TiO2)的催化剂的光催化活性,并初步研究了荧光强度与催化剂的光催化活性之问的关系。研究结果表明,n(Fe2O3):n(TiO2)为0.10%的催化剂的光催化活性最佳,光照4h后甲基橙的去除率达99.8%,且荧光强度与光催化活性呈正相关性。  相似文献   

5.
童孟良 《化工环保》2006,26(4):318-320
研究了以废镍铝合金粉(废镍渣)为原料、H2SO4为浸出剂、尿素为沉淀剂制备镍催化剂的方法;考察了Ni浸出条件对其浸出率的影响,并通过催化加氢实验对镍催化剂的活性进行了评价。Ni的浸出条件:w(H2SO4)25%、酸浸时间3h、n(废镍渣):n(H2SO4)=1.0:1.4。在该条件下,Ni的浸出率为92.85%。Ni的回收率在90%以上。催化加氢实验结果表明,在温度120~125℃、压力大于或等于1.2MPa、催化剂用量1%(质量分数)的条件下,可将异丙叉丙酮经一步液相催化加氢反应制备成甲基异丁基甲醇(MBC),异丙叉丙酮转化率为100%,MIBC的收率达99.3%。  相似文献   

6.
采用溶胶-凝胶法制备了Mn掺杂钙钛矿型催化剂LaFexMn1-xO3,并以其为催化剂催化湿式双氧水氧化处理煤气化废水纳滤浓缩液。采用XRD,SEM,FTIR技术对催化剂进行了表征。表征结果显示:制备的催化剂均具有标准的钙钛矿型结构,其中,LaFe0.9Mn0.1O3的结构稳定,比表面积大。实验结果表明:制备的催化剂中LaFe0.9Mn0.1O3的催化活性最高,且稳定性好,连续使用5次后催化活性未见明显减弱;在H2O2投加量3.0 g/L、n(H2O2)∶n(LaFe0.9Mn0.1O3)=12∶1、反应温度160 ℃、反应压力1 MPa、浓缩液pH 3、反应时间60 min的最优条件下,COD、UV254和TOC的去除率分别达到80.9%、95.2%和68.0%,BOD5/COD由0.02提升至0.40,可生化性大幅提高。  相似文献   

7.
用废旧电路板热解油制备酚醛树脂   总被引:2,自引:0,他引:2  
在碳酸钙存在下,采用热解技术将废旧电路板中的树脂转化为富含酚的热解油,然后直接加入甲醛溶液反应制备热解油型酚醛树脂,实现了废旧电路板中树脂的再生,酚醛树脂的性能结构类似于氨催化的酚醛树脂。实验结果表明:在n(甲醛):n(热解油)为1.8~2.1的条件下,无需外加催化剂,在60,80,90℃下分别反应30min制备的热解油型酚醛树脂的性能最佳,且可满足GB/T14732—93《木材工业胶黏剂用脲醛、酚醛、三氧氰胺甲醛树脂》中层压材料用酚醛树脂产品的相关标准。  相似文献   

8.
王碧  许桂丽  胡星琪 《化工环保》2007,27(5):484-488
采用聚丙烯酰胺、NH:OH·HCI和NaOH反应合成了HW型高分子捕集剂(简称捕集剂),考察了捕集剂对Ph^2+,Cu^2+质量浓度分别为100mg/L的废水的处理效果。研究结果表明:在含Ph^2+废水pH为6.5~7.0、n(捕集剂):n(Pb^2+):1.6、反应时间为50min的最佳条件下,Ph^2+去除率达100.00%;在含Cu^2+废水pH为5.5~6.0、n(捕集剂):n(Cu^2+)=1.0、反应时间为60min的最佳条件下,Cu^2+去除率达99.73%。对Ph^2+,Cu^2+质量浓度分别为50mg/L的混合废水,n(捕集剂):n(Pb^2++Cu^2+)=1.2时,对Ph^2+,Cu^2+的去除率均达到99%以上。捕集剂去除pb^2+,Cu^2+的机理为羟肟酸基团与Ph^2+,Cu^2+反应生成稳定的螯合物。与中和法沉淀物相比,捕集剂与Ph^2+,Cu^2+反应生成的螯合物的Ph^2+,Cu^2+浸出量小,具有更好的环境安全性。  相似文献   

9.
以靛蓝为目标污染物,采用稀土元素Pr辅助的类Fenton试剂氧化法处理模拟染料废水。制备了双金属氧化物催化剂Fe2-xPrxO3,考察了催化剂中n(Pr)∶n(Fe)、催化剂加入量、初始靛蓝质量浓度、H2O2加入量、废水pH对废水脱色效果的影响。实验结果表明:Pr在很大程度上提高了类Fenton反应的效率,废水脱色率得到显著提高;在n(Pr)∶n(Fe)=1∶5、初始靛蓝质量浓度为30 mg/L、催化剂加入量为500 mg/L、H2O2加入量为40 mL/L、废水pH为3的最佳工艺条件下,反应50 min时废水脱色率达到92.78%。  相似文献   

10.
用含铜蚀刻废液制备碱式碳酸铜   总被引:1,自引:0,他引:1  
以含铜蚀刻废液为原料,采用沉铜-浸铜-蒸氨三步法制备碱式碳酸铜。考察了反应物配比、提取温度、浸取时间等对实验结果的影响。最佳工艺条件:浸铜时,n(NH3):n(CuO)为3.0,n(NH4HCO3):n(CuO)为1.25,浸取时间为2h,无需加热;蒸氨时,在真空度为0.06MPa的条件下,采用在80—95℃范围内逐渐升温的方式蒸氨2.5h。实验结果表明,反应生成的碱式碳酸铜中Cu的质量分数为56%,产品质量优于木材防腐用碱式碳酸铜国内外同类产品。  相似文献   

11.
金劲松  杨毅 《化工环保》2011,(2):140-143
提出了水域泄漏油品回收技术的装备需求,介绍了水域泄漏油品问收处理措施.采用拦油栅来控制漂浮在水上的油品,将泄漏油品集中在相对较小的区域内,并使水面的浮油层加厚,然后使用人工或机械对泄漏油品进行回收.对于水域中的少量泄漏油品,采用吸油材料来进行吸附.在油膜较薄,难以用机械方法回收的情况下,使用消油剂或固化剂进行处理.水域...  相似文献   

12.
考虑离散油滴在油田废水除油过程中发生的油滴碰撞聚结现象,模拟得出斜板除油器内全部油滴的动态信息,用于斜板除油器除油效率的计算.对矩形同向流斜板除油过程的模拟研究表明:油滴的碰撞聚结会增加斜板除油的效率;当废水的原始含油浓度增大时,斜板除油的效率会增大,碰撞聚结对除油效率提高的影响也越大;废水流动速度提高及斜板的倾斜角度增加均会使斜板的除油效率降低,但此时油滴碰撞聚结对除油效率的影响仍很明显.  相似文献   

13.
旋流萃取分离技术处理石化电脱盐废水   总被引:1,自引:0,他引:1       下载免费PDF全文
陈永强  龚小芝  陈发 《化工环保》2015,35(3):297-299
采用旋流萃取分离技术处理某炼油厂常减压装置电脱盐废水(初始废水含油量约为5 000 mg/L),优化了废水除油的工艺条件。试验结果表明,废水除油的最佳工艺条件为:旋流萃取分离机中心转子的转速960 r/min、废水流量2 000 L/h、废水温度80℃。废水经旋流萃取分离后,废水的含油量小于200 mg/L,废水除油效果较好;分离后油相的含水量约为0.1%(w),盐质量浓度小于20 mg/L,可回注到常减压装置原料罐循环利用。对于2 Mt/a的常减压装置,采用旋流萃取分离技术后,每年可减少支出100.4万元。  相似文献   

14.
研究了采用柴油低温临界吸收法回收装车挥发油气的效果。实验结果表明:按装车挥发油气中的总烃体积分数为20.88%、装车挥发油气流量为280 m3/h、年运行时间为2 668 h计,装置年回收油气量为291 t,装置年最大运行功率为206.770 MW,装置投资回收期为3 a;处理后净化气中的总烃体积分数为1.24%,排放质量浓度低于25 g/m3,油气回收率达95%。处理后净化气满足GB 20950—2007《储油库大气污染物排放标准》,取得了较好的环保效益和经济效益。  相似文献   

15.
废油脂制备生物柴油的清洁生产工艺   总被引:1,自引:0,他引:1  
在固定床反应器中,采用自制固体催化剂催化废油脂与甲醇发生酯交换反应制备生物柴油。最佳反应条件为:甲醇与废油脂摩尔比6,液态空速2h,反应温度290℃。废油脂预处理简单,酸值为180mg/g时,生物柴油的产率可达85%。所制备的,仨物柴油各项物性数据均符合我国轻柴油的标准,也完全达到德国和美国生物柴油的指标要求。该生物柴油制备方法属清洁生产工艺,无废水产生。  相似文献   

16.
潘一  王斅  杨双春  赵亚东  赵旸 《化工环保》2014,35(3):224-229
油砂开采面临的最大挑战是尾砂的处理以及如何提高尾砂油的回收率。结合国内外最新研究及实践成果,总结了尾砂的沉降、脱水、脱油和废弃物的处理方式,以及可用于提高尾砂油回收率的表面活性剂、碱剂、热解、超声波等方法,为尾砂的无害化处理提供了理论参考。  相似文献   

17.
The addition of lipid wastes to the digestion of swine manure was studied as a means of increasing biogas production. Lipid waste was obtained from a biodiesel plant where used cooking oil is the feedstock. Digestion of this co-substrate was proposed as a way of valorising residual streams from the process of biodiesel production and to integrate the digestion process into the biorefinery concept.Batch digestion tests were performed at different co-digesting proportions obtaining as a result an increase in biogas production with the increase in the amount of co-substrate added to the mixture. Semi-continuous digestion was studied at a 7% (w/w) mass fraction of total solids. Co-digestion was successful at a hydraulic retention time (HRT) of 50 d but a decrease to 30 d resulted in a decrease in specific gas production and accumulation of volatile and long chain fatty acids. The CH4 yield obtained was 326 ± 46 l/kg VSfeed at an HRT of 50 d, while this value was reduced to 274 ± 43 l/kg VSfeed when evaluated at an HRT of 30 d. However these values were higher than the one obtained under batch conditions (266 ± 40 l/kg VSfeed), thus indicating the need of acclimation to the co-substrate. Despite of operating at low organic loading rate (OLR), measurements from respirometry assays of digestate samples (at an HRT of 50 d) suggested that the effluent could not be directly applied to the soil as fertiliser and might have a negative effect over soil or crops.  相似文献   

18.
采用热重差热分析法和傅里叶变换红外光谱分析联用的方法(TG-FTIR)研究淬火油泥(QOS)的热解过程,解析了热解过程的动力学特性,分析了其中的矿物油(MO)和残渣(SR)在QOS热解过程中的相互作用。实验结果表明:QOS热解过程包含油分热解阶段和矿物质分解阶段;低温段热解温度为150~520 ℃,高温段热解温度为800~980 ℃;SR的热解过程分为油分热解反应和残渣中Fe2O3的还原反应;MO的热解过程只有轻质油分的挥发和重质油分的热解。FTIR表征结果显示:QOS热解过程析出的气体主要为CO2、CO和有机化合物;SR热解过程中CO2的特征峰强度高于其他气体的特征峰强度;MO热解过程中烷烃的特征峰强度高于其他气体的特征峰强度,且MO主要以轻质油分为主。在QOS的热解过程中,初温~480 ℃时,SR所含的Fe2O3对MO的热解起促进作用,300 ℃左右时促进效果最明显。  相似文献   

19.
Dehalogenation is a key technology in the feedstock recycling of mixed halogenated waste plastics. In this study, two different methods were used to clarify the effectiveness of our proposed catalytic dehalogenation process using various carbon composites of iron oxides and calcium carbonate as the catalyst/sorbent. The first approach (a two-step process) was to develop a process for the thermal degradation of mixed halogenated waste plastics, and also develop dehalogenation catalysts for the catalytic dehydrochlorination of organic chlorine compounds from mixed plastic-derived oil containing polyvinyl chloride (PVC) using a fixed-bed flow-type reactor. The second approach (a single-step process) was the simultaneous degradation and dehalogenation of chlorinated (PVC) and brominated (plastic containing brominated flame retardant, HIPS–Br) mixed plastics into halogen-free liquid products. We report on a catalytic dehalogenation process for the chlorinated and brominated organic compounds formed by the pyrolysis of PVC and brominated flame retardant (HIPS–Br) mixed waste plastics [(polyethylene (PE), polypropylene (PP), and polystyrene (PS)], and also other plastics. During dehydrohalogenation, the iron- and calcium-based catalysts were transformed into their corresponding halides, which are also very active in the dehydrohalogenation of organic halogenated compounds. The halogen-free plastic-derived oil (PDO) can be used as a fuel oil or feedstock in refineries.  相似文献   

20.
用棉籽油皂脚制备棉籽油甲酯   总被引:1,自引:0,他引:1  
以002CR型阳离子交换树脂为催化剂,在固定床反应器中用高酸值棉籽油皂脚制备棉籽油甲酯,考察了各种因素对酯化反应的影响。实验结果表明,在甲醇与脂肪酸摩尔比为2、反应温度为60℃、停留时间为80min的条件下,酯化率为94.67%。工业化生产中可选用经脱水处理后的工业甲醇为原料,以降低生产成本。所得棉籽油甲酯的收率为90%,主要性能指标基本达到美国生物柴油标准要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号