首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This research investigated the effects of extending the holding time of samples for microbial analysis beyond the standard of 24 hours for purposes such as watershed characterization. Experiments were conducted with both sanitary wastewater and stormwater samples. The refrigerated samples (4 degrees C) were held for up to 9 days before being analyzed for two pathogens (Pseudomonas aeruginosa and Staphylococcus aureus) and five indicator organisms (total coliform, fecal coliform, fecal streptococcus, enterococcus, and Escherichia coli) by membrane filtration. The concentrations (as colony-forming units per 100 mL) were normalized by log10(transformation and used in subsequent statistical analysis testing for significant differences. The results suggested that the concentrations of microorganisms in water samples analyzed on days 1 and 2 did not vary significantly in 8 of 13 analyses. The results of a field study concluded that the concentration of fecal coliform did not change significantly between 7 hours holding time and greater than 24 hours holding time for fecal coliform.  相似文献   

2.
We measured Escherichia coli, Enterococcus spp. and fecal coliform numbers in soil and on fresh potato skins after addition of solid dairy manure and dairy compost with and without alum (Al(2)(SO(4))(3)) treatment 1, 7, 14, 28, 179 and 297 days after application. The addition of dairy compost or solid dairy manure at rates to meet crop phosphorus uptake did not consistently increase E. coli and Enterococcus spp. and fecal coliform bacteria in the soil. We did not detect E. coli in any soil sample after the first sampling day. Seven, 14, 28, 179 and 297 days after solid dairy waste and compost and alum were applied to soil, alum did not consistently affect Enterococcus spp. and fecal coliform bacteria in the soil. We did not detect E. coli in any soil, fresh potato skin or potato wash-water at 214 days after dairy manure or compost application regardless of alum treatment. Dairy compost or solid dairy manure application to soil at rates to meet crop phosphorus uptake did not consistently increase Enterococcus spp. and fecal coliform numbers in bulk soil. Solid dairy manure application to soil at rates to meet crop phosphorus uptake, increased Enterococcus spp. and fecal coliform numbers in potato rhizosphere soil. However, fresh potato skins had higher Enterococcus spp. and fecal coliform numbers when solid dairy manure was added to soil compared to compost, N and P inorganic fertilizer and N fertilizer treatments. We did not find any E. coli, Enterococcus or total coliform bacteria on the exterior of the tuber, within the peel or within a whole baked potato after microwave cooking for 5 min.  相似文献   

3.
The City of Los Angeles Hyperion Treatment Plant (HTP) (California) converted its anaerobic digesters to thermophilic operation to produce Class A biosolids. Phase IV tests demonstrated compliance of a two-stage, continuous-batch process with Alternative 1 of U.S. Environmental Protection Agency 40 CFR Part 503 (U.S. EPA, 1993), which defines the time-temperature requirement for batch treatment (T > or = 56.3 degrees C at 16-h holding). Fecal coliforms, Salmonella sp., viable helminth ova, and enteric viruses were not detected in biosolids in the postdigestion train, including the truck-loading facility and the farm for land application as the last points of plant control where compliance is to be demonstrated. The same results were achieved during Phase V tests, after lowering the second-stage holding temperature to 52.6 degrees C to reduce the elevated methyl mercaptan production that was observed during Phase IV. Hence, the Phase V process complied with Alternative 3 of 40 CFR Part 503. Currently, HTP operates its digesters under the same conditions as tested in Phase V. In 2003, monthly monitoring of the biosolids at the truck-loading facility and the farm for land application demonstrated consistent compliance with Alternative 3.  相似文献   

4.
The U.S. Environmental Protection Agency (U.S. EPA) Part 503 Biosolids Rule requires the fecal coliform (indicator) or Salmonella species (pathogen) density requirements for Class A biosolids to be met at the last point of plant control (truck-loading facility and/or farm for land application). The three Southern Californian wastewater treatment plants in this study produced biosolids by thermophilic anaerobic digestion and all met the Class A limits for both fecal coliforms and Salmonella sp. in the digester outflow biosolids. At two plants, however, a recurrence of fecal coliforms was observed in postdigestion biosolids, which caused exceedance of the Class A limit for fecal coliforms at the truck-loading facility and farm for land application. Comparison of observations at the three plants and further laboratory tests indicated that the recurrence of fecal coliforms can possibly be related to the following combination of factors: (1) incomplete destruction of fecal coliforms during thermophilic anaerobic digestion, (2) contamination of Class A biosolids with fecal coliforms from external sources during postdigestion, (3) a large drop of the postdigestion biosolids temperature to below the maximum for fecal coliform growth, (4) an unknown effect of biosolids dewatering in centrifuges. At Hyperion Treatment Plant (City of Los Angeles, California), fecal coliform recurrence could be prevented by the following: (1) complete conversion to thermophilic operation to exclude contamination by mesophilically digested biosolids and (2) insulation and electrical heat-tracing of postdigestion train for maintaining a high biosolids temperature in postdigestion.  相似文献   

5.
This paper examines bacterial levels and their causes in two Houston bayous (Texas). Buffalo and Whiteoak bayous are two of the most contaminated water bodies in Texas for indicator bacteria, based on the frequency and magnitude of contact recreation water quality exceedances. Examination of historical data indicates frequent exceedances, although some improvement has been made since the 1970s. Statistical analyses showed some correlation between in-stream fecal coliform concentrations and rainfall and with land use. Differences in fecal coliform concentrations were found between high- and low-flow conditions in Whiteoak Bayou, while reservoir releases confounded this relationship in Buffalo Bayou. Wastewater treatment plant effluent was found to make up two-thirds to three-fourths of the median flow in both bayous. Effluent sampling was conducted at 72 of the approximately 140 wastewater treatment plants (WWTPs) in the watersheds, providing evidence that WWTP effluent could act to maintain low-flow concentrations of fecal coliform in the bayous.  相似文献   

6.
Escherichia coli (E. coli), enterococci, and fecal coliform data were collected and compared as potential indicators for swimmablility assessment of a brackish waterbody (Lake Pontchartrain, Louisiana). These indicators were measured during lake background conditions, in stormwater runoff (before dilution with lake water), and in the outfall plume within the lake following storm events. Microbial indicator titers associated with suspended particles and lake-bottom sediments were also investigated. Overall reduction rate constants for fecal coliform, E. coli, and enterococci in lake water and sediment were measured and reported. Attachment of microbial indicators to suspended matter and subsequent sedimentation appeared to be a significant fate mechanism. A slower reduction rate of indicator organisms in sediment further suggested that bottom sediment may act as a reservoir for prolonging indicator organism survival and added concern of recontamination of overlaying waters due to potential solids resuspension. Results indicated that enterococci might be a more stable indicator than E. coli and fecal coliform and, consequently, a more conservative indicator under brackish water conditions.  相似文献   

7.
Municipal wastewater treatment using novel constructed soil filter system   总被引:1,自引:0,他引:1  
Kadam A  Oza G  Nemade P  Dutta S  Shankar H 《Chemosphere》2008,71(5):975-981
The study gives a new approach for contaminant removal from municipal wastewater using constructed soil filter (CSF) and presents performance of two CSF units located in Mumbai, India. In this system, natural weathered rock is formulated which combines sedimentation, infiltration and biochemical processes to remove suspended solids and oxidisable organics and inorganics of the wastewater. Results show elevated dissolved oxygen (DO) levels, removal of COD (136-205 to 38-40 mg l(-1)) and BOD (80-125 to less than 12 mg l(-1)) suspended solids from 135-203 to 13-18 mg l(-1) and turbidity from 84-124 to 8-11 NTU, bacterial removal of 2.4-3.1 log order for Total coliform and Fecal coliform from site I which is almost 8 years old facility, and site II which is 3 years old. Estimated hydraulic retention time of 0.5-1.0 h, hydraulic loading of 0.036-0.047 m(3)m(-2)h(-1), no pretreatment, high DO levels in the effluent, no bio-sludge production, no mechanical aeration, low energy requirement (0.04 kW h m(-3)) and green aesthetic ambience are its unique features.  相似文献   

8.
We conducted kinetic batch experiments to determine the reduction of Chromium(VI) by a type strain of Shewanella alga (BrY-MT) ATCC 55627. Chromium(VI) was reduced to Chromium(III) by BrY-MT grown in three different substrates: BHIB (brain heart infusion broth), TSB (tryptic soy broth), and M9 (minimum broth). Four different Cr(VI) concentrations 4.836, 10.00, 37.125, and 260.00 mg l-1 were reduced at different rates by BrY-MT in both aerobic and anaerobic conditions. BrY-MT grown in BHIB reduced the maximum amount of Cr(VI) followed by TSB and M9. Carbondioxide produced from bacterial respiration varied with and without Cr(VI) under both aerobic and anaerobic conditions. The Cr(VI) reduction data under anaerobic condition was fitted by a monod model to determine the bacterial kinetic parameters. The kinetic parameters determined by fitting the anaerobic experimental data were used to run a forward simulation for experiments conducted under aerobic conditions. The monod model was modified to account for an inhibition parameter for the Cr(VI) experiment at 260 mg l-1. All the parameters varied within a narrow range, and were distinct for different substrates. Our studies show that, successful in situ bioremediation of Cr(VI) is depended on the type of substrates (electron donors) and the concentration of Cr(VI) in geologic medium.  相似文献   

9.
In the present study, the toxic effects of 2,4-dinitrotoluene (2,4-DNT), 2,6-dinitrotoluene (2,6-DNT) and a selection of their respective metabolites were examined and compared to 2,4,6-trinitrotoluene (TNT) using the 15-min Microtox (Vibrio fischen) and 96-h freshwater green alga (Selenastrum capricomutum) growth inhibition tests. All of the compounds tested were less toxic than TNT. Using the Microtox assay, 2,6-DNT was more toxic than 2,4-DNT and the order of toxicity for 2,6-DNT and its metabolites was: 2,6-DNT > or = 2A-6NT > 2,6-DAT; whereas that for 2,4-DNT was: 4A-2NT > 2A-4NT > 2,4-DNT > 2,4-DAT. For the algal test, 2,4-DNT was more toxic than 2,6-DNT and the order of toxicity for 2,4-DNT and its metabolites was: 2,4-DNT > 2,4-DAT approximately equal to 4A-2NT = 2A-4NT. The order of toxicity for 2,6-DNT and its reduced metabolites using the algal test was very similar to the Microtox bioassay. These results demonstrate that the reduced metabolites of 2,6-DNT tested in this study were less toxic than that of the parent compound, but certain partially reduced metabolites of 2,4-DNT can be more toxic than the parent molecule. These data put into question the general hypothesis that reductive metabolism of nitro-aromatics is associated with a sequential detoxification process.  相似文献   

10.
The goal of this research was to demonstrate the ability to achieve Class A pathogen standards in nonthermophilic acid digesters. It was proposed that the key mechanism responsible for fecal coliform inactivation was the presence of un-ionized volatile fatty acids. Lab-scale acid digesters were assembled and operated in a batch mode for 5 days at mesophilic (38 degrees C) and low-mesophilic (21 degrees C) temperatures and at different solids concentrations. The key factor recognized for successful pathogen inactivation was pH, which is also the main factor driving the shift in organic acids toward the un-ionized form. Compared to conventional mesophilic acid digestion, low-mesophilic acid digestion was effective in fecal coliform inactivation because the process maintained lower pH throughout the duration of the experiment, offered continuous release of organic acids, and showed higher concentrations of organic acids in un-ionized form, including acetate, propionate, butyrate, and valerate.  相似文献   

11.
Abstract

The objective of this study was to evaluate the efficacy of oral sodium chlorate administration on reducing total coliform populations in ewes. A 30% sodium chlorate product or a sodium chloride placebo was administered to twelve lactating Dorper X Blackbelly or Pelibuey crossbred ewes averaging 65 kg body weight. The ewes were adapted to diet and management. Ewes were randomly assigned (4/treatment) to one of three treatments which were administered twice daily by oral gavage for five consecutive days: a control (TC) consisting of 3 g sodium chloride/animal/d, a T3 treatment consisting of 1.8 g of sodium chlorate/animal/d, and a T9 treatment consisting of 5.4 g sodium chlorate/animal/d; the latter was intended to approximate a lowest known effective dose. Ruminal samples collected by stomach tube and freshly voided fecal samples were collected daily beginning 3 days before treatment initiation and for 6 days thereafter. Contents were cultured quantitatively to enumerate total coliforms. There were no significant differences in total coliform numbers (log10 cfu/g) in the feces between treatments (P = 0.832). There were differences (P < 0.02) in ruminal coliform counts (log10 cfu/mL) between treatments (4.1, 4.3 and 5.0 log10/mL contents in TC, T3 and T9 Treatments, respectively) which tended to increase from the beginning of treatment until the 5th day of treatment (P < 0.05). Overall, we did not obtain the expected results with oral administration of sodium chloride at the applied doses. By comparing the trends in coliform populations in the rumen contents in all treatments, there was an increase over the days. The opposite trend occurred in the feces, due mainly to differences among rumen contents and feces in ewes administered the T9 treatment (P = 0.06). These results suggest that the low chlorate doses used here were suboptimal for the control of coliforms in the gastrointestinal tract of ewes.  相似文献   

12.
Animal wastes are a major contributor of nutrients and enteric microorganisms to surface water and ground water. Polyacrylamide (PAM) mixtures are an effective flocculent, and we hypothesized that they would reduce transport of microorganisms in flowing water. After waste water running at 60.0 1 min(-1) flowed over PAM + Al2(SO4)3, or PAM + CaO in furrows, total coliform bacteria (TC) and fecal coliform bacteria (FC) were reduced by 30-50% at 1 and 50 m downstream of the treatments compared to the control. In a column study, PAM + Al2(SO4)3, and PAM + CaO applied to sandy, sandy loam, loam, and clay soils reduced NH4+ and ortho-P concentrations in leachate compared to the source waste water and the control. PAM + Al2(SO4)3 and PAM + CaO applied to sandy, sandy loam and loam soils reduced both total and ortho-P, concentrations in leachate compared to he source wastewater and control treatment. In a field study, PAM + Al2(SO4)3, or PAM + CaO treatments did not consistently reduce NH4+, NO3-, ortho-P, and total P concentrations in wastewater flowing over any soil compared to inflow wastewater or the control treatment. With proper application PAM + Al2(SO4)3 and PAM + CaO may be able to reduce the numbers of enteric bacteria in slowly flowing wastewater running off animal confinement areas, reducing the amount of pollutants entering surface water and groundwater.  相似文献   

13.
Indicators have been used for many years to designate the microbiological quality of water. In 1914, the U.S. Public Health Service set a standard that required that drinking water show no evidence of coliform organisms (U.S. Treasury Department, 1914). Today, almost 100 years later, drinking waters in the United States must meet the standards established in the Total Coliform Rule, which requires that drinking water show no evidence of the presence of total coliform bacteria in 100 mL of water (U.S. EPA, 1989). However, as limitations with the use of coliforms have become apparent and the applications for indicator microorganisms have expanded, new indicators have been proposed and, in some cases, adopted, for specific purposes, as discussed in detail in a number of recent reports (i.e., National Research Council, 2004; World Health Organization, 2003).  相似文献   

14.
This study examines urban pollution within Derechos Humanos, a colonia popular in Matamoros, Tamaulipas, Mexico. General water quality indicators (coliform bacteria, total dissolved solids, ecologically relevant cations and anions), heavy metals (copper, lead, nickel, zinc, iron and cadmium), and volatile organic compounds (benzene, toluene, ethylbenzene, styrene, and dichlorobenzene and xylene isomers) were quantified within a wastewater canal running adjacent to the community. Water samples were collected at multiple sites along the banks of the canal and evidence of anthropogenic emissions existed at each sampling location. Sample site 2, approximately 10 m upstream of the colonia, contained both the widest range of hazardous pollutants and the greatest number exceeding US Environmental Protection Agency surface water standards. At each sampling location, high concentrations of total coliform (> 10(4) colonies/100 mL sample), lead (ranging from 0.05 to 0.40 mg/L), nickel (levels from 0.21 to 1.45 mg/L), and benzene (up to 9.80 mg/L) were noted.  相似文献   

15.
Lee BD  Hosomi M 《Chemosphere》2001,43(8):1127-1132
In order to mitigate the strong microbial resistance of benz(a)anthracene [B(a)A] in soil, a hybrid treatment of Fenton oxidation followed microbial culture was carried out. Based on optimal Fenton oxidation, i.e., 1.0 ml of ethanol, 0.2 ml of 0.5 M Fe2+, and 0.3 ml of 30% H2O2 per 1 g of 500 mg B(a)A/kg soil, about 43% of B(a)A-7,12-dione was generated during oxidation of 97% B(a)A. When the comparative biodegradability between B(a)A-contaminated soil and B(a)A-contaminated soil after Fenton oxidation was examined, it was found that 98% of B(a)A-7,12-dione degraded after 63 d in comparison with only 12% of B(a)A over the same period; results demonstrating that Fenton oxidation enhances biodegradability of B(a)A through B(a)A-7,12-dione.  相似文献   

16.
The survival of faecal and total coliform bacteria and Streptococcus faecalis (indicator bacteria) were monitored in experimental plots receiving various amounts of biological or dephosphatation municipal sewage sludge. Biological sludge was applied on coniferous and mixed regenerative forest soils. The results show that except for total coliforms, there was little significant treatment effect on the indicator bacteria numbers in all of the sites. In most cases, there was a significant time effect, indicating that bacterial populations vary over time, according to environmental factors such as temperature, moisture or nutrient level conditions. In total coliform bacteria, populations varied over time but also in function of treatment levels. The present study suggests that even if the standards of Québec (Canada) for sludge application are respected, there may be some risk for bacterial contamination depending on the types of sewage sludge and forest habitat. Although there is only a short-term effect, high slopes can influence the movement of the indicator bacteria and may potentially cause some contamination problems.  相似文献   

17.
Anaerobically digested swine manure (ADSM) generally contains high concentrations of zinc (Zn) and copper (Cu). These metals levels exceed the land application regulations of municipal biosolids of many European countries and are on the borderline of exceptional quality in the U.S. Environmental Protection Agency (U.S. EPA) 40 CFR part 503 standards. From this perspective, a series of batch tests were conducted to evaluate the feasibility of bioleaching of Zn and Cu from ADSM so that the produced biosolids could safely be applied to land. The effect of different substrate levels (sulfur) and total solids content (as high as 9%) on metal solubilization was investigated. The results showed that metal solubilization efficiency for both Zn and Cu declined significantly with an increase in total solids from 3 to 6% and then to 9% at the same substrate level. Metal solubilization increased proportionately with increases in substrate concentration up to 6% of total solids content. However, at 9% total solids content, metal solubilization was insignificant at all substrate levels tested. At a 6% total solids level and 10 000 mg/L of substrate, 94% of Zn and 72% of Cu were solubilized. Bioleaching was also found to be effective in destruction of pathogens with approximately 2.5 log-scale reduction. The residual biosolid was found to meet the Class A biosolids standands of U.S. EPA 40 CFR part 503.  相似文献   

18.
Gamma radiation was found to be an effective tool for hygienization of municipal wastewater sludge. The sludge received from the primary settling tank of a municipal wastewater treatment plant was gamma irradiated using a cobalt-60 source in a sludge hygienization research irradiator. The process parameters were adjusted to effectively eliminate coliform bacteria in the sludge and to prevent their regrowth. Irradiated sludge was found to be free of fecal coliform and could be directly disposed after drying in a landfill or used as manure. It could also be used as a medium for growth of Rhizobium sp for obtaining a bio-fertilizer.  相似文献   

19.
Disinfection of wastewater solids (waste activated solids [WAS]) by interstitial vapor generation was investigated. In addition to the magnitude of disinfection, the amount of water removed and cost relative to traditional residuals disinfection processes was also examined. The process of interstitial vapor generation occurs as a result of the rapid heating of liquid in the interstices of the solid-liquid array. Intense heating causes boiling of the slurry liquid, resulting in an expanding vapor front that simultaneously dewaters the wastewater solids and contributes to the destruction of viable pathogenic microorganisms. Objectives of the study were threefold: (1) to validate disinfection of WAS using the interstitial vapor technique; (2) establish the degree of possible drying of the residuals using the techniques; and (3) establish the key operating variables for the process. Results showed a significant reduction in the most probable number of total coliforms and Escherichia coli (E. coli). Specifically, greater than four-log unit reductions were produced for both total coliform and E. coli bacteria. In addition to quantifying the reduction in bacteria, the percent solids were increased from an initial amount of 7.6% (mass basis) to a final solids content greater than 90% using optimal processing conditions. Cost comparisons were also conducted and shown to be quite favorable when compared with traditional disinfection methods such as lime addition. Because of the high level of E. coli reduction achieved, the process of interstitial vapor generation is shown to be capable of converting a class B biosolids into a class A pathogen reduced product. For example, an initial most probable number (MPN) of 1.2 x 10(6) E. coli bacteria were reduced to 19 at the extreme conditions of the process, well below the requirement of an MPN of 1000 for fecal coliform bacteria. Given its ability to disinfect and dewater wastewater solids, the interstitial vapor generation process was found to be a robust and beneficial technique to produce an environmental and publicly acceptable recyclable biosolids resource.  相似文献   

20.
The performance of various algal indices to document improvements in water quality across a low nutrient concentration gradient was assessed during 2 years in the St Lawrence River (Quebec, Canada). Water-quality variables and periphyton samples were collected on navigational buoys near Montreal during the spring, summer and fall of 1994 and 1995. Exposure to urban wastewater varied widely within the sector surrounding the island of Montreal, with some areas upstream receiving no direct effluents and areas further downstream receiving treated and untreated wastewater. Faecal coliform concentrations provided a good tracer of effluents and were significantly correlated to nutrient concentrations (r = 0.33-0.72, p < 0.001) and water transparency (r = 0.70, p < 0.001). Despite a strong gradient in faecal coliform concentration (< 2 to > 20 000 UFC/100 ml), algal biomass and diversity did not reflect differences between sites with varying levels of urban wastewater. Taxonomic composition of periphyton communities, particularly the presence of the cyanophyte Plectonema notatum Schmidle, was related (r = 0.48, p = 0.004) to exposure to urban effluents. Variables describing seasonal changes (temperature, Julian day, river discharge, conductivity, NO2-NO3) explained a large fraction of total variance (38-52% of total variance) and thus exerted the predominant influence on algal biomass and species composition in the St Lawrence River. Variables describing the presence of effluents explained 1-22% of the variance in compositional data. Subtle changes in periphyton species composition were the only response to different levels of exposure to urban wastewater in the Montreal area, which represented relatively small differences in comparison to natural seasonal variability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号