首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Reed DC  Rassweiler A  Arkema KK 《Ecology》2008,89(9):2493-2505
Net primary production (NPP) is influenced by disturbance-driven fluctuations in foliar standing crop (FSC) and resource-driven fluctuations in rates of recruitment and growth, yet most studies of NPP have focused primarily on factors influencing growth. We quantified NPP, FSC, recruitment, and growth rate for the giant kelp, Macrocystis pyrifera, at three kelp forests in southern California, U.S.A., over a 54-month period and determined the relative roles of FSC, recruitment, and growth rate in contributing to variation in annual NPP. Net primary production averaged between 0.42 and 2.38 kg dry mass x m(-2) x yr(-1) at the three sites. The initial FSC present at the beginning of the growth year and the recruitment of new plants during the year explained 63% and 21% of the interannual variation observed in NPP, respectively. The previous year's NPP and disturbance from waves collectively accounted for 80% of the interannual variation in initial FSC. No correlation was found between annual growth rate (i.e., the amount of new kelp mass produced per unit of existing kelp mass) and annual NPP (i.e., the amount of new kelp mass produced per unit area of ocean bottom), largely because annual growth rate was consistent compared to initial FSC and recruitment, which fluctuated greatly among years and sites. Although growth rate was a poor predictor of variation in annual NPP, it was principally responsible for the high mean values observed for NPP by Macrocystis. These high mean values reflected rapid growth (average of approximately 2% per day) of a relatively small standing crop (maximum annual mean = 444 g dry mass/m2) that replaced itself approximately seven times per year. Disturbance-driven variability in FSC may be generally important in explaining variation in NPP, yet it is rarely examined because cycles of disturbance and recovery occur over timescales of decades or more in many systems. Considerable insight into how variation in FSC drives variation in NPP may be gained by studying systems such as giant kelp forests that are characterized by frequent disturbance and rapid rates of growth and recruitment.  相似文献   

2.
Assemblages of macroalgae are believe to be among the most productive ecosystems in the world, yet difficulties in obtaining direct estimates of biomass and primary production have led to few macroalgal data sets from which the consequences of long-term change can be assessed. We evaluated the validity of using two easily measured population variables (frond density and plant density) to estimate the more difficult to measure variables of standing crop and net primary production (NPP) in the giant kelp Macrocystis pyrifera off southern California. Standing crop was much more strongly correlated to frond density than to plant density. Frond density data collected in summer were particularly useful for estimating annual NPP, explaining nearly 80% of the variation in the NPP from year to year. Data on frond densities also provided a relatively good estimate of seasonal NPP for the season that the data were collected. In contrast, estimates of seasonal and annual NPP derived from plant density data were less reliable. These results indicate that data on frond density collected at the proper time of year can make assessments of NPP by giant kelp more tractable. They also suggest that other easily measured variables that are strongly correlated with standing crop, such as surface canopy area, might serve as similarly useful proxies of NPP.  相似文献   

3.
We took advantage of regional differences in environmental forcing and consumer abundance to examine the relative importance of nutrient availability (bottom-up), grazing pressure (top-down), and storm waves (disturbance) in determining the standing biomass and net primary production (NPP) of the giant kelp Macrocystis pyrifera in central and southern California. Using a nine-year data set collected from 17 sites we show that, despite high densities of sea urchin grazers and prolonged periods of low nutrient availability in southern California, NPP by giant kelp was twice that of central California where nutrient concentrations were consistently high and sea urchins were nearly absent due to predation by sea otters. Waves associated with winter storms were consistently higher in central California, and the loss of kelp biomass to winter wave disturbance was on average twice that of southern California. These observations suggest that the more intense wave disturbance in central California limited NPP by giant kelp under otherwise favorable conditions. Regional patterns of interannual variation in NPP were similar to those of wave disturbance in that year-to-year variation in disturbance and NPP were both greater in southern California. Our findings provide strong evidence that regional differences in wave disturbance overwhelmed those of nutrient supply and grazing intensity to determine NPP by giant kelp. The important role of disturbance in controlling NPP revealed by our study is likely not unique to giant kelp forests, as vegetation dynamics in many systems are dominated by post-disturbance succession with climax communities being relatively uncommon. The effects of disturbance frequency may be easier to detect in giant kelp because it is fast growing and relatively short lived, with cycles of disturbance and recovery occurring on time scales of years. Much longer data sets (decades to centuries) will likely be needed to properly evaluate the role of disturbance relative to other processes in determining patterns of NPP in other systems.  相似文献   

4.
The mass mortality by disease of a localized population of sea urchins, Strongylocencrotus franciscanus, on the seaward side of a kelp forest was followed by the rapid seaward expansion of 4 species of brown algae, Macrocystis pyrifera, Laminaria dentigera, Pterygophora california, and to a lesser extent, Nereocystis leutkeana. One other brown alga, Cystoseira osmundacea, failed to become established in the newly available area. Competition among M. pyrifera, L. dentigera, P. californica, and N. Leutkeana apparently was severe, and within 1 year after the demise of the sea urchins, M. pyrifera formed a dense, nearly monospecific stand. Experimental removal of M. pyrifera demonstrated that the canopy of these plants limited light penetration to levels below that necessary for the growth and survival of other brown and red algae.  相似文献   

5.
White JW  Caselle JE 《Ecology》2008,89(5):1323-1333
While there is great interest in the degree to which local interactions "scale-up" to predict regional patterns of abundance, few studies in marine systems have simultaneously examined patterns of abundance at both the large scale (tens of kilometers) typical of larval movement and the small scale (meters) typical of post-settlement interactions. We addressed this gap by monitoring larval supply, adult survivorship, and giant kelp (Macrocystis pyrifera, a primary habitat-forming species) abundance for 13 populations of kelp bass (Paralabrax clathratus) spread over approximately 200 km in the Santa Barbara Channel, California, USA. At the small, within-site scale, both recruitment and adult survivorship of kelp bass were density-dependent and positively related to kelp abundance. At the larger, among-site scale, the spatial pattern of adult kelp bass abundance was predicted well by the pattern of kelp bass larval supply, but there was a consistent negative spatial relationship between kelp abundance and kelp bass larval supply despite the positive effects of kelp on kelp bass at the smaller spatial scale. This large-scale negative relationship was likely a product of a channel-wide spatial mismatch between oceanographic conditions that favor kelp survival and those that concentrate and distribute fish larvae. These results generally support the recruit-adult hypothesis: kelp bass populations are limited by recruitment at low recruit densities but by density-dependent competition for food resources and/or predator refuges at high recruit densities. At the same time, spatial variation in kelp abundance produced substantial spatiotemporal heterogeneity in kelp bass demographics, which argues for a multispecies, metacommunity approach to predicting kelp bass dynamics.  相似文献   

6.
We examined the distribution and abundance of organisms on subtidal rocky reefs at nine sites around the Chatham Islands, a remote group 780 km east of southern New Zealand. We sampled five depth strata ranging from 1 to<16 m to identify spatial patterns in the abundance of algae and invertebrates and to assess their variation within and among sites. This information is used to discuss hypotheses concerning community structure at this remote locality. Several patterns were apparent. The immediate subtidal was occupied by the southern bull kelp Durvillaea spp. A suite of 11 fucalean species were dominant to a depth of 10 m with an average abundance of 28 m-2, while one species, Carpophyllum flexuosum, occurred mostly in deeper water. Only two laminarian species of algae were present at the islands. The indigenous Lessonia tholiformis was abundant at 2.5 to 15 m and was not found in deeper water, while the giant kelp Macrocystis pyrifera was abundant at two sites in 12 to 18 m. The commercially valuable abalone Haliotis iris was extremely abundant in shallow water, with an overall mean of 6 m-2 at 5 m. The sea urchin Evechinus chloroticus was common, but reached high densities only in small (<25 m2) patches. The characteristic urchin-dominated zones reported in kelp beds world-wide were not seen. There was considerable site-to-site variation in the occurrence and abundance of individual species. Some differences between sites were associated with shelter from swell (e.g. M. pyrifera was found only in sheltered sites) and physical habitat (e.g. juvenile H. iris were found only beneath boulders inshore), but much of the variation could not be explained by physical or depth-related factors alone. We hypothesize that the differences in these kelp bed assemblages compared to mainland New Zealand are partially due to the high degree of endemism at the Chatham Islands. Local variation cannot be explained by herbivory, and is most likely the result of the various life-history characteristics of the major habitat-forming species, the large brown algae.  相似文献   

7.
The variation patterns of phytoplankton standing crop and productivity in the North Adriatic frontal region and the relative importance of pico-, nano-, micro-phytoplankton are shown. Data of standing crop (chlorophyll a - Chl a ) and productivity ( 14 C assimilation) and PAR radiation ( w Em m 2 r s m 1 ) were collected during the four oceanographic cruises of the PRISMA II project. Average standing crop and productivity in the study area were 1.41 - 0.42 r mg r m m 3 Chl a and 1.23 - 0.37 r mg r C r m m 3 r h m 1 ; average assimilation number (P/B) was 0.872 - 0.589 r mg r C (mg-Chl a ) m 1 h m 1 and average photosynthetic efficiency (PE) was 0.020 - 0.054 (mg r C(mg-Chl a ) m 1 r h m 1 ) [ w Em m 2 r s m 1 ] m 1 . Phytoplankton biomass and productivity showed significant patterns of variation with the distance from the coast, with increasing depth and decreasing light intensity. The same patterns were shown by the three phytoplankton size classes. The spatio-temporal variations were significantly larger within the microplankton than within the pico- and nano-plankton size classes. Planktonic guilds were dominated by picoplankton, both as standing crop and productivity, in the northern stations (0.539 - 0.21 r mg r m m 3 Chl a and 0.572 - 0.25 r mg r C r m m 3 r h m 1 ) and in those more offshore, while microplankton was more important in the coastal and southern stations (0.727 - 0.58 r mg r m m 3 Chl a and 0.63 - 0.28 r mg r C r m m 3 r h m 1 ). In relative terms, picoplankton accounts for the 53% and 46% of biomass and primary production, while the microplankton account for the 43.6% and 48%. Assimilation number and photosynthetic efficiency did not show spatio-temporal variations but PE was inversely related with PAR radiation for all the size classes. Data suggest that the spatio-temporal patterns observed in this study are affected by the competitive relationships among body size classes in the phytoplankton guilds.  相似文献   

8.
Kelp regeneration was observed for the first time in St. Margaret's Bay, Nova Scotia, Canada in an area known to have been devoid of macroalgae for several years. The regeneration was destroyed by sea urchins within 10 months. Experimentally induced kelp regeneration met a similar fate under normal grazing pressure. At the lowest sea urchin biomass and density encountered re-establishment of mature kelp stands seems highly unlikely. The sea urchin population required to suppress kelp regeneration is fed by benthic microalgae. Diatoms and other pioneer algal community species were found in the guts of sea urchins. The mean standing crop of benthic microalgae was found to be, 2.2 g C m-2 and production estimated as ca 15 g C m-2yr-1 at 8m depth. Most of the primary production of St. Margaret's Bay has been lost with the disappearing kelp populations.  相似文献   

9.
Net primary production of Chinese croplands from 1950 to 1999.   总被引:5,自引:0,他引:5  
Considerable efforts have been made to assess the contribution of forest and grassland ecosystems to the global carbon budget, while less attention has been paid to agriculture. Net primary production (NPP) of Chinese croplands and driving factors are seldom taken into account in the regional carbon budget. We studied crop NPP by analyzing the documented crop yields from 1950 to 1999 on a provincial scale. Total NPP, including estimates of the aboveground and belowground components, was calculated from harvested yield data by (1) conversion from economic yield of the crop to aboveground mass using the ratio of aboveground residue production to the economic yield, (2) estimation of belowground mass as a function of aboveground mass, and (3) conversion from total dry mass to carbon mass. This approach was applied to 13 crops, representing 86.8% of the total harvested acreage of crops in China. Our results indicated that NPP in Chinese croplands increased markedly during this period. Averaging for each decade, the amount of NPP was 146 +/- 32, 159 +/- 34, 260 +/- 55, 394 +/- 85, and 513 +/- 111 Tg C/yr (mean +/- SD) in the 1950s, 1960s, 1970s, 1980s, and 1990s, respectively. This increase may be attributed to synthetic fertilizer application. A further investigation indicated that the climate parameters of temperature and precipitation determined the spatial variability in NPP. Spatiotemporal variability in NPP can be well described by the consumption of synthetic fertilizer and by climate parameters. In addition, the total amount of residue C and root C retained by the soils was estimated to be 618 Tg, with a range from 300 to 1040 Tg over the 50 years.  相似文献   

10.
The species and distribution of nematodes on the kelp Macrocystic integrifolia Bory, in the Bamfield region of Barkley Sound, British Columbia, Canada were examined. Nine species (belonging to six families) of nematodes were found on the kelp blades. Three species (Monhystera disjuncta, M. refringens and Prochromadorella neapolitana) comprised 91–99% of the nematode fauna and occurred in all monthly samples from July 1978 to November 1979. The three dominant species exhibited seasonal density differences. P. neapolitana occurred mostly in the summer, M. refringens abundance peaked from July to October and M. disjuncta was relatively abundant throughout the year. The other species contributed little to the overall abundance and distribution patterns. All three species occurred in greatest abundance on the lower and middle blades of M. integrifolia in the deep end of the kelp bed. Very few individuals occurred on the upper blades. Nematode distribution on M. integrifolia appeared to be related to blade age and the associated food sources on the blade.  相似文献   

11.
Brown algal polyphenolic compounds are secondary metabolites whose functions may include protecting plants from pathogens or damage by UV radiation, and deterring feeding by herbivores. We present here the first analysis of spatial variation (at scales from tens of meters to hundreds of kilometers) in concentration of these compounds in two orders of brown algae from the northeastern Pacific Ocean. In kelps (order Laminariales), variation among sites was significant in only 25% of species examined and was consistent within families (high in the Alariaceae and low in the Laminariaceae and Lessoniaceae). In rockweeds (order Fucales, family Fucaceae), site variation was high in three of four species examined. Both the proportion of high polyphenolic kelp species and the magnitude of spatial variation within species from both kelps and rockweeds were much higher than would have been predicted from previous studies in other regions. In one kelp (Laminaria groenlandica), significant differences between sites occurred at scales of only tens of meters. No latitudinal clines were observed. Differences in phenolic concentrations of kelps spanned nearly an order of magnitude in one species, Hedophyllum sessile. Phenolic levels were significantly higher in members of the Fucales than the Laminariales, but showed no significant differences between intertidal and subtidal species. Received: 22 July 1996 / Accepted: 26 October 1998  相似文献   

12.
Abstract: The Everglades in southern Florida, U.S.A., is a major focus of conservation activities. The freshwater wetlands of the Everglades do not have high species richness, and no species of threatened aquatic animals or plants live there. We have, however, identified a distinctive ecological feature of the Everglades that is threatened by canal construction, draining, and nutrient enrichment from agricultural runoff. Compared to values reported from other freshwater systems, standing stocks of periphyton in relatively undisturbed areas of the Everglades were unusually high, and standing stocks of invertebrates and fish were unusually low. Averaging data gathered from nine sites and five sampling periods spanning 1 year, we found that periphyton standing crop was 88.2 g/m2 (ash-free dry mass), invertebrate standing stock was 0.64 g/m2 (dry mass), and fish standing stock was 1.2 g/m2 (dry mass of large and small species combined). We found that fish standing stocks were much higher in phosphorus-enriched sites than in nearby reference sites but that invertebrate standing stocks were similar in enriched and reference sites. Our results support the notion that oligotrophy is at least partially responsible for the low standing stocks of fish, but they also suggest that species interactions and a paucity of deep-water refugia are important. Anthropogenic eutrophication in Everglades marshes will lead to the loss of distinctive ecosystem features. A focus on species richness and "hot spots" of threatened species provides no basis for conservation of ecosystems like the Everglades. If oligotrophic ecosystems often have low species richness, they will be underrepresented in preservation networks based on some common criteria for establishing conservation priorities.  相似文献   

13.
An adult giant kelp plant (Macrocystis pyrifera), moved from an inshore kelp forest to an offshore, low-nitrogen environment near Santa Catalina Island, California (USA), maintained growth for 2 wk on internal nitrogen reserves. Frond elongation rates decreased significantly during the third week, and plant growth rate (wet wt) dropped from an initial inshore rate of 3.6 to 0.9% d-1. During this 3 wk period, nitrogen contents and free amino acid concentrations decreased, while mannitol and dry contents increased in frond tissues. After depletion of internal nitrogen reserves, the nitrogen content of lamina and stipe tissues averaged 1.1 and 0.7% dry wt, respectively. The experimental plant was exposed to higher ambient nitrogen concentrations during the last 2 wk. Rates of frond elongation and plant growth increased, but nitrogen content and amino acids in frond tissues remained low. Of the total nitrogen contained in frond tissue of the plant before transplantation, 58% was used to support growth in the absence of significant external nitrogen supply. Amino acids constituted a small proportion of these internal nitrogen reserves. Net movement of nitrogen occurred within large fronds, but not between different frond size classes. The nitrogen content of holdfast tissue remained relatively constant at 2.4% dry wt and accounted for 18 to 29% of the total nitrogen. Holdfast nitrogen was not used to support growth of nitrogen-depleted fronds. In comparison to Laminaria longicruris, which is adapted to long seasonal periods of low nitrogen availability, M. pyrifera has small nitrogen-storage capacity. However, internal reserves of M. pyrifera appear adequate to make nitrogen starvation uncommon in southern California kelp forests.  相似文献   

14.
《Ecological modelling》2005,186(2):178-195
A plant–soil nitrogen (N) cycling model was developed and incorporated into the Integrated BIosphere Simulator (IBIS) of Foley et al. [Foley, J.A., Prentice, I.C., Ramankutty, N., Levis, S., Pollard, D., Sitch, S., Haxeltine, A., 1996. An integrated biosphere model of land surface process, terrestrial carbon balance and vegetation dynamics. Global Biogeochem. Cycles 10, 603–628]. In the N-model, soil mineral N regulates ecosystem carbon (C) fluxes and ecosystem C:N ratios. Net primary productivity (NPP) is controlled by feedbacks from both leaf C:N and soil mineral N. Leaf C:N determines the foliar and canopy photosynthesis rates, while soil mineral N determines the N availability for plant growth and the efficiency of biomass construction. Nitrogen controls on the decomposition of soil organic matter (SOM) are implemented through N immobilization and mineralization separately. The model allows greater SOM mineralization at lower mineral N, and conversely, allows greater N immobilization at higher mineral N. The model's seasonal and inter-annual behaviours are demonstrated. A regional simulation for Saskatchewan, Canada, was performed for the period 1851–2000 at a 10 km × 10 km resolution. Simulated NPP was compared with high-resolution (1 km × 1 km) NPP estimated from remote sensing data using the boreal ecosystem productivity simulator (BEPS) [Liu, J., Chen, J.M., Cihlar, J., Park, W.M., 1997. A process-based boreal ecosystem productivity simulator using remote sensing inputs. Remote Sens. Environ. 44, 81–87]. The agreement between IBIS and BEPS, particularly in NPP spatial variation, was considerably improved when the N controls were introduced into IBIS.  相似文献   

15.
We studied the growth patterns and the stable oxygen isotopic composition of an individual of Pentapora foliacea (Ellis and Solander 1786) collected on October 6, 1978 from the Bristol Channel, Pembrokeshire, UK, Irish Sea. The stable oxygen isotopes are in equilibrium with the ambient seawater and show a marked seasonal variation reflecting seasonal water temperature changes. The stable oxygen isotopes further suggest that regular growth patterns of less calcified growth bands, which are secreted in winter, are perennial. These winter growth check lines can easily be used to determine longevity of these bryozoa colonies and of annual growth rates. The colony analysed is at least 3-years-old with an annual growth rate of approximately 2 cm per year.  相似文献   

16.
Competition, resources, and vegetation during 10 years in native grassland   总被引:1,自引:0,他引:1  
Wilson SD 《Ecology》2007,88(12):2951-2958
A 10-year experiment tested for variation in competition intensity over time in a natural grassland at the northern edge of the Great Plains. Growing-season precipitation varied fivefold during the study. All ecosystem-level variables varied significantly among years, and most covaried in expected ways. The covers of all common grasses possessing the C3 photosynthetic pathway varied significantly among years; in contrast, all common species with traits associated with drought tolerance (a C4 grass, a lichen, a spikemoss, and a subshrub) did not vary. Annual transplant experiments measured the competitive effects of neighbors on the growth of individuals of the native grass Bouteloua gracilis. A significant interaction between year and competition showed that competition intensity varied among years. The size of this effect, however, was small (eta2 = 0.074) relative to the size of the direct effect of competition (eta2 = 0.20) or the year in which the experiment was conducted (eta2 = 0.51). Further, competition intensity was not significantly related to any variable describing standing crop or resources, or species richness. Species richness was highest in years with high precipitation, standing crop, and individual growth, due to the recruitment of rare species that were absent from dry years. In summary, variation in competition intensity was statistically significant but had small effects relative to the direct effects of climate.  相似文献   

17.
Net primary production (NPP), the difference between CO2 fixed by photosynthesis and CO2 lost to autotrophic respiration, is one of the most important components of the carbon cycle. Our goal was to develop a simple regression model to estimate global NPP using climate and land cover data. Approximately 5600 global data points with observed mean annual NPP, land cover class, precipitation, and temperature were compiled. Precipitation was better correlated with NPP than temperature, and it explained much more of the variability in mean annual NPP for grass- or shrub-dominated systems (r2 = 0.68) than for tree-dominated systems (r2 = 0.39). For a given precipitation level, tree-dominated systems had significantly higher NPP (approximately 100-150 g C m(-2) yr(-1)) than non-tree-dominated systems. Consequently, previous empirical models developed to predict NPP based on precipitation and temperature (e.g., the Miami model) tended to overestimate NPP for non-tree-dominated systems. Our new model developed at the National Center for Ecological Analysis and Synthesis (the NCEAS model) predicts NPP for tree-dominated systems based on precipitation and temperature; but for non-tree-dominated systems NPP is solely a function of precipitation because including a temperature function increased model error for these systems. Lower NPP in non-tree-dominated systems is likely related to decreased water and nutrient use efficiency and higher nutrient loss rates from more frequent fire disturbances. Late 20th century aboveground and total NPP for global potential native vegetation using the NCEAS model are estimated to be approximately 28 Pg and approximately 46 Pg C/yr, respectively. The NCEAS model estimated an approximately 13% increase in global total NPP for potential vegetation from 1901 to 2000 based on changing precipitation and temperature patterns.  相似文献   

18.
The grey top-shell, Gibbula cineraria is a common member of temperate to cold water kelp forest communities, but its longevity and the age structure of its populations remains unresolved. Combined measurements of shell growth rates (sclerochronology) and oxygen isotope composition allow analysis of rate and timing of shell growth. Eight specimens were analyzed from the southern North Sea (near Helgoland, German Bight). Three age groups were identified but external measurements (width, height, ornamentation patterns and number of whorls) and shell weight are not adequate for ontogenetic age discrimination. Stable oxygen isotope data is consistent with shell growth during the interval from April to December in isotopic equilibrium with seawater, and growth increments exhibit strong tidal controls with fortnightly bundles well preserved. Reliable environmental proxy data (water temperature) can be extracted from the shell aragonite using conventional stable oxygen isotope analyses, with a temporal resolution of days attainable during intervals of maximum growth, but annual extremes are not always recorded in the shell. While demonstrating the utility of G. cineraria as a environmental and potential paleoenvironmental proxy for kelp forest habitats, its longevity has been significantly overestimated.  相似文献   

19.
Frond growth of Macrocystis pyrifera in the Falkland Islands was monitored in shallow coastal water from December 1985 to March 1987, and at a different site in deeper water from December 1985 to June 1986. Growth rates in the deeper bed were generally higher than those recorded in the coastal zone. At both sites, node initiation and elongation rate fluctuated according to the seasonal pattern of light or water temperature. In the shallow coastal area, nitrate was abundant in the winter and below detection levels during late spring and summer. Correlation analysis suggests that the production of the fronds of the giant kelp in this area was probably inhibited during the summer months by extremely low concentrations of nutrients. Internal nitrogen was exhausted approximately one month after a sharp decline in ambient nitrate concentration, and carbon reserves were formed. In the deeper bed of M. pyrifera, nitrogen was abundant all year round and the production of the fronds reflected the seasonal pattern of light or water temperature. The nitrogen content of the tissue probably did not drop below a level that limited production, and no internal carbon reserves were accumulated.  相似文献   

20.
《Ecological modelling》2005,183(4):385-396
Regional estimates or prediction of crop production is critical for many applications such as agricultural lands management, food security warning system, food trade policy and carbon cycle research. Remote sensing offers great potential for regional production monitoring and estimates, yet uncertainties associated with are rarely addressed. Moreover, although crops are one of critical biomes in global carbon cycle research, few evidences are available on the performance of global models of terrestrial net primary productivity (NPP) in estimating regional crop NPP. In this study, we use high quality weather and crop data to calibrate model parameter, validate and compare two kinds of remote sensing based production efficiency models, i.e. the Carnegie-Ames-Stanford-Approach (CASA) and Global Production Efficiency Model Version 2.0 (GLO-PEM2), in estimating maize production across China. Results show that both models intend to underestimate maize yields, although they also overestimate maize yields much at some regions. There are no significant differences between the results from CASA and GLO-PEM2 models in terms of both estimated production and spatial pattern. CASA model simulates better in the areas with dense crop and weather data for calibration. Otherwise GLO-PEM2 model does better. Whether the water soil-moisture down-regulator is used or not should depend on the percent of irrigation lands at the regions. The improved and validated models can be used for many applications. Further improvement can be expected by increasing remote sensing image resolution and the number of surface data stations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号