首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pulsed plate bioreactor (PPBR) is a biofilm reactor which has been proven to be very efficient in phenol biodegradation. The present paper reports the studies on the effect of dilution rate on the physical, chemical and morphological characteristics of biofilms formed by the cells of Pseudomonas desmolyticum on granular activated carbon (GAC) in PPBR during biodegradation of phenol. The percentage degradation of phenol decreased from 99% to 73% with an increase in dilution rate from 0.33 h–1 to 0.99 h–1 showing that residence time in the reactor governs the phenol removal efficiency rather than the external mass transfer limitations. Lower dilution rates favor higher production of biomass, extracellular polymeric substances (EPS) as well as the protein, carbohydrate and humic substances content of EPS. Increase in dilution rate leads to decrease in biofilm thickness, biofilm dry density, and attached dry biomass, transforming the biofilm from dense, smooth compact structure to a rough and patchy structure. Thus, the performance of PPBR in terms of dynamic and steady-state biofilm characteristics associated with phenol biodegradation is a strong function of dilution rate. Operation of PPBR at lower dilution rates is recommended for continuous biological treatment of wastewaters for phenol removal.
  相似文献   

2.
废水处理系统中生物聚集体胞外多聚物研究进展   总被引:2,自引:0,他引:2  
胞外多聚物(Extracellular polymeric substances,EPS)是废水生物处理系统中生物聚集体(包括絮体污泥、生物膜、颗粒污泥等)的重要组成部分,直接包裹于微生物细胞壁外,其理化性质及所处的特殊位置决定了它在生物聚集体中的重要作用.综述了EPS对废水生物处理系统污泥沉降性能、脱水性以及膜生物反应器膜污染影响的相关研究,分析认为EPS组成与结构特性改变污泥表面电位、疏水性等,进而影响污泥沉降与脱水性能、膜污染程度;以好氧颗粒污泥为典型的生物聚集体代表,总结了EPS组分含量与分布对颗粒污泥的形成与结构稳定性的影响,并在EPS提取方法标准化、现代理化技术与分子生物学技术综合分析等方面进行了展望,进一步的研究有望揭示生物絮凝体形成过程EPS的产生与调控机制.  相似文献   

3.
不同基质条件对生物膜细胞外聚合物组成和含量的影响   总被引:26,自引:1,他引:26  
对比研究了处于胶体和溶解状态的有机物对生物膜胞外聚合物组成和含量的影响,研究发现,不同基质条件对胞外聚合物的总量、多糖和蛋白质含量产生影响,另外,基质条件与会对生物膜的表面结构造成一定的影响。  相似文献   

4.
● Biofilm formation was enhanced by exogenous AHLs. ● EPS production and microbial adhesive strength of biofilm were promoted. ● Exogenous AHLs improved the performance of biofilters treating toluene. Biofilters are typical biofilm reactors, and they usually have poor biofilm formation resulting in limited reactor performance. Exogenous acylated homoserine lactones (AHLs) can enhance biofilm formation in many bioreactors based on quorum sensing regulation. However, their effect on biofilm in biofilters utilized for volatile organic compound (VOC) removal is unknown and needs to be investigated. In this study, the effects of the exogenous AHLs on biofilters for gaseous toluene removal were investigated. Analysis of biofilms in biofilters showed that the addition of exogenous AHLs considerably enhanced biofilm growth; the average biofilm concentration increased by 18%. Furthermore, the average biofilm coverage proportions in biofilters with and without exogenous AHLs were 17 % and 13 %, respectively, demonstrating the positive effect of exogenous AHLs on biofilm coverage. In particular, exogenous AHLs promoted the production of extracellular polymeric substances and the microbial adhesive strength of the biofilm. In addition, the exogenous AHLs showed no significant effect on the gaseous toluene removal efficiency of the biofilter. These results show that exogenous AHLs can enhance biofilm formation and can guide the application of exogenous AHLs in VOC biofilters.  相似文献   

5.
管网生物膜菌株胞外聚合物的提取方法比较   总被引:1,自引:0,他引:1  
以饮用水管网生物膜样品中一株强成膜能力的菌株Pleomorphomonas oryzae作为研究对象,考察了8种方法(高速离心法、超声法、加热法、EDTA法、H2SO4法、NaOH法、SDS法、甲醛法)对菌株胞外聚合物(EPS)的提取效果,并结合三维荧光光谱(EEM)和傅立叶红外光谱(FTIR)对提取的EPS进行成分分析.结果表明,EDTA法和H2SO4法既能提高EPS的提取效率,提取量分别为64.77 mg.g-1SS和74.43 mg.g-1SS,是离心方法提取量的1.62倍和1.86倍,又不会在提取过程中对菌株细胞造成破坏,是较为理想的EPS提取方法.EEM分析进一步证实,NaOH法对菌株细胞破坏严重,造成EPS成分变化较大.FTIR分析则说明,化学提取方法相较于物理提取方法会引入杂质对组分测定造成干扰.  相似文献   

6.
Nitrogen pollution of waters has sometimes caused severe eutrophication, leading to the death of fishes and most aquatic life. There is therefore a need for efficient and cost-effective methods to remove nitrogen from ammonium-rich wastewaters. Anaerobic ammonium oxidation (ANAMMOX) is a promising process to remove nitrogen because this process directly oxidizes ammonium (NH4 +) to dinitrogen gas (N2) under anoxic condition. Nonetheless, a challenge of this process is that chemolithoautotrophic Anammox bacteria grow slowly at the beginning, thus resulting in low Anammox biomass and instability of reactors. Such issues can be overcome by granulation of the Anammox sludge. Here, we review the characteristics of the Anammox bacteria, and the formation, structure and flotation of Anammox granules under high hydraulic loadings. We also evaluate the performances of full-scale granular Anammox processes. The major points are: 1) Anammox bacteria secrete a large amount of extracellular polymeric substances (EPS), up to 415 mg g?1 of volatile suspended solids (VSS), containing many hydrophobic functional groups that facilitate biomass granulation. 2) Granulation enhances the sludge settling property and retention time, which contributes to the extremely high nitrogen removal rate of 77 kg m?3 d?1 of Anammox upflow reactors. 3) Flotation of Anammox granules frequently occurs under nitrogen removal rate higher than 10 kg m?3 d?1, which is mainly due to the overproduction of EPS under high hydraulic conditions.  相似文献   

7.
不同泥龄下活性污泥絮体性状的研究   总被引:4,自引:0,他引:4  
采用序批式反应器对不同泥龄下污泥絮体的化学性状(胞外聚合物成分及含量)、物理性状(表面电荷)、形态性状(粒度分布、分形维数)等进行了对比研究.结果表明:泥龄对胞外聚合物总量及各组分含量的影响规律并不明显;多糖/蛋白质愈大,污泥絮体表面电负性愈强;污泥絮体的平均粒径随泥龄的延长呈逐渐减小的趋势,且粒度分布愈来愈均匀;不同泥龄下,污泥絮体形态结构亦不相同,泥龄短时,絮体表面粗糙,结构开放疏松;泥龄长时,絮体表面平滑,结构紧凑;随着泥龄的增大,絮体分形维数逐渐增加.由于不同泥龄下所表现出的污泥絮体性状的差异,直接影响了污泥的絮凝和沉降性能.  相似文献   

8.
•HAAs was dominant among the DBPs of interest. •Rising time, dose, temperature and pH raised TCM and HAAs but reduced HANs and HKs. •Low time, dose and temperature and non-neutrality pH reduced toxic risks of DBPs. •The presence of EPS decelerated the production of DBPs. •EPS, particularly polysaccharides were highly resistant to chlorine. Periodic chemical cleaning with sodium hypochlorite (NaClO) is essential to restore the membrane permeability in a membrane bioreactor (MBR). However, the chlorination of membrane foulants results in the formation of disinfection by-products (DBPs), which will cause the deterioration of the MBR effluent and increase the antibiotic resistance in bacteria in the MBR tank. In this study, the formation of 14 DBPs during chemical cleaning of fouled MBR membrane modules was investigated. Together with the effects of biofilm extracellular polymeric substances (EPS), influences of reaction time, NaClO dosage, initial pH, and cleaning temperature on the DBP formation were investigated. Haloacetic acids (HAAs) and trichloromethane (TCM), composed over 90% of the DBPs, were increasingly accumulated as the NaClO cleaning time extended. By increasing the chlorine dosage, temperature, and pH, the yield of TCM and dichloroacetic acid (DCAA) was increased by up to a factor of 1‒14, whereas the yields of haloacetonitriles (HANs) and haloketones (HKs) were decreased. Either decreasing in the chlorine dosage and cleaning temperature or adjusting the pH of cleaning reagents toward acidic or alkaline could effectively reduce the toxic risks caused by DBPs. After the EPS extraction pretreatment, the formation of DBPs was accelerated in the first 12 h due to the damage of biofilm structure. Confocal laser scanning microscopy (CLSM) images showed that EPS, particularly polysaccharides, were highly resistant to chlorine and might be able to protect the cells exposed to chlorination.  相似文献   

9.
胞外聚合物物理法提取过程的优化   总被引:4,自引:0,他引:4  
对物理法提取活性污泥中的胞外聚合物(EPS)进行了优化.分别考察了超声时间、振摇时间、离心速度和时间以及加热时间对EPS的松散附着(LB)和紧密粘附(TB)提取的影响,得出污泥EPS物理法提取的优化方案.  相似文献   

10.
A ratio control strategy has been used to demonstrate the feasibility of this automatic control procedure for the achievement of stable full and partial nitritation. The control strategy assured constant ratio between the dissolved oxygen (DO) and the total ammonia nitrogen (TAN) concentrations in the bulk liquid of aerobic granular sludge reactors operating in continuous mode. Three different set-ups with different reactor capacities were used (3, 110, and 150 L). High strength synthetic wastewaters and reject water were tested with similar performance. Achieved nitrogen loading rates ranged between 0.4 and 6.1 kgN·m-3·d-1, at temperatures between 20°C and 30°C. Granular sludge and nitritation were stable in the long term continuous operation of the reactors. Suitable stable effluent for Anammox has been obtained using the desired TAN setpoint (i.e. 50% of influent ammonium oxidation). An existing biofilm model developed incorporating the implemented control loops and validated in a previous publication was used to investigate the effects of the ammonium concentration of the influent and the biofilm density on the achievement of full nitritation. The model demonstrated how sludge recirculation events led to a stable and significant increase of the biomass concentration in the reactor, which in turn resulted in the achievement of high nitrogen loading rates, due to the action of the control strategy. The model predicted an enhancement of stable full nitritation at higher ammonium concentrations in the influent. Poor influence of the biofilm density in the achievement of full nitritation was predicted with the model.  相似文献   

11.
三种载体上生物膜硝化作用动力学初步研究   总被引:7,自引:0,他引:7  
通过测定水中COD、:NH4^ —N、NO2^-—N及NO3^-—N的浓度变化,研究了淹没式废水处理装置中沸石、活性炭和沙粒3种载体上硝化作用生物膜的动力学过程和反硝化作用。结果表明,3种载体上生物膜降解有机物(以COD表示)的过程可用一级动力学方程描述,反应速率常数分别为:沙粒0.0848h^-1、活性炭0.1187h^-1、沸石0.1334h^-1。3种载体上生物膜去除氨态氮的过程则可用零级动力学方程描述,反应速率常数分别为:沙粒-0.7743h^-1、活性炭-0.9886h^-1、沸石-1.0714h^-1.附着于沙上的生物膜去除亚硝酸盐氮的过程也可用零级动力学方程描述,反应速率常数为-0.6057h^-1,水中硝酸盐氮浓度较高时,载体沸石和活性炭上可能附着生长反硝化菌。图5表2参15。  相似文献   

12.
采用气升式内循环蜂窝陶瓷反应器(IAL-CHS)对受污染黄浦江支流进行生物修复,反应器采用自然挂膜法低温启动挂膜,第9天就完成挂膜。经过5个月的运行,在HRT为1.03 h时,反应器对氨氮去除率达到84.8%~99.2%,水力负荷可达到33.68 m^3/(m^2·d),氨氮容积负荷达到0.60 kg/(m^3·d),氨氮去除速率能达到0.53 kg/(m^3·d)。对NO2--N、TP、CODCr、TOC、UV254、浊度的去除率分别为40.7%~69.9%、9.26%~27.1%、8.22%~41.1%、9.49%~29.8%、11.4%~19.5%、27.0%~62.8%。微生物镜检表明此反应器生物相丰富,生物量大。  相似文献   

13.
Dissolved organic matter (DOM) transformation in sequence batch reactor (SBR) fed with carbon sources of different biodegradability was investigated. During the biologic degradation process, the low molecular weight (MW) fraction (< 1 kDa) gradually decreased, while the refractory compounds with higher aromaticity were aggregated. Size exclusion chromatography (SEC) and fluorescence of excitation emission matrices (EEM) demonstrated that more biopolymers (polysaccharides or proteins) and humic-like substances were presented in the extracellular polymeric substance (EPS) extracted from the SBR fed with sodium acetate or glucose, while the EPS from SBR fed with slowly biodegradable dissolved organic carbon (DOC) substratestarch had relatively less biopolymers. Comparing the EfOM in sewage effluent of three SBRs, the effluent from SBR fed with starch is more aromatic. Organic carbon with MW>1 kDa as well as the hydrophobic fraction in DOM gradually increased with the carbon sources changing from sodium acetate to glucose and starch. The DOC fractionation and the EEM all demonstrated that EfOM from the effluent of the SBR fed with starch contained more fulvic acid-like substances comparing with the SBR fed with sodium acetate and glucose.  相似文献   

14.
Among the numerous parameters affecting the membrane bioreactor (MBR) performance, the aeration intensity is one of the most important factors. In the present investigation, an anoxic/aerobic-type (A/O-type) sequencing batch MBR system, added anoxic process as a pretreatment to improve the biodegradability of azo dye wastewater, was investigated under different aeration intensities and the impact of the aeration intensity on effluent quantity, sludge properties, extracellular polymeric substances (EPS) amount generated as well as the change of permeation flux were examined. Neither lower nor higher aeration intensities could improve A/O-type sequencing batch MBR performances. The results showed 0.15 m3·h-1 aeration intensity was promising for treatment of azo dye wastewater under the conditions examined. Under this aeration intensity, chemical oxygen demand (COD), ammonium nitrogen and color removal as well as membrane flux amounted to 97.8%, 96.5%, 98.7% and 6.21 L·m-2·h-1, respectively. The effluent quality, with 25.0 mg·L-1COD, 0.84 mg·L-1 ammonium nitrogen and 8 chroma, could directly meet the reuse standard in China. In the meantime, the sludge relative hydrophobicity, the bound EPS, soluble EPS and EPS amounts contained in the membrane fouling layer were 70.3%, 52.0 mg·g-1VSS, 38.8 mg·g-1VSS and 90.8 mg·g-1VSS, respectively, which showed close relationships to both pollutant removals and membrane flux.  相似文献   

15.
To investigate the growth and grazing patterns of microzooplankton (MZP) in environments of differing productivity, dilution experiments measuring phytoplankton growth (μ) and grazing mortality (m) rates were performed using samples from contrasting locations along the Texas coast. Samples were collected from estuaries, coastal lagoons and offshore Gulf of Mexico locations in the spring and summer of 2001. MZP growth rates were determined in each dilution treatment. Although MZP biomass changed over time in most dilution treatments, adjusting μ and m for the actual grazer gradient (represented by geometric mean MZP biomass) did not cause a significant deviation from the nominal dilution gradient. Likewise, these adjustments did not yield significant regressions where none existed before adjustment. The dynamics of MZP taxonomic groups (ciliates, dinoflagellates) and size categories differed suggesting that in some cases internal predation may lead to trophic cascades. MZP biomass was higher in productive coastal waters and included a larger proportion of dinoflagellates than in the oligotrophic, ciliate-dominated waters of the Gulf of Mexico. The MZP biomass-to-chlorophyll a ratio was lowest in the hypereutrophic Nueces River, where MZP biomass significantly increased in all dilution treatments (net growth rates up to 2 day−1) suggesting a strong top–down control. In the brown-tide dominated Upper Laguna Madre and the oligotrophic seagrass-dominated Lower Laguna Madre MZP growth was decoupled from that of phytoplankton. At these sites, MZP were likely fueled by bacterial carbon and mixotrophy, respectively. Observing the growth response of MZP in dilution experiments can provide insight into trophic structure and efficiency of the microbial food web.  相似文献   

16.
Extracellular polymeric substances (EPS) play an important role in bacterial mat formation and sediment stabilisation of coastal zones. The analysis of these secretion products on a molecular level is a prerequisite to understand their formation mechanisms and ecological function in microbial consortia. The present study focuses on the optimisation of EPS isolation and characterisation from cohesive cyanobacterial mats. Extracted EPS were analysed for quantity, content of total organic carbon and nitrogen, and bulk contents of neutral sugars, uronic acids, and proteins. These criteria are strongly influenced by the extraction conditions applied and therefore, the effects of different extraction media (NaCl or artificial seawater), addition of EDTA, centrifugal force, and purification via repeated ethanol precipitation on extraction success were determined. From this an optimised extraction procedure for EPS resulted. When using fresh mat samples, the yield of EPS amounted to 3.3 ± 0.8 mg g−1 mat (dw). The isolated EPS were composed of nearly equal amounts of proteins and uronic acids (12.7 ± 1.5 and 11.8 ± 1.1%, respectively) and the bulk content of neutral sugars was 30.5 ± 2.6%. High contents of TOC and TN indicated relatively pure EPS and only a low contribution of inorganic compounds. Furthermore, low contents of 2-keto-3-deoxyoctonate and the small protein/polysaccharide-ratio in the EPS extracted by our method, signified low contaminations by intracellular polymers and hence a low rupture of cells. Our method provides an useful tool to evaluate further investigations of the composition, characteristics and properties of EPS on a sound basis.  相似文献   

17.
氨氮废水的厌氧氨氧化生物脱氮研究   总被引:1,自引:0,他引:1  
利用从厌氧污泥中筛选和驯化的厌氧氨氧化(Anammox)菌直接启动UASB反应器,通过缩短水力停留时间(HRT)提高系统运行负荷,探讨水力停留时间对模拟废水脱氮性能的影响。结果表明,(1)富含Anammox菌的颗粒污泥能够快速启动反应器(只需14d)。(2)连续91d的HRT测试期间,系统具有良好的脱氮性能,且随着HRT的缩短,系统的脱氮效率具有波动上升的特点。NH4+-N、NO2--N和TN(总氮)的平均去除率超过70.0%。(3)系统总氮容积负荷(TNLR)和总氮去除负荷(TNRR)最大值(以N计)分别为2.04kg·m-3·d-1和1.56kg·m-3·d-1。(4)系统能够比较好的遵循Anammox生物脱氮的理论途径:NH4+-N、NO2--N的去除速率与NO3--N的生成速率的比例为1?1.15?0.22,与其相应理论值(1?1.32?0.26)非常接近。  相似文献   

18.
An-RBC reactor is highly suited to treat metallic wastewater. Metal removal is due to sulfide precipitation via sulfate reduction by SRB. Cu(II) removal was the best among the different heavy metals. Maximum metal removal is achieved at low metal loading condition. Metal removal matched well with the solubility product values of respective metal sulfide salts. This study was aimed at investigating the performance of anaerobic rotating biological contactor reactor treating synthetic wastewater containing a mixture of heavy metals under sulfate reducing condition. Statistically valid factorial design of experiments was carried out to understand the dynamics of metal removal using this bioreactor system. Copper removal was maximum (>98%), followed by other heavy metals at their respective low inlet concentrations. Metal loading rates less than 3.7 mg/L?h in case of Cu(II); less than 1.69 mg/L?h for Ni(II), Pb(II), Zn(II), Fe(III) and Cd(II) are favorable to the performance of the An-RBC reactor. Removal efficiency of the heavy metals from mixture depended on the metal species and their inlet loading concentrations. Analysis of metal precipitates formed in the sulfidogenic bioreactor by field emission scanning electron microscopy along with energy dispersive X-ray spectroscopy (FESEM-EDX) confirmed metal sulfide precipitation by SRB. All these results clearly revealed that the attached growth biofilm bioreactor is well suited for heavy metal removal from complex mixture.  相似文献   

19.
Excessive discharge of nutrients in waters induces pollution such as such as eutrophication. Conventional methods to treat waters are expensive. Alternatively, anaerobic ammonium oxidation, termed “anammox”, has been recently developped with benefits such as low sludge production, 50% less aeration demand, no external carbon supply, 60% less power consumption, and 90% reduction of greenhouse gas emissions. However, anammox is limited by long start-up periods due to the low growth rate of anammox bacteria. This issue can be solved by complete retention of biomass by reactor modification or by formation of anammox granules. This article reviews the mechanisms of anammox granulation and biogranulation models. We present factors involved in the granulation processes such as hydrodynamic shear force, extracellular polymeric substances, hydraulic retention time, seed sludge and bioreactors. We also discuss the interaction of proteins and polysaccharides in anammox granules.  相似文献   

20.
In the present study sequential anaerobic and aerobic treatment in two step bioreactor was performed for removal of colour in the pulp and paper mill effluent. In anaerobic treatment, colour 50%, lignin 62%, COD 29%, absordable organic halides (AOX) 25% and phenol 29% were reduced in eight days. The anaerobically treated effluent was separately applied in bioreactor in presence of fungal strain, Paecilomyces sp., and bacterial strain, Microbrevis luteum. Data of study indicated reduction in colour 80%, AOX 74%, lignin 81%, COD 93% and phenol 76 per cent by Paecilomyces sp. where as Microbrevis luteum showed removal in colour 59%, lignin 71%, COD 86%, AOX 84% and phenol 88% by day third when 7 days anaerobically treated effluent was further treated by aerobic microorganisms. Change in pH of the effluent and increase in biomass of microorganism's substantiated results of the study, which was concomitant to the treatment method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号