首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Measurements of indoor and outdoor aerosol concentrations and their gaseous precursors (O3, NO and NO2) as well as volatile organic compounds (VOCs) concentrations were performed at two houses in the Oslo metropolitan area. The variability of the concentration of gaseous compounds was studied in respect to their sources in the indoor and outdoor environments. Domestic heating during the winter and photochemical production during the summer were the main sources for outdoor NOx and O3. In the indoor environment infiltration of outdoor air, candle burning, smoking and indoor chemical reactions were the main sources affecting their concentrations. The concentrations of VOCs outdoors were enhanced during the summer due to biogenic emissions whereas in the indoor environment their values were affected mostly by emissions from materials used during the recent refurbishing of the houses (>0.4 mg/m3).  相似文献   

2.
Experiments were conducted using a bubbling reactor to investigate nitrogen oxide absorption in the calcium sulfite slurry. The effects of CaSO3 concentration, NO2/NO mole ratio and O2 concentrations on NO2 and SO2 absorption efficiencies were investigated. Five types of additives, including MgSO4, Na2SO4, FeSO4, MgSO4/Na2SO4 and FeSO4/Na2SO4, had been evaluated for enhancing NO2 absorption in CaSO3 slurry. Results showed that CaSO3 concentration had significant impact on NO2 and SO2 absorption efficiencies, and the highest absorption efficiencies of SO2 and NO2 could reach about 99.5 and 75.0 %, respectively. Furthermore, the NO2 absorption was closely related to the NO2/NO mole ratio, and the existence of NO2 in flue gas may promote NO absorption. The presence of O2 in simulated flue gas was disadvantage for NO x removal because it can oxidize sulfite to sulfate. It was worth pointing out that FeSO4/Na2SO4 was the best additive among those investigated additives, as the NO2 removal efficiency was significantly increased from 74.8 to 95.0 %. IC and in situ FTIR results suggest that the main products were NO3 ? and NO2 ? in liquid phase and N2O, N2O5 and HNO3 in gas phase during the CaSO3 absorption process.  相似文献   

3.
Present study envisaged the sequential experimental design approach for the development of biodegradable Gelatin-Tapoica/polyacrylamide superabsorbent. Percentage water uptake efficacy of candidate sample was optimized using Response Surface Methodology (RSM) design under microwave irradiation. Different process variables such as potassium persulphate and ammonium persulphate (KPS:APS) ratio, pH, reaction time concentration of acrylamide and N,N-methylene-bis-acrylamide (MBA) were investigated as a function of percentage swelling using sequential experimental design. Maximum liquid efficacy of 1550% was obtained at KPS:APS?=?1.0:0.5; acrylamide?=?7.67?×?10?1 mol L?1; MBA?=?1.76?×?10?2 mol L?1; pH 10 and time?=?110 s. The 3D crosslinked network formed was characterized using Fourier Transformation Infrared spectroscopy (FTIR), X-ray diffraction (XRD), Scanning Electron Microscopic (SEM) techniques and thermal stability was ensured by Thermal gravimetric Analysis/Differential Thermal Analysis/Differential Thermal Gravimetric (TGA/DTA/DTG) studies. Superabsorbent synthesized could increase the moisture content in different type of soils and was found to enhance the water-holding capability of the soil upto 60 days in clayey, 40 days in sandy and 51 days in mixture of two soils under controlled conditions. Further, candidate polymer was investigated for the in-vitro controlled release of the KNO3 with diffusion exponent ‘n’ was found to be 0.4326 indicating Fickian type diffusion. Also, initial diffusion coefficient (DI?=?3.49?×?10?5 m2 h?1) was found to be greater than the lateral diffusion coefficient (DL?=?3.76?×?10?6 m2 h?1) indicated rapid release of KNO3 during initial hours with slow release afterwards. The ecofriendly nature of the synthesized polymer was also tested by conducting biodegradation studies and it was found to degrade upto 94% and 88.1% within 70 days with degradation rate of 1.34 and 1.26% per day using composting method and vermicomposting method respectively. So, the synthesized candidate polymer was found to be boon for agriculture-horticulture sector with wide applicability.  相似文献   

4.
The use of inks containing organic solvents by the offset printing process implies in the release of volatile organic compounds to the work environment. Many of these compounds such as benzene, toluene, ethylbenzene, and the xylene isomers (well known by the acronym BTEX) are extremely toxic. In this study, the BTEX concentrations were determined in two different printing plants that use distinct types of inks: the conventional and the so-called ecological, which is manufactured based on vegetal oil. Concentration ranges were 43–84, 15–3,480, 2–133, 5–459, and 2–236 μg m?3 for benzene, toluene, ethylbenzene, m?+?p-xylene, and o-xylene, respectively, for the conventional printing plant. At the ecological printing plant, concentration ranges were below limit of detection (<LD)-31, <LD-618, <LD-1,690, <LD-10,500, <LD-3,360 μg m?3 for benzene, toluene, ethylbenzene, m?+?p-xylene, and o-xylene, respectively. BTEX concentrations are lower at the ecological printing environment than in the conventional, where mineral oil-based inks are used. However, the worker who cleans the printing matrices is exposed to high concentrations of ethylbenzene and xylenes, due probably to the cleaning product’s composition (containing high amounts of BTEX). Although the BTEX concentrations found in both printing work environments were below the limits considered by the Brazilian Law for Activities and Unhealthy Operations (NR-15), the exposure to such vapors characterizes risk to the workers’ health for some of the evaluated samples, mainly the personal ones.  相似文献   

5.
Concentrations of NO2, NO, and O3 from a rooftop monitoring station in Gothenburg, Sweden (2002–2006) were analysed to characterise NO2 pollution. [NO2] was shown to correlate strongly and non-linearly with [NO x ] (NO x ?=?NO?+?NO2), in line with observations in other cities. The [NO2] to [NO x ] fraction fell initially with increasing [NO x ]. At [NO x ] levels >200 ppb, the decline in [NO2]/[NO x ] with increasing [NO x ] levelled out and [NO2]/[NO x ] converged towards approximately 0.15–0.16, independent of [NO x ]. Data from a traffic route site showed the same pattern. This value of [NO2]/[NO x ] at high [NO x ] can be interpreted as the NO2 fraction of the NO x emissions from vehicle exhaust. Situations with high NO x pollution and minimum [NO2]/[NO x ] were always associated with [O3] close to zero. Plotting [Ox] (Ox?=?NO2?+?O3) vs. [NO x ] provided a strong linear correlation for situations dominated by local pollution ([NO]/[NO2]>1). The slope of the regression, a measure of the primary NO2 fraction in NO x emissions, was 0.13 during the day and 0.14 during the night. With stronger winds, the rooftop monitoring station became more similar, in terms of NO2 pollution, to a city street site and a traffic route site, although [NO2] was almost always higher at the street/traffic route locations. The EU standard for the annual average of [NO2] (40 μg m?3) was exceeded, while the hourly standard (200 μg m?3, not to be exceeded more than 18 times per year by 2010) was not exceeded at any of the sites.  相似文献   

6.
In this study, dl-malic acid and hydrogen peroxide were used as leaching agents to remove metals from e-waste (printed-circuit boards) and itaconic acid-grafted poly(vinyl alcohol)-encapsulated wood pulp (IA-g-PVA-en-WP) to uptake metals from leachate with high proficiency [11.63 mg g?1; 93.03 % for Cd(II), 11.90 mg g?1; 95.18 % for Pb(II), and 12.14 mg g?1; 97.08 % for Ni(II)]. Metals were recovered from the loaded biosorbent by desorption studies. The standard analytical techniques, such as elemental analysis, Fourier-transform-infrared spectroscopy, scanning electron microscopy, atomic force microscopy, and thermogravimetric analysis, were used to characterize the recovering agent (biosorbent). At equilibrium, the metal uptake data were fitted to Langmuir and D–R isotherms (R 2 > 0.99) significantly, revealing, the homogeneous distribution of active sites on biosorbent’s backbone. The possible mechanism appeared to be ion exchanges of metal ions with H+ together with binding over functionalities (COO?). Dimensionless equilibrium parameter (R L) showed the favourability of metal uptake at lower concentration, while mean adsorption energy (E) certified the physical binding of metal on functionalities which was further confirmed by sticking probability and activation energy parameters. Reusability studies were also conducted to state the performance of biosorbent.  相似文献   

7.
Airborne particulate matter (PM) concentrations were measured in Iksan, a suburban area in South Korea during April, 2003. PM2.5 (particles with an aerodynamic diameter less than 2.5 μm) and PM10 (particles with an aerodynamic diameter less than 10 μm) samples were collected, and the chemical characteristics of particles were examined for diurnal patterns, yellow dust/rainfall influences, and scavenging effects. Average concentrations of PM2.5 and PM10 mass measured were 37.3 ± 16.2 μg m−3 and 60.8 ± 29.5 μg m−3, respectively. The sum of ionic chemical species concentrations for PM2.5 and PM10 was 16.9 ± 7.3 and 23.1 ± 10.1 μg/m3, respectively. A significant reduction in PM mass concentrations during rainfall days was observed for coarse mode (PM2.5 − 10) particles, but less reduction was found for fine (PM2.5) mass concentration. SO4 2−, NH4 +, and K+ predominated in fine particulate mode, NO3 and Cl predominated in fine particle mode and coarse particle mode, but Na+, Mg2+, and Ca2+ mostly existed in coarse mode. The high concentration of ammonium due to local emissions and long-range transport neutralized sulfate and nitrate to ammonium sulfate and ammonium nitrate, which were major forms of airborne PM in Iksan. Average mass concentrations of PM10 in daytime and at night were 57.6 and 70.0 μg m−3, and those of PM2.5 were 35.4 and 42.5 μg m−3, respectively. NO3 and Cl in both PM2.5 and PM10 were about double at night than in the daytime, while the rest of the chemical species were equal or a little higher at night than in the daytime. The results suggest the formation of ammonium nitrate and chloride when high ammonia concentration and low air temperature are allowed. Backward air trajectory analyses showed that air masses arriving at the site during yellow dust period were transported from arid Chinese regions, which resulted in high concentrations of airborne PM mass concentrations. In the meantime, air mass trajectories during a rainfall period were mostly from the Pacific Ocean or the East China Sea, along with a relatively low PM concentration.  相似文献   

8.
Mesostructured iron oxyhydroxide (FeO x ) and iron oxyhydroxide–phosphate (FeO x P) composites were organized using dodecylsulfate surfactant as a template. X-ray diffraction studies depicted a lamellar structure of the product. Ion exchange and solvent extraction methods were employed for the removal of the surfactant. Carboxylate ions exchanged lamellar type mesostructured material reorganized to a wormhole-like mesoporous material when heated under N2 atmosphere. Surfactant was completely removed by carboxylate ions as observed by the Fourier transform infrared spectra. High surface area acetate-exchanged FeO x (230 m2 g?1) was obtained after the surfactant removal from the composite (2.8 m2 g?1). Surface area of acetate-exchanged FeO x P was the highest (240 m2g?1) after the removal of the surfactant. Local structure of iron species of FeO x was investigated by X-ray absorption fine structure spectroscopy. Further, Fe···Fe bond appeared at 3.21–3.25 Å with coordination number 2–3, showing a high degree of un-saturation of Fe···Fe bonds. As compared with bulk iron oxyhydroxide and iron-intercalated montmorillonite, the mesoporous iron materials were highly effective for arsenic removal from low concentrations of aqueous solutions. Furthermore, mesoporous iron materials were stable in aqueous phase.  相似文献   

9.
The concentrations of heavy metals Pb, Cd, Cu, Zn and Hg, benzo[a]pyrene and oil products (C15–C28) in bulk (wet and dry) atmospheric deposition in Vilnius city in 2005–2006 were analysed. The highest flux to the ground surface of the city residential area, reaching 1,680 mg m?2 year?1, was determined for oil products, which in atmospheric bulk deposition was estimated to be mainly in the form of solid sediments. Among heavy metals, the highest flux was determined for Zn (113.5 mg m?2 year?1), while the lowest flux was determined for Hg (0.06 mg m?2 year?1). The flux of investigated pollutants ranges from a few times, or for some pollutants, up to one order of magnitude higher at the urban sampling site in comparison to residential or background sites. Some hundred tons of oil products, approximately 52 tons of zinc and a considerably lower amount of mercury, benzo[a]pyrene and cadmium deposit yearly to the ground and water surface of Vilnius city. Metallic constructions related to transport and buildings, automobile exhausts, spills of fuel and lubricants are suggested to be the factors which result in the accumulation of high amounts of heavy metals, oil products and other pollutants on the ground surface of the city.  相似文献   

10.
In this study, a very promising way of treating and recycling spent nickel catalysts of fertilizer plants in Vietnam was proposed. Firstly, nickel was recovered from spent catalyst using HNO3—leaching process. Results show that nickel recovery of over 90% with a purity of over 90% can be achieved with HNO3 2.1–2.5 M at 100?°C in 75 min. The residue after leaching is not considered as a hazardous waste according to the Vietnamese regulations. Then, the leachate solution was used as a precursor to prepare a model catalyst for exhaust gas (CO, HC, NOx) treatment. In comparison with the catalyst prepared from the commercial nickel nitrate solution, the catalyst synthesized from recovered nickel exhibits similar properties and activities. The influence of Ni loading of Ni/alumina catalyst as well as the modification of active phase by some metals addition (Mn, Ba, Ce) was also investigated. It is feasible to modify active phase by transition metals such as Mn, Ba, and Ce for complete oxidation of CO and HC at 270?°C and a reduction of NOx below 350?°C at high volumetric flow condition (GHSV?=?110.000 h?1).  相似文献   

11.
Dynamic studies on the volatilization of lead from CaO–SiO2–Al2O3 molten slags were conducted in a lab-scale melting furnace from 1623 to 1773 K under different mixed gas atmospheres of CO 0.05–0.3 atm to CO2 0–0.3 atm to N2 (balance), HCl 1.7 × 10?3–6.7 × 10?3 atm to N2 (balance), and H2S 3.0 × 10?4 to 1.7 × 10?3 atm to N2 (balance). The slag samples consisted of the mixed powders of 20–50 wt% CaO, 30–60 wt% SiO2, and 10–40 wt% Al2O3, containing 2000 ppm PbO.Results showed that the rates of volatilization of lead from the CaO–SiO2–Al2O3 molten slags under the N2–CO–CO2, N2HCl, and N2–H2S gas atmospheres were higher than those under the simulated air (N2–O2), which increased with CO, HCl, and H2S partial pressures. At \(p_{{HCl}}\)  =  \(p_{H_{2}S}\)  = 1.7 × 10?3 atm, the apparent rate constants for the volatilization of lead under the N2–H2S and N2HCl gas atmospheres were nearly equal, which increased with a rise in temperature. Results also showed that the rate of volatilization of lead from the molten slag decreased drastically with the increasing viscosity of the molten slag, in the viscosity range lower than 3 Pa s. Consequently, the volatilization of lead from the CaO–SiO2–Al2O3 molten slag was significantly influenced by CO, HCl, and H2S partial pressures and by the viscosity of the molten slag.  相似文献   

12.
In this study, a novel magnetic Cr(VI) ion imprinted polymer (Cr(VI)-MIIP) was successfully synthesized and used as a selective sorbent for the adsorption of Cr(VI) ions from aqueous solution. It can be synthesized through the combination of an imprinting polymer and magnetic nanoparticles. The high selectivity achieved using MIIP is due to the specific recognition cavities for Cr(VI) ions created in Cr(VI)-MIIP. Also, the magnetic properties that could be obtained using magnetic nanoparticles, helps to separate adsorbent with an external magnetic field without either additional centrifugation or filtration procedures. The magnetic Fe3O4 nanoparticles (MNPs) were synthesized using an improved co-precipitation method and modified with tetraethylorthosilicate (TEOS) before imprinting. The magnetic Cr(VI) ion imprinted polymer was prepared through precipitation copolymerization of 4-vinylpyridine as the complexing monomer, 2-hydroxyethyl methacrylate as a co-monomer, the Cr6+ anion as a template, and ethylene glycol dimethacrylate (EGDMA) as a cross-linker in the presence of modified magnetite nanoparticles. This novel synthesized sorbent was characterized using different techniques. Batch adsorption experiments were performed to evaluate the adsorption conditions, selectivity, and reusability. The results showed that the maximum adsorption capacity was 39.3 mg g?1, which was observed at pH 3 and at 25?°C. The equilibrium time was 20 min, and the amount of adsorbent which gave the maximum adsorption capacity was 1.7 g L?1. Isotherm studies showed that the adsorption equilibrium data were fitted well with the Langmuir adsorption isotherm model and the theoretical maximum adsorption capacity was 44.86 mg g?1. The selectivity studies indicated that the synthesized sorbent had a high single selectivity sorption for the Cr(VI) ions in the presence of competing ions. Thermodynamic studies revealed that the adsorption process was exothermic (\(\Delta H\)?<?0) and spontaneous (\(\Delta G\)?<?0). In addition, the spent MIIP can be regenerated up to five cycles without a significant decrease in adsorption capacity.  相似文献   

13.
Providing an accurate estimate of the dry component of N deposition to low N background, semi-natural habitats, such as bogs and upland moors dominated by Calluna vulgaris is difficult, but essential to relate nitrogen deposition to effects in these communities. To quantify the effects of NH3 inputs to moorland vegetation growing on a bog at a field scale, a field release NH3 fumigation system was established at Whim Moss (Scottish Borders) in 2002. Gaseous NH3 from a line source was released along of a 60 m transect, when meteorological conditions (wind speed >2.5 m s?1 and wind direction in the sector 180–215°) were met, thereby providing a profile of decreasing NH3 concentration with distance from the source. In a complementary study, using a NH3 flux chamber system, the relationships between NH3 concentrations and cuticular resistances were quantified for a range of NH3 concentrations and micrometeorological conditions for moorland vegetation. Cuticular resistances increased with NH3 concentration from 11 s m?1 at 3.0 μg m?3 to 30 s m?1 at 30 μg m?3. The NH3 concentration data and the concentration-dependent canopy resistance are used to calculate NH3 deposition taking into account leaf surface wetness. The implications of using an NH3 concentration-dependent cuticular resistance and the importance for refining critical loads are discussed.  相似文献   

14.
Traditional combustion of syngas derived from biomass has incurred numerous environmental problems, and syngas chemical looping combustion is environmentally friendly for syngas energy conversion. As a key part of chemical looping combustion, reactor configuration is noticeable. The dynamically operated packed bed reactor is an emerging conception applied to chemical looping combustion. Our attention is paid to the conversion of the oxygen carrier in the packed bed as the limited maximum conversion of the oxygen carrier in a packed bed is unclear. In this paper, the reaction front distribution during iron oxide reduced by CO is firstly proposed on the basis of chemical equilibrium and then validated by the effluent gas profile. Based on the reaction front distribution, the detail of the reduction stage in iron-based chemical looping combustion is analyzed to obtain the characteristics of reaction fronts. The reaction rates of reduction from Fe2O3 to Fe3O4, Fe3O4 to Fe0.947O and Fe0.947O to Fe are 5.280, 3.329 and 4.379 mol m?3 s?1, respectively. And the velocities of reaction front I, II, III are 0.605, 0.326, 0.044 cm min?1, respectively, which demonstrate the reaction front distribution. The methodology established in this paper can be used to study multiple reaction front system in the packed bed reactor.  相似文献   

15.
Soil- and stream-water data from the Plynlimon research area, mid-Wales, have been used to develop a conceptual model of spatial variations in nitrogen (N) leaching within moorland catchments. Extensive peats, in both hilltop and valley locations, are considered near-complete sinks for inorganic N, but leach the most dissolved organic nitrogen (DON). Peaty mineral soils on hillslopes also retain inorganic N within upper organic horizons, but a proportion percolates into mineral horizons as nitrate (NO? 3), either through incomplete immobilisation in the organic layer, or in water bypassing the organic soil matrix via macropores. This NO? 3 reaches the stream where mineral soilwaters discharge (via matrix throughflow or pipeflow) directly to the drainage network, or via small N-enriched flush wetlands. NO? 3 in hillslope waters discharging into larger valley wetlands will be removed before reaching the stream. A concept of catchment ‘nitrate leaching zones’ is proposed, whereby most stream NO? 3 derives from localised areas of mineral soil hillslope draining directly to the stream; the extent of these zones within a catchment may thus determine its overall susceptibility to elevated surface water NO? 3 concentrations.  相似文献   

16.
Two years of continuous measurements of SO2deposition fluxes to moorland vegetation are reported. The mean flux of 2.8 ng SO2 m-2 s-1 is regulated predominantly by surface resistance (r c) which, even for wet surfaces, was seldom smaller than 100 s m-1. The control of surface resistance is shown to be regulated by the ratio of NH3SO2 concentrations with an excess of NH3 generating the small surface resistances for SO2. A dynamic surface chemistry model is used to simulate the effects of NH3 on SO2 deposition flux and is able to capture responses to short-term changes in ambient concentrations of SO2, NH3 and meteorological conditions. The coupling between surface resistance and NH3/SO2 concentration ratios shows that the deposition velocity for SO2 is regulated by the regional pollution climate. Recent long-term SO2 flux measurements in a transect over Europe demonstrate the close link between NH3/SO2 concentrations and rc (SO2). The deposition velocity for SO2 is predicted to have increased with time since the 1970s and imply a 40% increase in v d at a site at which the annual mean ambient SO2 concentrations declined from 47 to 3 g m-3 between 1973 and 1998.  相似文献   

17.
The present study describes the treatment of sugar industry waste water and its use as a potential low cost substrate for production of bioplastic by Bacillus subtilis NG05. The B. subtilis NG05 grow at the rate of 0.14 g h?1 L?1 of production media used and accumulate the 50.1 % of poly β-hydroxybutyrate (PHB). The phase contrast microscopy revealed the presence of PHB granules in B. subtilis NG05 which was further confirmed by Fourier transform infrared spectroscopy and 1H-nuclear magnetic resonance. The polymer was further analysed by differential scanning calorimetry. PHB production yield was achieved up to 4.991 g L?1 with Sugar industry waste water as sole nutrient source. Thus the process provided dual benefits of conversion of a waste material into value added product, PHB and waste management.  相似文献   

18.
In the Beijing area, March and April have the highest frequency of sand-dust weather. Floating dust, blowing sand, and dust storms, primarily from Mongolia, account for 71%, 20%, and 9% of sand-dust weather, respectively. Ambient air monitoring and analysis of recent meteorological data from Beijing sand-dust storm periods revealed that PM10 mass concentrations during dust storm events remained at 1500 μg m−3, which is five to ten times higher than during non-dust storm periods, for fourteen hours on both April 6 and 25, 2000. During the same period, the concentrations in urban areas were comparable to those in suburban areas, while the concentrations of gaseous pollutants, such as SO2, NO x , NO2, and O3, remained at low levels, owing to strong winds. Furthermore, during sand-dust storm periods, aerosols were created that consisted not only of many coarse particles, but also of a large quantity of fine particles. The PM2.5 concentration was approximately 230 μg m−3, accounting for 28% of the total PM10 mass concentration. Crustal elements accounted for 60–70% of the chemical composition of PM2.5, and sulfate and nitrate for much less, unlike the chemical composition of PM2.5 on pollution days, which was primarily composed of sulfates, nitrates, and organic material. Although the very large particle specific surface area provided by dust storms would normally be conducive to heterogeneous reactions, the conversion rate from SO2 to SO4 2− was very low, because the relative humidity, less than 30%, was not high enough.  相似文献   

19.
A chemical survey of 69 high-altitude lakes in seven national parks in the western United States was conducted during the fallof 1999; the lakes were previously sampled during the fall of 1985, as part of the Western Lake Survey. Lakes in parks in the Sierra/southern Cascades (Lassen Volcanic, Yosemite, Sequoia/Kings Canyon National Parks) and in the southern RockyMountains (Rocky Mountain National Park) were very dilute; medianspecific conductance ranged from 4.4 to 12.2 S cm-1 andmedian alkalinity concentrations ranged from 32.2 to 72.9 eqL-1. Specific conductances and alkalinity concentrations were substantially higher in lakes in the central and northernRocky Mountains parks (Grand Teton, Yellowstone, and GlacierNational Parks), probably due to the prevalence of more reactivebedrock types. Regional patterns in lake concentrations of NO3 and SO4 were similar to regional patterns in NO3 and SO4 concentrations in precipitation, suggestingthat the lakes are showing a response to atmospheric deposition.Concentrations of NO3 were particularly high in Rocky Mountain National Park, where some ecosystems appear to be undergoing nitrogen saturation.  相似文献   

20.
More than 85% of the mountainous spruce forest of the Bavarian Forest National Park died after bark beetle attack during the last decade. The elemental budget of intact stands and of different stages after the dieback was investigated. N-fluxes in throughfall of intact stands were lower (12–16 kg ha-1 a-1) than in an earlier study in an intact mountainous spruce stand in the Bavarian Forest National Park and were reduced in the first years after the dieback (3–5 kg N ha-1 a-1). Nitrate-N fluxes by seepage water of intact stands at 40 cm depth, which is below the main rooting zone, were moderate (5–9 kg ha-1 a-1). After the dieback of the stands, NH4 + concentrations were increased in humus efflux as were NO3 - concentrations in mineral soil. Due to the relatively high precipitation, dilution of the elemental concentrations in seepage was considerable.Therefore, NO3 - concentrations were usually below the level of drinking water (806 μmol NO3 - L-1), with lowest concentrations after the snowmelt and highest in autumn. Nitrate concentrations were elevated from the first year until the 7th year after the dieback. Total NO3 --N losses by seepage until the 7th year after the dieback equalled 543 kg N ha-1. Aluminium fluxesafter the dieback were enhanced in the mineral soil from 55 to 503 mmolc m-2 a-1 (average of 8 yr), K+ fluxes from 8 to 37 mmolc m-2 a-1, and Mg2+ fluxes from 13 to 35 mmolc m-2 a-1. The consequences for the nutritional status of the ecosystem, the hydrosphere, and forest management are discussed in the paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号