首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 15 毫秒
1.
Selective catalytic reduction (SCR) of NO x with NH3 is an effective technique to remove NO x from stationary sources, such as coal-fired power plant and industrial boilers. Some of elements in the fly ash deactivate the catalyst due to strong chemisorptions on the active sites. The poisons may act by simply blocking active sites or alter the adsorption behaviors of reactants and products by an electronic interaction. This review is mainly focused on the chemical poisoning on V2O5-based catalysts, environmental-benign catalysts and low temperature catalysts. Several common poisons including alkali/alkaline earth metals, SO2 and heavy metals etc. are referred and their poisoning mechanisms on catalysts are discussed. The regeneration methods of poisoned catalysts and the development of poison-resistance catalysts are also compared and analyzed. Finally, future research directions in developing poisoning resistance catalysts and facile efficient regeneration methods for SCR catalysts are proposed.  相似文献   

2.
采用悬浮浆液法将凹凸棒石(PG)涂覆于堇青石蜂窝陶瓷(CC)基体上,制取PG-CC涂层载体,利用过饱和浸渍法负载MnOx制备MnOx/PG-CC催化剂应用于柴油车尾气SCR脱硝.考察了制备条件对催化剂低温SCR活性的影响,采用BET、SEM-EDS、XRD手段对催化剂的理化性质进行了分析表征,探讨了催化剂结构特性与活性间的构效关系.研究发现,堇青石基体经PG涂层后,对活性组分的一次负载量显著增加,由3%增至13%,对应的催化剂低温脱硝活性显著提高,在100℃脱硝活性由10%提高到78%.结果分析表明,堇青石基体经PG涂层后比表面积大幅度增加,可以承载更高的活性组分,且活性组分具有更好的分散性,从而使得催化剂的活性点增加;另一方面,PG涂层催化剂具有更高的表面Mn4+/Mn3+价态比,更有利于催化剂的低温选择性催化还原法(SCR)活性.活性组分Mn Ox与PG涂层之间的协同作用是导致催化剂低温SCR脱硝活性得以提升的关键因素.研究结果表明,通过对堇青石蜂窝基体进行凹凸棒石涂层后采用浸渍法负载锰氧化物,可制备出具有较高低温SCR活性的蜂窝式模块催化剂.  相似文献   

3.
● Cu addition enhances CH3OH oxidation and alleviates its inhibitory effect on SCR. ● Cu addition improves the activation of SCR reactants in the presence of methanol. ● Damaged structure by more Cu addition decreases specific surface area and acidity. ● Excessive Cu addition would lead to the narrowing of SCR temperature window. Simultaneously removal of NOx and VOCs over NH3-SCR catalysts have attracted lots of attention recently. However, the presence of VOCs would have negative effect on deNOx efficiency especially at low temperature. In this study, copper modification onto Sb0.5CeZr2Ox (SCZ) catalyst were performed to enhance the catalytic performance for simultaneous control of NOx and methanol. It was obtained that copper addition could improve the low-temperature activity of both NOx conversion and methanol oxidation, where the optimal catalyst (Cu0.05SCZ) exhibited a deNOx activity of 96% and a mineralization rate of 97% at 250 °C, which are around 10% higher than that of Cu free sample. The characterization results showed that copper addition could obviously enhance the redox capacity of the catalysts. As such, the inhibition effect of methanol incomplete oxidation on NO adsorption and NH3 activation were then lessened and the conversion of surface formamide species were also accelerated, resulting in the rising of NOx conversion at low temperature. However, excessive copper addition would damage the Sb-Ce-Zr oxides solid solution structure owing to Cu-Ce strong interactions, decreasing the surface area and acidity. Meanwhile, due to easier over-oxidation of NH3 with more Cu addition, the temperature window for NOx conversion would become quite narrow. These findings could provide useful guidelines for the synergistic removal of VOCs over SCR catalyst in real application.  相似文献   

4.
以锐钛矿TiO2(P25)为载体采用原位生长法负载锰氧化物制备了Mn/TiO2催化剂,再以等体积浸渍-煅烧法对该催化剂掺杂氧化铈制备Ce(x)Mn/TiO2-y催化剂用以烟气低温SCR脱硝.在固定锰负载量(质量分数为8%)的基础上,考察了铈掺杂量(铈锰摩尔比)、煅烧温度对催化剂SCR脱硝性能的影响.采用TEM、BET、XRD和XPS等手段表征了催化剂的理化结构特性.结果发现,当Ce/Mn的摩尔比例为1.0,煅烧温度为300℃时,Ce(1.0)Mn/TiO2-300催化剂在150—300℃温度范围内、10500—27000 h-1的空速范围内,能够保持90%以上的NO转化率.理化性能分析结果表明,煅烧温度对催化剂的微观形貌影响显著,随着煅烧温度的升高,Ce(1.0)Mn/TiO2-500催化剂活性物种颗粒集聚明显、比表面积降低,且锰氧化物价态分布偏向于低价态;铈的掺杂有助于Ce(1.0)Mn/TiO2-300催化剂活性物种在载体表面的均匀分散,可以促进产生更多的Mn4+物种和更多的吸附氧,有利于催化剂低温SCR脱硝性能的提升.  相似文献   

5.
杜云贵  徐婷  辜敏 《环境化学》2012,31(8):1251-1255
采用XRF、XRD、低温N2吸附曲线、SEM和FT-IR考察了国产和进口钛钨(WO3/TiO2)粉的组成及其微观结构.结果表明,国产和进口钛钨粉中Ti和W的含量相差不大,但是国产钛钨粉都含有少量P,而国外钛钨粉O和S含量较大.国产和进口钛钨粉中TiO2都为锐钛矿型晶型;其表面官能团基本相同;钛钨粉颗粒形貌类似,都为多孔物质,其比表面积相差不大,但是进口样品的孔容高于国产样品.  相似文献   

6.
开发具有低温、高活性、高抗硫抗水性的NH3-SCR脱硝催化剂成为目前广大学者的主要研究方向。锰铈催化剂因为其优异的低温活性而具有广阔的应用前景,但反应气氛中的SO2和H2O会使催化剂中毒。本文分析了以TiO2为载体的锰铈基催化剂在低温氨选择性催化还原过程中SO2和H2O的中毒机理,重点从添加助剂和改变催化剂形貌两方面介绍了提高锰铈催化剂抗硫抗水性的研究进展。最后针对目前锰铈催化剂存在的问题对其研究方向进行了展望。  相似文献   

7.
韩粉女  钟秦 《环境化学》2012,31(4):533-538
采用MnO2/H2SO4溶液作为吸收液,以Fe3+作为催化剂在自制的鼓泡反应器内,对模拟烟气进行同时脱硫脱硝的实验研究,主要考察MnO2浓度、Fe3+浓度、pH值、反应温度、NO浓度、SO2浓度、氧含量、烟气流量等因素对SO2和NO脱除效率的影响.实验结果表明,MnO2浓度、Fe3+浓度、烟气流量、反应温度、NO浓度、SO2浓度对脱硝率影响显著,pH值、氧含量对脱硝率影响不大.在整个实验范围内脱硫效率总是保持在98%以上,脱硝效率最高达到70.9%.  相似文献   

8.
• A V2O5/TiO2 granular catalyst for simultaneous removal of NO and chlorobenzene. • Catalyst synthesized by vanadyl acetylacetonate showed good activity and stability. • The kinetic model was established and the synergetic activity was predicted. • Both chlorobenzene oxidation and SCR of NO follow pseudo-first-order kinetics. • The work is of much value to design of multi-pollutants emission control system. The synergetic abatement of multi-pollutants is one of the development trends of flue gas pollution control technology, which is still in the initial stage and facing many challenges. We developed a V2O5/TiO2 granular catalyst and established the kinetic model for the simultaneous removal of NO and chlorobenzene (i.e., an important precursor of dioxins). The granular catalyst synthesized using vanadyl acetylacetonate precursor showed good synergistic catalytic performance and stability. Although the SCR reaction of NO and the oxidation reaction of chlorobenzene mutually inhibited, the reaction order of each reaction was not considerably affected, and the pseudo-first-order reaction kinetics was still followed. The performance prediction of this work is of much value to the understanding and reasonable design of a catalytic system for multi-pollutants (i.e., NO and dioxins) emission control.  相似文献   

9.
● Microwave-assisted catalytic NH3-SCR reaction over spinel oxides is carried out. ● SCR reaction temperature is tremendously lowered in microwave field. ● NO conversion of NiMn2O4 is highly up to 90.6% at 70°C under microwave heating. Microwave-assisted selective catalytic reduction of nitrogen oxides (NOx) was investigated over Ni-based metal oxides. The NiMn2O4 and NiCo2O4 catalysts were synthesized by the co-precipitation method and their activities were evaluated as potential candidate catalysts for low-temperature NH3-SCR in a microwave field. The physicochemical properties and structures of the catalysts were characterized by X-ray diffraction (XRD), Scanning electron microscope (SEM), N2-physisorption, NO adsorption-desorption in the microwave field, H2-temperature programmed reduction (H2-TPR) and NH3-temperature programmed desorption (NH3-TPD). The results verified that microwave radiation reduced the reaction temperature required for NH3-SCR compared to conventional heating, which needed less energy. For the NiMn2O4 catalyst, the catalytic efficiency exceeded 90% at 70 °C and reached 96.8% at 110 °C in the microwave field. Meanwhile, the NiMn2O4 also exhibited excellent low-temperature NH3-SCR reaction performance under conventional heating conditions, which is due to the high BET specific surface area, more suitable redox property, good NO adsorption-desorption in the microwave field and rich acidic sites.  相似文献   

10.
● Haze formation in China is highly correlated with iron and steel industry. ● VOCs generated in sinter process were neglected under current emission standard. ● Co-elimination removal of sinter flue gas complex pollutants are timely needed. Recent years have witnessed significant improvement in China’s air quality. Strict environmental protection measures have led to significant decreases in sulfur dioxide (SO2), nitrogen oxides (NOx), and particulate matter (PM) emissions since 2013. But there is no denying that the air quality in 135 cities is inferior to reaching the Ambient Air Quality Standards (GB 30952012) in 2020. In terms of temporal, geographic, and historical aspects, we have analyzed the potential connections between China’s air quality and the iron and steel industry. The non-target volatile organic compounds (VOCs) emissions from iron and steel industry, especially from the iron ore sinter process, may be an underappreciated index imposing a negative effect on the surrounding areas of China. Therefore, we appeal the authorities to pay more attention on VOCs emission from the iron and steel industry and establish new environmental standards. And different iron steel flue gas pollutants will be eliminated concurrently with the promotion and application of new technology.  相似文献   

11.
• Size and shape-dependent MnFe2O4 NPs were prepared via a facile method. • Ligand-exchange chemistry was used to prepare the hydrophilic MnFe2O4 NPs. • The catalytic properties of MnFe2O4 NPs toward dye degradation were fully studied. • The catalytic activities of MnFe2O4 NPs followed Michaelis–Menten behavior. • All the MnFe2O4 NPs exhibit selective degradation to different dyes. The magnetic nanoparticles that are easy to recycle have tremendous potential as a suitable catalyst for environmental toxic dye pollutant degradation. Rationally engineering shapes and tailoring the size of nanocatalysts are regarded as an effective manner for enhancing performances. Herein, we successfully synthesized three kinds of MnFe2O4 NPs with distinctive sizes and shapes as catalysts for reductive degradation of methylene blue, rhodamine 6G, rhodamine B, and methylene orange. It was found that the catalytic activities were dependent on the size and shape of the MnFe2O4 NPs and highly related to the surface-to-volume ratio and atom arrangements. Besides, all these nanocatalysts exhibit selectivity to different organic dyes, which is beneficial for their practical application in dye pollutant treatment. Furthermore, the MnFe2O4 NPs could be readily recovered by a magnet and reused more than ten times without appreciable loss of activity. The size and shape effects of MnFe2O4 nanoparticles demonstrated in this work not only accelerate further understanding the nature of nanocatalysts but also contribute to the precise design of nanoparticles catalyst for pollutant degradation.  相似文献   

12.
The effect of ion-doping on TiO2 nanotubes were investigated to obtain the optimal TiO2 nanotubes for the effective decomposition of humic acids (HA) through O3/UV/ion-doped TiO2 process. The experimental results show that changing the calcination temperature, which changed the weight fractions of the anatase phase, the average crystallite sizes, the Brunauer-Emmett-Teller surface area, and the energy band gap of the catalyst, affected the photocatalytic activity of the catalyst. The ionic radius, valence state, and configuration of the dopant also affected the photocatalytic activity. The photocatalytic activities of the catalysts on HA removal increased when Ag+, Al3+, Cu2+, Fe3+, V5+, and Zn2+ were doped into the TiO2 nanotubes, whereas such activities decreased as a result of Mn2+- and Ni2+-doping. In the presence of 1.0 at.% Fe3+-doped TiO2 nanotubes calcined at 550°C, the removal efficiency of HA was 80% with a pseudo-first-order rate constant of 0.158 min−1. Fe3+ in TiO2 could increase the generation of ·OH, which could remove HA. However, Fe3+ in water cannot function as a shallow trapping site for electrons or holes.  相似文献   

13.
• A novel Bi2WO6/CuS composite was fabricated by a facile solvothermal method. • This composite efficiently removed organic pollutants and Cr(VI) by photocatalysis. • The DOM could promoted synchronous removal of organic pollutants and Cr(VI). • This composite could be applied at a wide pH range in photocatalytic reactions. • Possible photocatalytic mechanisms of organic pollutants and Cr(VI) were proposed. A visible-light-driven Bi2WO6/CuS p-n heterojunction was fabricated using an easy solvothermal method. The Bi2WO6/CuS exhibited high photocatalytic activity in a mixed system containing rhodamine B (RhB), tetracycline hydrochloride (TCH), and Cr (VI) under natural conditions. Approximately 98.8% of the RhB (10 mg/L), 87.6% of the TCH (10 mg/L) and 95.1% of the Cr(VI) (15 mg/L) were simultaneously removed from a mixed solution within 105 min. The removal efficiencies of TCH and Cr(VI) increased by 12.9% and 20.4%, respectively, in the mixed solution, compared with the single solutions. This is mainly ascribed to the simultaneous consumption electrons and holes, which increases the amount of excited electrons/holes and enhances the separation efficiency of photogenerated electrons and holes. Bi2WO6/CuS can be applied over a wide pH range (2–6) with strong photocatalytic activity for RhB, TCH and Cr(VI). Coexisiting dissolved organic matter in the solution significantly promoted the removal of TCH (from 74.7% to 87.2%) and Cr(VI) (from 75.7% to 99.9%) because it accelerated the separation of electrons and holes by consuming holes as an electron acceptor. Removal mechanisms of RhB, TCH, and Cr(VI) were proposed, Bi2WO6/CuS was formed into a p-n heterojunction to efficiently separate and transfer photoelectrons and holes so as to drive photocatalytic reactions. Specifically, when reducing pollutants (e.g., TCH) and oxidizing pollutants (e.g., Cr(VI)) coexist in wastewater, the p-n heterojunction in Bi2WO6/CuS acts as a “bridge” to shorten the electron transport and thus simultaneously increase the removal efficiencies of both types of pollutants.  相似文献   

14.
● MnO x /Ti flow-through anode was coupled with the biofilm-attached cathode in ECBR. ● ECBR was able to enhance the azo dye removal and reduce the energy consumption. ● MnIV=O generated on the electrified MnO x /Ti anode catalyzed the azo dye oxidation. ● Aerobic heterotrophic bacteria on the cathode degraded azo dye intermediate products. ● Biodegradation of intermediate products was stimulated under the electric field. Dyeing wastewater treatment remains a challenge. Although effective, the in-series process using electrochemical oxidation as the pre- or post-treatment of biodegradation is long. This study proposes a compact dual-chamber electrocatalytic biofilm reactor (ECBR) to complete azo dye decolorization and mineralization in a single unit via anodic oxidation on a MnOx/Ti flow-through anode followed by cathodic biodegradation on carbon felts. Compared with the electrocatalytic reactor with a stainless-steel cathode (ECR-SS) and the biofilm reactor (BR), the ECBR increased the chemical oxygen demand (COD) removal efficiency by 24 % and 31 % (600 mg/L Acid Orange 7 as the feed, current of 6 mA), respectively. The COD removal efficiency of the ECBR was even higher than the sum of those of ECR-SS and BR. The ECBR also reduced the energy consumption (3.07 kWh/kg COD) by approximately half compared with ECR-SS. The advantages of the ECBR in azo dye removal were attributed to the synergistic effect of the MnOx/Ti flow-through anode and cathodic biofilms. Catalyzed by MnIV=O generated on the MnOx/Ti anode under a low applied current, azo dyes were oxidized and decolored. The intermediate products with improved biodegradability were further mineralized by the cathodic aerobic heterotrophic bacteria (non-electrochemically active) under the stimulation of the applied current. Taking advantage of the mutual interactions among the electricity, anode, and bacteria, this study provides a novel and compact process for the effective and energy-efficient treatment of azo dye wastewater.  相似文献   

15.
Water vapor flux and carbon dioxide (CO2) exchange in croplands are crucial to water and carbon cycle research as well as to global warming evaluation. In this study, a standard three-layer feed-forward back propagation neural network technique associated with the Bayesian technique of automatic relevance determination (ARD) was employed to investigate water vapor and CO2 exchange between the canopy of summer maize and atmosphere in responses to variations of environmental and physiological factors. These factors, namely the photosynthetically active radiation (PAR), air temperature (T), vapor pressure deficient (VPD), leaf-area index (LAI), soil water content in root zone (W), and friction velocity (U*), were used as inputs in neural network analysis. Results showed that PAR, VPD, T and LAI were the primary factors regulating both water vapor and CO2 fluxes with VPD and W more critical to water vapor flux and PAR and T more crucial to CO2 exchange. Furthermore, two time variables “day of the year (DOY)” and “time of the day (TOD)” could also improve the simulation results of neural network analysis. The important factors identified by the neural network technique used in this study were in the order of PAR > T > VPD > LAI > U* > TOD for water vapor flux and in the order of VPD > W > LAI > T > PAR > DOY for CO2 exchange. This study suggests that neural network technique associated with ARD could be a useful tool for identifying important factors regulating water vapor and CO2 fluxes in terrestrial ecosystem.  相似文献   

16.
SUMMARY

Integrated natural resources management (INRM) has to address both the livelihood goals of farmers and the ecological sustainability of agroecosystems and natural resources. Under the Ecoregional Initiative for the Humid and Sub-Humid Tropics of Asia — Ecor(1)Asia — one major set of activities has been the development of approaches, methodologies, and tools to meet the challenges of INRM research for sustainable agricultural development. Examples provided illustrate the role of these methodologies in the three main phases of knowledge development for improving INRM impact: knowledge generation, knowledge capitalization, and knowledge mobilization. The methodologies are designed for better integration across disciplines, spatial scales, and hierarchical levels of social organization. Attempts are made to quantify trade-offs between biophysical sustainability and socio-economic considerations. The case is made for using these methodologies in a more complementary manner to help bridge the topdown and bottom-up approaches in INRM. Inherent in the developing and implementing of these methodologies is the forging of partnerships and fostering linkages with multiple stakeholders, as well as using the knowledge base and integrative tools as communication platforms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号