首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Permeable biobarrier systems (PBSs) are being recognized as low‐cost passive bioremediation technologies for chlorinated organic contamination. This innovative technology can play a crucial and effective role in site restorations. Laboratory‐scale experiments were conducted to investigate the biodegradation of trichloroethylene (TCE) to ethylene in shallow groundwater through the use of a PBS enhanced by bioaugmentation at the U.S. Department of Energy's Savannah River Site (SRS). Two composts and two plant amendments, eucalyptus mulch (EM) and corncobs (CC), were examined for their effectiveness at creating and maintaining conditions suitable for TCE anaerobic dechlorination. These materials were evaluated for their (1) nutrient and organic carbon content, (2) TCE sorption characteristics, and (3) longevity of release of nutrients and soluble carbon in groundwater to support TCE dechlorination. Native bacteria in the columns had the ability to convert TCE to dichloroethenes (DCEs); however, the inoculation with the TCE‐degrading culture greatly increased the rate of biodegradation. This caused a significant increase in by‐product concentration, mostly in the form of DCEs and vinyl chloride (VC) followed by a slow degradation to ethylene. Of the tested amendments, eucalyptus mulch was the most effective at supporting the reductive dechlorination of TCE. Corncobs created a very acidic condition in the column that inhibited dechlorination. © 2007 Wiley Periodicals, Inc.  相似文献   

2.
Chlorinated solvents were released to the surficial groundwater underneath a former dry cleaning building, resulting in a groundwater plume consisting of high concentrations of trichloroethene (TCE) and cis‐1,2‐dichloroethene (cis‐1,2‐DCE) and low concentrations of tetrachloroethene (PCE) and vinyl chloride. The initial remedial action included chemical oxidation via injection of 14,400 gallons of Fenton's Reagent in March 2002, and an additional 14,760 gallons in April 2002. A sharp reduction of contaminant concentrations in groundwater was observed the following month; however, rebound of contaminant concentrations was evident as early as October 2002. A source area of PCE‐impacted soils was excavated in June 2004. Following the excavation, Golder Associates Inc. (2007) implemented a biostimulation plan by injecting 55 gallons of potassium lactate (PURASAL® HiPure P) in September 2005, and again in February 2006. Comparing the preinjection and postinjection site conditions, the potassium lactate treatments were successful in accomplishing a 40 to 70 percent reduction in mass within four months following the second injection. Elevated vinyl chloride concentrations have persisted through both injection events; however, significant vinyl chloride reduction has been observed in one well with the highest total organic carbon (TOC) concentrations following each injection. © 2008 Wiley Periodicals, Inc.  相似文献   

3.
Aqueous phase adsorption of three textile dyes onto a granular activated carbon produced from acid activation of almond shells is presented. Primarily, the sorption of three basic dyes, methylene blue, rhodamine b, and malachite green oxalate were studied. Four models, the Freundlich, the Langmuir, the Redlich-Peterson, and the Toth isotherms were compared for their quality of fit to the single-solute sorption data. Next, sorption of the three likely binary systems was examined. Four bi-solute models, the extended Langmuir with and without an interaction term, the extended Redlich-Peterson with an interaction term, and the empirical extended Freundlich model were used to predict sorption in the binary systems. Nonlinearly determined constants of the corresponding single-solute isotherms were used in the binary models to compare with experimental binary sorption data. For the single-solute system, the three-parameter models of the Redlich-Peterson and the Toth isotherms outperformed the Langmuir and Freundlich models. The empirical extended Freundlich model produced the closest comparison to the binary data in each system. In general, the nonlinear method provided a simple and computationally effective technique of producing optimal fitting parameters for the bi-solute sorption models.  相似文献   

4.
The East Gate Disposal Yard (EGDY) at Fort Lewis is the source of a large trichloroethene (TCE) plume at this military installation. Source reduction using thermal treatment was applied using electrical resistance heating. A total of about 5,800 kg of TCE‐equivalent volatile organic compounds (VOCs; TCE and dichloroethene) was extracted during thermal treatment of the three zones selected for source reduction. Pretreatment groundwater TCE concentrations were measured up to 100 ppm. Posttreatment groundwater TCE concentrations within the treatment zones averaged less than 100 ppb. Posttreatment soil TCE concentrations decreased by over 96 percent compared to pretreatment soil concentrations. The overall contaminant flux from EGDY was reduced by an estimated 60 to 90 percent by the source reduction effort. The traditional and new techniques for site characterization and remediation performance monitoring applied at EGDY provide insight for installing, operating, monitoring, and assessing thermal treatment. © 2009 Wiley Periodicals, Inc.  相似文献   

5.
Two adjacent automotive component manufacturers in Japan had concentrations of trichloroethene (TCE) and perchloroethene (PCE) in soils and groundwater beneath their plants. One of the manufacturers extensively used these solvents in its processes, while the adjacent manufacturer had no documentation of solvent use. The conceptual site model (CSM) initially involved a single source that migrated from one building to under the adjacent building. Further, because low concentrations of daughter products (e.g., cis‐1,2‐dichloroethene; 3.6 to 840 micrograms per liter [μg/L]) were detected in groundwater, the CSM did not consider intrinsic degradation to be a significant fate mechanism. With this interpretation, the initial remedial design involved both source treatment and perimeter groundwater control to prevent offsite migration of the solvents in groundwater. Identifying whether intrinsic degradation was occurring and could be quantified represented a means of eliminating this costly and potentially redundant component. Further, incorporating intrinsic degradation into the remediation design would also allow for a more focused source treatment, resulting in further cost savings. Three rounds of sampling and data interpretation applying compound specific isotope analysis (CSIA) were used to refine the CSM. The first sampling round involved three‐dimensional CSIA (13C, 37Cl, and 2H), while the second two rounds involved 13C only, focusing on degradation over time. For the May 2012 sampling, δ13C for PCE ranged from –31‰ to –29.6 ‰ and for TCE ranged from –30.4‰ to –28.3‰; showing similar values. δ2H for TCE ranged from 581‰ to 629‰, indicating a manufactured TCE rather than that resulting from dehalogenation processes from PCE. However, mixing of manufactured TCE with that resulting from degraded PCE cannot be ruled out. Because of the similar δ13C ratios for PCE and TCE, and 37Cl data for PCE and TCE, fractionation and enrichment factors could not be relied upon. Fractionation patterns were evaluated using graphical methods to trace TCE to the source location to better focus the locations for steam injection. Graphical methods were also used to define the degradation mechanism and from this, incorporate intrinsic degradation processes into the remedial design, eliminating the need for a costly perimeter pump and treat system. ©2015 Wiley Periodicals, Inc.  相似文献   

6.
Subgrade biogeochemical reactors (SBGRs) are an in situ remediation technology shown to be effective in treating contaminant source areas and groundwater hot spots, while being sustainable and economical. This technology has been applied for over a decade to treat chlorinated volatile organic compound source areas where groundwater is shallow (e.g., less than approximately 30 feet below ground surface [ft bgs]). However, this article provides three case studies describing innovative SBGR configurations recently developed and tested that are outside of this norm, which enable use of this technology under more challenging site conditions or for treatment of alternative contaminant classes. The first SBGR case study addresses a site with groundwater deeper than 30 ft bgs and limited space for construction, where an SBGR column configuration reduced the maximum trichloroethene (TCE) groundwater concentration from 9,900 micrograms per liter (μg/L) to <1 μg/L (nondetect) within approximately 15 months. The second SBGR is a recirculating trench configuration that is supporting remediation of a 5.7‐acre TCE plume, which has significant surface footprint constraints due to the presence of endangered species habitat. The third SBGR was constructed with a new amendment mixture and reduced groundwater contaminant concentrations in a petroleum hydrocarbon source area by over 97% within approximately 1 year. Additionally, a summary is provided for new SBGR configurations that are planned for treatment of additional classes of contaminants (e.g., hexavalent chromium, 1,4‐dioxane, dissolved explosives constituents, etc.). A discussion is also provided describing research being conducted to further understand and optimize treatment mechanisms within SBGRs, including a recently developed sampling approach called the aquifer matrix probe.  相似文献   

7.
Chlorinated solvents such as tetrachloroethene (perchloroethene, PCE) and trichloroethene (TCE) have been extensively used in various industrial applications for many years. Because neither are typically consumed through their various uses, they are often released to the environment through industrial application or disposal. Once released, PCE and TCE tend to migrate downward into groundwater, where they persist. In the current case study, cheese whey was used as a groundwater amendment to facilitate the reductive dechlorination of a chlorinated solvent plume underlying an auto dealer/repair shop in Harris County, Texas. From September 2010 to January 2014, over 32,000 gallons of cheese whey were injected into the subsurface resulting in a marked reduction in oxidation–reduction potential (ORP) and nitrate concentrations, coupled with an increase in ferrous iron concentrations. Statistical trend analyses indicate the primary contaminants, PCE and TCE, as well as the daughter product cis‐1,2‐dichloroethene (cDCE), all exhibited a positive response, as evidenced by statistically decreasing trends, and/or reversal in concentration trends, subsequent to cheese whey injections. Maximum concentrations of PCE and TCE in key test wells decreased by as much as 98.97 percent and 99.17 percent, respectively. In addition, the bacterial genus Dehalococcoides, capable of complete reduction of PCE to non‐toxic ethene, was found to be more abundant in the treatment area, as compared to background concentrations. Because cheese whey is a by‐product of the cheese making process, the cost of the product is essentially limited to transport. This study demonstrates cheese whey to be an effective groundwater amendment at a cost which is orders of magnitude lower than popular industry alternatives.  相似文献   

8.
Fenton's reagent in its conventional form, although effective for contaminant treatment, is impractical from an in‐situ field application perspective due to low pH requirements (i.e., pH 3‐4), and limited reagent mobility when introduced into the subsurface. Modified Fenton's processes that use chelated‐iron catalysts and stabilized hydrogen peroxide have been developed with the goal of promoting effective in‐situ field application under native pH conditions (i.e., pH 5‐7), while extending the longevity of hydrogen peroxide. Laboratory experiments conducted in soil columns packed with organic soil to compare modified Fenton's catalysts with conventional catalysts (acidified iron [II]) indicated superior mobility and sorption characteristics for modified Fenton's catalysts. Furthermore, the acidic pH of a conventional catalyst was buffered to the native soil range, leading to increased iron precipitation/adsorption following permeation through the soil column. The chelates present within the modified Fenton's catalyst showed greater affinity toward iron compared with the native soil and, hence, minimized iron loss through adsorption during the permeation process even at pH 5‐7. Field effectiveness of the modified Fenton's process was demonstrated at a former dry‐cleaning facility located in northeast Florida. Preliminary laboratory‐scale experiments were conducted on soil‐slurry and groundwater samples to test the process efficacy for remediation of chlorinated solvents. Based on successful experimental results that indicated a 94 percent (soil slurry) to 99 percent (groundwater) reduction of cis‐1,2‐DCE, PCE, and TCE, a field‐scale treatment program was initiated utilizing a plurality of dual‐zone direct push injection points installed in a grid fashion throughout the site. Results of treatment indicated a 72 percent reduction in total chlorinated contamination detected in the site groundwater following the first injection event; the reduction increased to 90 percent following the second injection event. © 2002 Wiley Periodicals Inc.  相似文献   

9.
This study has been conducted at the University of Connecticut (UCONN) in connection with the USEPA Superfund Innovative Technology Evaluation (SITE) program to evaluate a chemical oxidation technology (sodium persulfate) developed at UCONN. A protocol to assess the efficacy of oxidation technologies has been used. This protocol, which consists of obtaining data from a treatability study, tested two in-situ chemical oxidation technologies that can be used on soil and groundwater at a site in Vernon, Connecticut. Based on the treatability report results and additional field data collected at the site, the design for the field implementation of the chemical oxidation remediation was completed. The results indicate that both sodium persulfate and potassium permanganate were able to effectively degrade the target VOCs (i.e., PCE, TCE and cis-DCE) in groundwater and soil-groundwater matrices. In the sodium persulfate tests (120 hrs), the extent of destruction of target VOCs was 74% for PCE, 86% for TCE and 84% for cis-DCE by Na2S2O8 alone and 68% for PCE, 76% for TCE, and 69% for cis-DCE by Fe(II)-catalyzed Na2S2O8. The results demonstrate the sodium persulfate's ability to degrade PCE, TCE and cis-DCE. It is expected that given sufficient dose and treatment time, a higher destruction rate of the dissolved phase contamination can be achieved. The data also indicates that the catalytic effect of the iron chelate on persulfate chemistry was much less pronounced in the soil-groundwater matrix. This indicates an interaction between the iron chelate solution and the soil, which may have resulted in a lower availability of the chelated iron for catalysis. The study showed that the remediation of the VOCs-contaminated soil and groundwater by in-situ chemical oxidation using sodium persulfate is feasible at the Roosevelt Mills site. As a result, the USEPA SITE program will evaluate this technology at this site.  相似文献   

10.
EOS, or emulsified oil substrate, was used to stimulate anaerobic biodegradation of trichloroethene (TCE) and tetrachloroethene (PCE) at a former Army‐owned manufacturing facility located in the Piedmont area of North Carolina. Previous use of chlorinated solvents at the facility resulted in soil and groundwater impacts. Ten years of active remediation utilizing soil vacuum extraction and air sparging (SVE/AS) were largely ineffective in reducing the TCE/PCE plume. In 2002, the Army authorized preparation of an amended Remedial Action Plan (RAP) to evaluate in situ bioremediation methods to remediate TCE in groundwater. The RAP evaluated eight groundwater remediation technologies and recommended EOS as the preferred bioremediation alternative for the site. Eight wells were drilled within the 100 × 100 feet area believed to be the primary source area for the TCE plume. In a first injection phase, dilute EOS emulsion was injected into half of the wells. Distribution of the carbon substrate through the treatment zone was enhanced by pumping the four wells that were not injected and recirculating the extracted water through the injection wells. The process was repeated in a second phase that reversed the injection/extraction well pairs. Overall, 18,480 pounds of EOS were injected and 163,000 gallons of water were recirculated through the source area. Anaerobic groundwater conditions were observed shortly after injection with a corresponding decrease in both PCE and TCE concentrations. Dissolved oxygen, oxidation‐reduction potential, and sulfate concentrations also decreased after injection, while TCE‐degradation products, ferrous iron, and methane concentrations increased. The reduction in TCE allowed the Army to meet the groundwater remediation goals for the site. Approximately 18 months after injection, eight wells were innoculated with a commercially prepared dechlorinating culture (KB‐1) in an attempt to address lingering cis‐1,2‐dichloroethene (cis‐DCE) and vinyl chloride (VC) that continued to be observed in some wells. Dehalococcoides populations increased slightly post‐bioaugmentation. Both cis‐DCE and VC continue to slowly decrease. © 2007 Wiley Periodicals, Inc.  相似文献   

11.
A laboratory study was conducted for the selection of appropriate remedial technologies for a partially anaerobic aquifer contaminated with chlorinated volatile organics (VOCs). Evaluation of in situ bioremediation demonstrated that the addition of electron donors to anaerobic microcosms enhanced biological reductive dechlorination of tetrachloroethene (PCE), trichloroethene (TCE), and 1,1,1‐trichloroethane (1,1,1‐TCA) with half‐lives of 20, 22, and 41 days, respectively. Nearly complete reductions of PCE, TCE, 1,1,1‐TCA, and the derivative cis‐dichloroethene were accompanied by a corresponding increase in chloride concentrations. Accumulation of vinyl chloride, ethene, and ethane was not observed; however, elevated levels of 14CO2 (from 14C‐TCE spiked) were recovered, indicating the occurrence of anaerobic oxidation. In contrast, very little degradation of 1,2‐dichloropropane (1,2‐DCP) and 1,1‐dichlorethane (1,1‐DCA) was observed in the anaerobic microcosms, but nutrient addition enhanced their degradation in the aerobic biotic microcosms. The aerobic degradation half‐lives for 1,2‐DCP and 1,1‐DCA were 63 and 56 days, respectively. Evaluation of in situ chemical oxidation (ISCO) demonstrated that chelate‐modified Fenton's reagent was effective in degrading aqueous‐phase PCE, TCE, 1,1,1‐TCA, 1,2‐DCP, etc.; however, this approach had minimal effects on solid‐phase contaminants. The observed oxidant demand was 16 g‐H2O2/L‐groundwater. The oxidation reaction rates were not highly sensitive to the molar ratio of H2O2:Fe2+:citrate. A ratio of 60:1:1 resulted in slightly faster removal of chemicals of concern (COCs) than those of 12:1:1 and 300:1:1. This treatment resulted in increases in dissolved metals (Ca, Cr, Mg, K, and Mn) and a minor increase of vinyl chloride. Treatment with zero‐valent iron (ZVI) resulted in complete dechlorination of PCE, and TCE to ethene and ethane. ZVI treatment reduced 1,1,1‐TCA only to 1,1‐DCA and chloroethane (CA) but had little effect on reducing the levels of 1,2‐DCP, 1,1‐DCA, and CA. The longevity test showed that one gram of 325‐mesh iron powder was exhausted in reaction with > 22 mL of groundwater. The short life of ZVI may be a barrier to implementation. The ZVI surface reaction rates (ksa) were 1.2 × 10?2 Lm?2h?1, 2 × 10?3 Lm?2h?1, and 1.2 × 10?3 Lm?2h?1 for 1,1,1‐TCA, TCE, and PCE, respectively. Based upon the results of this study, in situ bioremediation appeared to be more suitable than ISCO and ZVI for effectively treating the groundwater contamination at the site. © 2004 Wiley Periodicals, Inc.  相似文献   

12.
In June and July 2001, the Massachusetts Department of Environmental Protection (MassDEP) installed a permeable reactive barrier (PRB) to treat a groundwater plume of chlorinated solvents migrating from an electronics manufacturer in Needham, Massachusetts, toward the Town of Wellesley's Rosemary Valley wellfield. The primary contaminant of concern at the site is trichloroethene (TCE), which at the time had a maximum average concentration of approximately 300 micrograms per liter directly upgradient of the PRB. The PRB is composed of a mix of granular zero‐valent iron (ZVI) filings and sand with a pure‐iron thickness design along its length between 0.5 and 1.7 feet. The PRB was designed to intercept the entire overburden plume; a previous study had indicated that the contaminant flux in the bedrock was negligible. Groundwater samples have been collected from monitoring wells upgradient and downgradient of the PRB on a quarterly basis since installation of the PRB. Inorganic parameters, such as oxidation/reduction potential, dissolved oxygen, and pH, are also measured to determine stabilization during the sampling process. Review of the analytical data indicates that the PRB is significantly reducing TCE concentrations along its length. However, in two discrete locations, TCE concentrations show little decrease in the downgradient monitoring wells, particularly in the deep overburden. Data available for review include the organic and inorganic analytical data, slug test results from nearby bedrock and overburden wells, and upgradient and downgradient groundwater‐level information. These data aid in refining the conceptual site model for the PRB, evaluating its performance, and provide clues as to the reasons for the PRB's underperformance in certain locations. © 2008 Wiley Periodicals, Inc.  相似文献   

13.
The chlorinated volatile organic compounds (CVOCs), tetrachloroethene (PCE), trichloroethene (TCE), and 1,1,1‐trichloroethane (1,1,1‐TCA), often found as commingled contaminants of concern (COCs) in groundwater, can degrade via a variety of biotic and abiotic reductive pathways. In situ remediation of a groundwater contaminant source area containing commingled 1,1,1‐TCA, PCE, and TCE was conducted using a combined remedy/treatment train approach. The first step was to create geochemically reducing conditions in the source area to degrade the CVOCs to lesser chlorinated CVOCs (i.e., 1,1‐dichloroethane [1,1‐DCA], 1,1‐dichlorethene [1,1‐DCE], cis‐1,2‐dichoroethene [cis‐1,2‐DCE], and vinyl chloride [VC]) via enhanced reductive dechlorination (ERD). Carbon substrates were injected to create microbial‐induced geochemically reducing conditions. An abiotic reductant (zero‐valent iron [ZVI]) was also used to further degrade the CVOCs, minimizing the generation of 1,1‐DCE and VC, and co‐precipitate temporarily mobilized metals. An in situ aerobic zone was created downgradient of the treatment zone through the injection of oxygen. Remaining CVOC degradation products and temporarily mobilized metals (e.g., iron and manganese) resulting from the geochemically reducing conditions were then allowed to migrate through the aerobic zone. Within the aerobic zone, the lesser chlorinated CVOCs were oxidized and the solubilized metals were precipitated out of solution. The injection of a combination of carbon substrates and ZVI into the groundwater system at the site studied herein resulted in the generation of a geochemically reducing subsurface treatment zone that has lasted for more than 4.5 years. Mass concentrations of total CVOCs were degraded within the treatment zone, with near complete transformation of chlorinated ethenes and a more than 90 percent reduction of CVOC mass concentrations. Production of VC and 1,1‐DCE has been minimized through the combined effects of abiotic and biological processes. CVOC concentrations have declined over time and temporarily mobilized metals are precipitating out of the dissolved phase. Precipitation of the dissolved metals was mitigated using the in situ oxygenation system, also resulting in a return to aerobic conditions in downgradient groundwater. Chloroethane (CA) is the dominant CVOC degradation product within the treatment zone and downgradient of the treatment zone, and it is expected to continue to aerobically degrade over time. CA did not accumulate within and near the aerobic oxygenation zone. The expectations for the remediation system are: (1) the concentrations of CVOCs (primarily in the form of CA) will continue to degrade; (2) total organic carbon concentrations will continue to decline to pre‐remediation levels; and, (3) the groundwater geochemistry will experience an overall trend of transitioning from reducing back to pre‐remediation mildly oxidizing conditions within and downgradient of the treatment zone.  相似文献   

14.
This article presents field tests comparing two methods of treatment of chlorinated solvents undertaken at the same site. The site is an automobile factory where two chlorinated solvents (CS) plumes were identified. At the first source, in situ chemical reduction (ISCR) was applied, while at the second one, enhanced natural attenuation (ENA) was used. A set of specific multilevel sampling wells were installed approximately 20 m downgradient of the sources to estimate the efficiency of the treatments. The presence of a low‐permeability layer (source 1) or a thick oil lens (source 2) in the top part of the aquifer prevented the CS from reaching the bottom of the aquifer. These layers led to difficulties treating the contamination. At the ISCR and ENA treatment zones, the concentrations of tetrachloroethene (PCE) and trichloroethene (TCE) did not change significantly, while the concentration of metabolites (cis‐1,2‐DCE, vinyl chloride, and ethene) significantly increased 50 to 150 days after treatment. Due to high concentration of CS in the source zone, a mass balance calculation, including chlorine, was possible. It showed that around 1 to 2 percent of the injected products were used to reduce the CS. A detailed analysis and 1D analytical modeling of CS concentrations showed that the treatment led to a large (two to three times) increase in dissolution of the organic phase. This explains why, despite an efficient treatment, the PCE and TCE concentrations remained virtually unchanged. Degradation rates also increased due to the treatment. Due to some differences in the source‐zone chemistry, it was not possible to differentiate between the ISCR and ENA efficiencies. © 2013 Wiley Periodicals, Inc.  相似文献   

15.
Bioremediation of chlorinated solvents has been moving from an innovative to mainstream technology for environmental applications. Cometablism of chlorinated solvents by monooxygenase has been demonstrated for trichloroethylene (TCE). Cl‐out microbes combine the dehalogenation of PCE with the monooxygenase destruction of TCE to complete the PCE breakdown pathway. Underthe right conditions, cometabolic bioremediation can be cost effective, fast, and complete. Aerobic bioremediation can augment mass transfer technologies such as pump and treat or sparging/vapor extraction to improve their efficiency.  相似文献   

16.
Groundwater treatment biowalls may be located close to a surface water body to prevent contaminant discharge from a groundwater plume into the surface water. Groundwater contaminants passing through the biowall are treated within the biowall or immediately downgradient of the biowall. Biowalls designed and constructed for the treatment of chlorinated solvents typically contain either a solid and/or liquid source of organic carbon to promote contaminant degradation by enhanced anaerobic reductive dechlorination. Common solid organic materials in biowalls include wood mulch or similar waste plant material, and common liquid organic materials are vegetable oil (possibly emulsified) or other long‐chain fatty acids. Such biowalls then develop anaerobic conditions in the constructed biowall volume, and potentially downgradient, as dissolved oxygen originally present in the aquifer is consumed. This groundwater condition can lead to the appearance of sulfide if groundwater influent to the biowall contains moderate to high sulfate concentrations. Other researchers have presented evidence for groundwater conditions downgradient of a biowall or a permeable reactive barrier (PRB) that are altered in relation to groundwater quality, besides the desired effect of contaminant degradation or removal by precipitation. The objective of this work was to investigate with modeling the changes in downgradient groundwater species chemistry as a result of a constructed biowall. This was accomplished with a chemical species model to predict levels of sulfate and sulfide present in groundwater in close downgradient proximity to the biowall. The results indicate that downgradient chemical changes could impact a surface water body to which groundwater discharges. The model described could be enhanced by incorporating additional design variables that should be considered in biowall feasibility assessments.  相似文献   

17.
Contaminants from dry‐cleaning sites, primarily tetrachloroethene (PCE), trichloroethene (TCE), cis‐dichloroethene (cis‐DCE), and vinyl chloride (VC), have become a major concern because of the limited funds and regulatory programs to address them. Thus, natural attenuation and its effectiveness for these sites needs to be evaluated as it might provide a less costly alternative to other remediation methods. In this research, data from a site in Texas were analyzed and modeled using the Biochlor analytical model to evaluate remediation times using natural attenuation. It was determined that while biodegradation and source decay were occurring at the site, the resulting attenuation rates were not adequate to achieve cleanup in a reasonable time frame without additional source remediation or control strategies. Cleanup times exceeded 100 years for all constituents at the site boundary and 800 years at the source for PCE, assuming cleanup levels of 0.005 mg/L for PCE and TCE and 0.07 mg/L and 0.002 mg/L for cis‐DCE and VC, respectively. © 2005 Wiley Periodicals, Inc.  相似文献   

18.
In order to improve and optimize phytoremediation of PAH we propose to focus on the rhizospheric processes controlling PAH degradation. In this paper the effect of root exudates on PAH availability is studied. Model organic compounds (malic acid, malonic acid and EDTA) representing root exudates have been tested for their effect on phenanthrene sorption on a reference non polluted agricultural soil material. Phenanthrene adsorption isotherms were first obtained with batch experiments. Results showed linear isotherms and phenanthrene sorption was enhanced as the concentration of organic compounds in the solution increased. Column leaching experiments were then used to simulate the effect of root exudation following the soil pollution. Inlet solutions containing the different organic acids used were flowed through the column containing the artificially polluted soil material. Elution curves showed that the phenanthrene was less easily eluted when the solution injected contained the organic acids. However, magnitude of the phenomena did not fit with adsorption constants obtained in batch experiments. Phenanthrene desorption appeared limited by sequestration but organic acids seemed able to partially disturb the soil material structure to limit the sequestration effect.  相似文献   

19.
The combination of electrokinetic and zero‐valent iron (ZVI) treatments were used to treat soils contaminated with chlorinated solvents, including dense nonaqueous phase liquid (DNAPL), at an active industrial site in Ohio. The remediation systems were installed in tight clay soils under truck lots and entrances to loading docks without interruption to facility production. The electrokinetic system, called LasagnaTM, uses a direct current electrical field to mobilize contaminant via electroosmosis and soil heating. The contaminants are intercepted and reduced in situ using treatment zones containing ZVI. In moderately contaminated soils around the LasagnaTM‐treated source areas, a grid of ZVI filled boreholes were emplaced to passively treat residual contamination in decades instead of centuries. The remediation systems were installed below grade and did not interfere with truck traffic during the installation and three years of operation. The LasagnaTM systems removed 80 percent of the trichloroethylene (TCE) mass while the passive ZVI borings system has reduced the TCE by 40 percent. The remediation goals have been met and the site is now in monitoring‐only mode as natural attenuation takes over. © 2014 Wiley Periodicals, Inc.  相似文献   

20.
Despite the installation in the 1980s and 1990s of hydraulic containment systems around known source zones (four slurry walls and ten pump‐and‐treat systems), trichloroethene (TCE) plumes persist in the three uppermost groundwater‐bearing units at the Middlefield‐Ellis‐Whisman (MEW) Superfund Study Area in Mountain View, California. In analyzing TCE data from 15 recovery wells, the observed TCE mass discharge decreased less than an order of magnitude over a 10‐year period despite the removal of an average of 11 pore volumes of affected groundwater. Two groundwater models were applied to long‐term groundwater pump‐and‐treat data from 15 recovery wells to determine if matrix diffusion could explain the long‐term persistence of a TCE plume. The first model assumed that TCE concentrations in the plume are controlled only by advection, dispersion, and retardation (ADR model). The second model used a one‐dimensional diffusion equation in contact with two low‐permeability zones (i.e., upper and lower aquitard) to estimate the potential effects of matrix diffusion of TCE into and out of low‐permeability media in the plume. In all 15 wells, the matrix diffusion model fit the data much better than the ADR model (normalized root mean square error of 0.17 vs. 0.29; r2 of 0.99 vs. 0.19), indicating that matrix diffusion is a likely contributing factor to the persistence of the TCE plume in the non‐source‐capture zones of the MEW Study Area's groundwater‐extraction wells. © 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号