首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Heavy Metals Monitoring using Bivalves from Mediterranean Sea and Red Sea   总被引:1,自引:0,他引:1  
The concentrations of heavy metals (Cd, Co, Cu, Fe, Mn, Ni, Pd and Zn) were measured in the Bivalves (Modiolus auriculatus and Donax trunculus) collected from the Egyptian coasts of Mediterranean Sea and Brachiodonates sp. from the Egyptian coasts of Red Sea. The average concentrations of the heavy metals analyzed exhibited the following decreasing order: Fe > Zn > Cu > Mn > Ni > Co > Pb > Cd for both Mediterranean Sea and Red Sea. The analyses of Cd, Co, Ni, Pb, and Zn showed higher average concentrations for samples collected from Red Sea than that collected from Mediterranean Sea, while Fe, Cu and Mn showed the reverse results. Fe was used as a normalizing agent for all studied metals and exhibited presence of two locations from each of Mediterranean Sea and Red Sea have anthropogenic inputs of heavy metals. These results suggest that the coastal area in both Mediterranean Sea and Red Sea of Egypt might be considered relatively unpolluted with heavy metal.  相似文献   

2.
Concentration of Cd, Co, Cr, Ni, Zn, Fe, Mn, Pb and Cu were determinedin biota and sediment samples collected from the Marmara Sea in Turkey. The levels of Zn, Fe, Mn, Pb and Cu in the macroalgae are higher than previous studies in the Marmara Sea. Moreover, Cu and Zn concentrations at the present study are significantly high than Bosphorus and Black Sea algae. The order heavy metal concentrations in the mussel samples was: Fe > Zn > Ni > Mn > Cu > Pb > Cr > Cd > Co. The metal concentrations are generally lower when compared with the Black Sea mussels except Pb. At the same time, concentrations of Pb, Cu and Zn in the mussel species are lower when compared with the results in the Aegean Sea. The ranges of Mn and Cu in the tested fish samples are higher than Black Sea fish. On the other hand, Cd, Co, Cr, Zn and Pb concentrations are lower. The northern coast of the Marmara Sea having the highest metal concentrations in sediments as follows: Co, Cr, Ni, Fe at ?arköy ; Pb, Cu at M. Ere?li; Cd, Zn, Mn at Menek?e. The heavy metal levels in the sediment samples are lower than other areas in the Marmara Sea.  相似文献   

3.
The assessment of marine pollution due to metals was made for surficial sediments sampled from 20 sites along Mediterranean coast of Egypt. The samples were dried, acid digested and analyzed for leachable and total heavy metal contents (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) by flame atomic absorption spectrophotometer (air–acetylene) with deuterium background correction. Evaluation of the heavy metals pollution status was carried out using enrichment factors (EFs), the effect range-low (ERL) and the effect range-median (ERM). The study showed high concentrations of Cd, Co, Pb, Ni and moderate concentrations of Cr, Cu and Mn were contaminated in the sediments of studied sites. The results of Spearman correlation, factor and cluster analysis of the heavy metals analyzed in the collected sediment were discussed. The main source of contamination is the offshore oil field and industrial wastes, which arise due to the ineffective and inefficient operation equipments, illegal discharge and lack of supervision and prosecution of offenders.  相似文献   

4.
The metal accumulation levels for muscle, skin, gill, liver and intestine tissues of some Cyprinidae species (Carassius carassius, Condrostoma nasus, Leuciscus cephalus and Alburnus alburnus) in Enne Dame Lake (Kütahya/Turkey), which is mostly fed by hot spring waters, were investigated. Analyses were performed for copper (Cu), zinc (Zn), manganese (Mn), iron (Fe), cobalt (Co), magnesium (Mg), nickel (Ni), chrome (Cr) and boron (B) using inductively coupled plasma-optic emission spectroscopy (ICP-OES), and cadmium (Cd) using atomic absorption spectrophotometer (AAS) utilizing microwave digestion techniques. The concentrations of the heavy metals found in the fish varied in the follow ing ranges: Cu: < DL-7.04, Zn: 6.96-357.25, Mn: < DL-20.70, Ni: < DL-6.21, Fe: 9.62-2500.33, Cr: < DL-1.74, Co: < DL-0.54, Cd: 0.01-0.27 and Mg: 197.44-904.90 mg/kg wet weight. While B had the second highest concentration in the water of the lake, it was not encountered in any tissue of the investigated species. In all tissues and the species, While the bioaccumulation factors (BAFs) of Mn, Zn, Fe and Cu were remarkably high, the BAFs of Mg, Cr, Co, and B were also fairly low or none. Although the heavy metal accumulation levels for the muscle were generally lower than other tissues, there were some exceptions. Cd level in the muscle of C. carassius was higher than the permissible limit stated by Turkish legislation, FAO and WHO. The mean metal amounts for all the investigated tissues and species are statistically compared and discussed in this study.  相似文献   

5.
The accumulation of heavy metals in soil and water is a serious concern due to their persistence and toxicity. This study investigated the vertical distribution of heavy metals, possible sources and their relation with soil texture in a soil profile from seasonally waterlogged agriculture fields of Eastern Ganges basin. Fifteen samples were collected at ~0.90-m interval during drilling of 13.11 mbgl and analysed for physical parameters (moisture content and grain size parameters: sand, silt, clay ratio) and heavy metals (Fe, Mn, Cr, Cu, Pb, Zn, Co, Ni and Cd). The average metal content was in the decreasing order of Fe?>?Mn?>?Cr?>?Zn?>?Ni?>?Cu?>?Co?>?Pb?>?Cd. Vertical distribution of Fe, Mn, Zn and Ni shows more or less similar trends, and clay zone records high concentration of heavy metals. The enrichment of heavy metals in clay zone with alkaline pH strongly implies that the heavy metal distributions in the study site are effectively regulated by soil texture and reductive dissolution of Fe and Mn oxy-hydroxides. Correlation coefficient analysis indicates that most of the metals correlate with Fe, Mn and soil texture (clay and silt). Soil quality assessment was carried out using geoaccumulation index (I geo), enrichment factor (EF) and contamination factor (CF). The enrichment factor values were ranged between 0.66 (Mn) and 2.34 (Co) for the studied metals, and the contamination factor values varied between 0.79 (Mn) and 2.55 (Co). Results suggest that the elements such as Cu and Co are categorized as moderate to moderately severe contamination, which are further confirmed by I geo values (0.69 for Cu and 0.78 for Co). The concentration of Ni exceeded the effects-range median values, and the biological adverse effect of this metal is 87 %. The average concentration of heavy metals was compared with published data such as concentration of heavy metals in Ganga River sediments, Ganga Delta sediments and upper continental crust (UCC), which apparently revealed that heavy metals such as Fe, Mn, Cr, Pb, Zn and Cd are influenced by the dynamic nature of flood plain deposits. Agricultural practice and domestic sewage are also influenced on the heavy metal content in the study area.  相似文献   

6.
Metal Pollution Assessment of Sediment and Water in the River Hindon, India   总被引:7,自引:0,他引:7  
The metal pollution in water and sediment of the River Hindon in western Uttar Pradesh (India) was assessed for Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn. The metal concentrations in water showed wide temporal variation compared with bed sediment because of variability in water discharge and variations in suspended solid loadings. Metal concentrations in bed sediments provided a better evaluation of the degree and the extent of contamination in the aquatic environment, Santagarh and Atali being the most polluted sites of the river. The ratio of heavy metals to conservative elements (Fe, Al, etc.) may reveal the geochemical imbalances due to the elevated metal concentrations normally attributed to anthropogenic sources. Metal/Al ratios for the bed sediments of the river Hindon were used to determine the relative mobility and general trend of relative mobility occurred Fe > Mn > Zn > Cr > Ni > Pb > Cu > Cd.  相似文献   

7.
Sampling of the offshore seabed sediments of southwestern part of the Caspian Sea was carried out by gravity corer in order to study heavy metal concentration and the physicochemical factors controlling their distribution in the fine-grained fraction. The grain size distribution, amount, and type of clay minerals, total organic carbon (TOC) content, and Eh–pH of the sediments were determined. The average concentrations of the heavy metals in ppm are Mn (563), Cu (207.5), Sr (187), Zn (94), Pb (26.3), Ni (14.5), Co (11.5), Cd (2.56), and Ag (1.04) in their order of abundances. Co and Zn mostly indicate increase in silt-size fraction of the sediments suggesting their probable detrital provenance but the Mn, Ni, Cu, Sr, Pb, Cd, and Ag concentrations show a similar trend to distribution of the clay-size fraction. The concentrations of Mn, Co, and Cd increase with increase in the TOC content but the Cu, Pb, Ni, Ag, and Sr concentrations decrease with increase of the TOC content. The amounts of Zn, Cu, Sr, Pb, Cd, and Ag increase with increase in the CaCO3 content. The calculated enrichment factor indicates that the sediments are very strong to extremely enriched in Ag, significantly enriched in Cu and Cd, and depleted to mineral for Pb, Sr, Co, Ni, and Zn. Variations of the Cu, Sr, Cd, Ag, and Pb concentrations are similar to the clay and CaCO3 distributions.  相似文献   

8.
Nine metals were monitored in the beach sediment in Mumbai from May 2011 to March 2012 to evaluate the spatial and temporal distributions. The average heavy metal concentrations exhibited the following order: Fe > Mn > Cr > Co > Ni > Pb > Zn > Cu > Cd for the four sampling sites. The mean concentrations (± SD) of Fe, Mn, Cr, Co, Ni, Pb, Zn, Cu and Cd were estimated to be 31.15?±?10.02 g kg?1, 535.04?±?76.42, 151.98?±?97.90, 92.76?±?14.18, 67.52?±?11.32, 59.57?±?15.19, 54.65?±?15.01, 32.24?±?8.07 and 18.75?±?1.76 mg kg?1, respectively. The results indicated that the sediments were polluted with Cd, Cr, Co and Pb due to high anthropogenic influences. Spatial variation of metals revealed that most of the metals were high in Dadar beach and low in Aksa beach. Cd was the highest contaminant metal studied with a mean contamination factor of 93.75. The pollution load indices of the studied beaches ranged from 1.63 (Aksa) to 1.91 (Dadar) and indicated that the beach sediments were polluted with heavy metals. The heavy metal contents increased in relation to monsoon, and most of the heavy metals showed significantly high concentrations in November during the post-monsoon. The statistical analysis revealed significant effect of study site on all the metals studied. Further, there was a significant difference on metal accumulation on bimonthly basis in relation to weather pattern in Mumbai beaches.  相似文献   

9.
A study was conducted to determine the levels of heavy metals Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn along with physico-chemical parameters in ground waters of Aligarh city, U.P. (India). Twenty seven samples of hand pump water and twenty three samples of municipal water supply were collected from different localities of the Aligarh city, five times during the period of two months at intervals of 12 days. The samples were analysed for physico-chemical characteristics (pH, electrical conductivity, chlorides, sulphates, total hardness, total alkalinity, nitrate-nitrogen, fluoride, calcium and magnesium) and heavy metal contents. The concentrations of heavy metals in the hand pump water samples were found in the ranges of Cd (ND-5.00); Cr (ND-30.00); Cu (ND-82.50); Fe (16.80–460.00); Mn (ND-425.00); Ni (ND-25.00); Pb (ND-25.00) and Zn (28.60–775.00) g l–1. The heavy metal concentrations in the municipal water supply samples were found to be Cd (ND-5.00); Cr (ND-25.00); Cu (ND-37.50); Fe (8.00–37.50); Mn (ND-320.00); Ni (ND-25.00); Pb (ND-25.00) and Zn (2.00–271.87) g l–1.It appears from the results of these studies the concentrations of Cd, Cr, Cu, Ni, Pb, and Zn in the ground waters of the Aligarh City were found to be lower than the prescribed limits of World Health Organisation (1984), whereas the values of Fe and Mn were found above the prescribed limits in some localities. The chloride total hardness and nitrate-nitrogen were comparatively higher in the hand pump water than the municipal supply water. The reason of higher values of these parameters may be ascribed to the surface disposal of sewage wastes, wastes from metal processing industries and other house hold refuses.  相似文献   

10.
Concentrations of Cd, Cu, Co, Zn, Mn and Fe were determined in biota and sediment samples collected from the Eastern Harbour and El-Mex Bay in the Mediterranean Sea, Egypt. The levels of Cu, Co, Zn, Mn and Fe in the macroalgae, Ulva lactuca, Enteromorpha compressa (green algae) and Jania rubens (red algae), recorded high concentrations except for Cd. Moreover, Fe was the most predominant metal in the seaweed. The two species of bivalves, Donax trunculus and Paphia textile, showed different amounts of metals in their tissue. The abundance of heavy metal concentrations in the mussel samples was found in the order Fe> Zn> Mn> Cu> Co> Cd and Fe> Zn> Mn> Cu> Cd> Co, respectively for the two species. The metals concentrations were generally higher compared with the previous studies in mussels from the same area. The levels of metals accumulated in the investigated fish samples, Saurida undosquamis, Siganus rivulatus, Lithognathus mormyrus and Sphyraena sphyraena, were higher than those of Marmara Sea (Turkey), for Co and Cd and lower for Cu, Zn, Mn and Fe. El-Mex Bay having the highest metals concentration in sediments as their order of abundance were Fe> Zn> Mn> Cu> Cd> Co. Nevertheless, a high variability in the metal levels occurs among the studied algae and biota and also between the investigated Harbour. A significant correlations (p < 0.05) were found for each of Zn and Fe in P. textile and of Co in D. trunculus relative to their concentrations in surficial sediments.  相似文献   

11.
Twenty-one surface sediment samples were collected from Akkaya Dam. Heavy metal concentrations (Mo, Cu, Pb, Zn, Ni, Co, Mn, Fe, Cr, As, V and Cd), grain size, organic carbon and carbonate contents were studied in order to assess the extent of environmental pollution and to discuss the origin of these contaminants in sediments of dam. The sediments in the study area are mostly very fine sands. However, mud was observed in the northeast of the dam. Sediment pollution assessment was carried out using enrichment factor. The calculation of enrichment factors showed that Mo is depleted by 1.0 whereas Cu, Pb, Zn, Ni, Co, Mn, As, V, Cr and Cd are enriched by 3, 5.4, 7, 2.7, 2.2, 3.4, 42.3, 2.1, 1.8 and 7.2, respectively. Relatively high concentrations heavy metals occurred in north (textile industry area) and east (Karasu River) due to enrichment controlled by anthropogenic wastes. The results of correlation analysis show low–medium positive and negative correlations among metals, grain size, carbonate contents and organic carbon and indicate that heavy metals in sediments of the Akkaya Dam have different anthropogenic sources.  相似文献   

12.
The study was aimed at determining the levels of metals in water samples and muscles of the fish caught in the Una River basin, located in the northwestern part of Bosnia and Herzegovina. For that purpose, three fish species: Brown Trout (Salmo trutta m. fario), Grayling (Thymallus thymallus) and Californian Trout (Salmo gairdneri), together with stem water samples, were analyzed for metal concentrations (Pb, Hg, Cd, As, Mn, Ni, Cu, Cr, Se, Co, Sn, Zn, Fe, Ca, P) during a 2-year period. The fish was captured using electric fishing, nets or fishing equipment. The capture was undertaken on three sites (the river source, the middle flow and the river mouth) of each of the five biggest rivers belonging to the Una River basin (Unac, Krušnica, Sana, Klokot, and Una). The concentrations of metals in each sample were determined via atomic absorption spectrophotometry. In the tested waters, the presence of Mn in concentrations higher than permitted (0.07 mg/l) had been detected. In the tested meat, the following average concentrations of metals (mg/kg) had been found: Pb (0.67), Cd (0.06), Mn (0.65), Ni (0.15), Cu (0.79), Cr (1.05), Se (0.03), Zn (8.92), Fe (5.40), Ca (14.68), and P (10.85). The correlation between Mn concentrations identified in the tested waters and those identified in the meat of Brown Trout was revealed to be statistically significant, which confirms that, over time, bioaccumulation of metals took place. Even though the results were not indicative of contamination, they strongly suggest that constant monitoring of the ecosystems in reference should be implemented.  相似文献   

13.
This work describes the results of assessment of the heavy metals, Cd, Co, Cr, Cu, Mn, Ni, Pb, and Zn in urban soil of Guwahati City, India from 31 sites of five different land use types covering residential, commercial, industrial, public utilities, and roadside. Sequential extraction procedure was used to evaluate the relative distribution of the eight metals in exchangeable, carbonate, reducible (Fe?CMn oxide), organic and sulfide, and residual fractions. Of the eight metals, Cd and Co occur in lower concentrations (Cd <?< Co) in all types of land, and concentration variation from one type of land use to another is not much significant for both the metals. Ni presence is more than Co, and the concentrations show some variation depending on land use status. Average Cr and Cu concentrations are ??100?mg/kg, but Cr has a significantly higher presence in industrial land use. The results are similar in case of Pb. The two metals, Mn and Zn have domination over the other metals, and the values are ??300?mg/kg. Industrial and roadside soil contains much more Mn, while commercial soil is most enriched with Zn. Of the metals, Ni has the largest proportion (~42%) bound to the exchangeable fraction and Co, Cr, and Pb also have appreciable proportion bound to the same fraction. A significant amount of Co is associated with carbonates. The reducible fraction has bound considerable quantity of Mn and Zn, while most of Cu is associated with the organic and sulfide fraction. Both Cd and Pb are dominantly associated with the residual fraction. Computation of the mobility factor of the metals indicates Mn to be the most mobile metal present in the soil samples.  相似文献   

14.
The sediment in Dianchi Lake, a hypereutrophic plateau lake in southwest China, was investigated and the concentration of heavy metals (Cu, Cr, Ni, Zn, Pb, Fe, Mn, and Cd) in the sediment and sediment properties were determined. Their spatial distribution and sources were analyzed using multivariate statistics. The result indicated that the studied metals exhibited three distinct spatial patterns; that is, Cu, Pb, Zn, and Ni had a similar distribution, with a concentration gradient from the north to the south part of the lake; Cd and Cr presented a similar distribution; Fe and Mn presented a quite different distribution than other metals, which indicated their different sources and geochemistry processes. Correlation and cluster analysis (CA) provided origin information on these metals and the CA result was observed corresponding to those three spatial patterns. Principal component analysis further displayed metal source and driving factors; that is, Cu, Pb, Zn, Ni, Cd, and Cr were mainly derived from anthropogenic sources, and Fe and Mn were mainly the result of natural processes. Sediment assessment was conducted using geoaccumulation index (Igeo), potential ecological risk indices, and USEPA guidelines. The result indicated that, generally, Cd was the most serious risk metal; Pb and Cu posed moderate potential ecological risk; Cr, Zn, and Ni had slight ecological risk; Fe and Mn had little risk. Comparison of the assessment tools showed that each of the methods had its limitation and could bias the result, and the combined use of the methodologies and local knowledge on lithology or metal background value of soil in the practice would give a more comprehensive understanding of the metal risk or pollution. Statistical analysis also indicated that nutrients had different impacts on Fe, Mn, and trace elements, which implied that in the assessment of metal risk, nutrients impact should be taken into consideration especially for eutrophic waters.  相似文献   

15.
Concentration of some heavy metals (Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb and Zn) were determined in muscle, liver, kidney and gill of two barb, Barbus xanthopterus and Barbus rajanorum mystaceus, which have great economic values, in the Atatürk Dam Lake (Turkey). Heavy metal levels in fish samples were analyzed by inductively coupled plasma spectroscopy (ICP/OES). Heavy metal concentrations vary significantly, depending on the type of the tissue in fish species. The metal accumulation in the liver, kidney and gill of Barbus xanthopterus and Barbus rajanorum mystaceus was found to be quite high in comparison with that in the muscle. The mean concentrations of heavy metals in muscle tissues of Barbus xanthopterus were as follows: Co, 0.09; Cr, 0.12; Cu, 0.27; Fe, 5.26; Mn, 0.20; Ni, 0.08; Pb, 0.68; Zn, 1.39, whereas in muscle tissues of Barbus rajanorum mystaceus were as follows: Co, 0.11; Cr, 0.10; Cu, 1.07; Fe, 3.97; Mn, 019; Ni, 0.04; Pb, 0.66; Zn, 1.70 microg/g wet weight. Cd levels in gill and muscle tissues were below detection limits. All metal levels detected in tissues were safe for human consumption and within the limits for fish proposed by FAO/ WHO, EU and Turkish Food Codes.  相似文献   

16.
Aqaba Gulf is an economically important marine environment in Egypt. Its coastal area was subjected to anthropogenic impact of urbanization and economic development during the last decades. The study was oriented to investigate the distribution as well as assess the heavy metal pollution status (Fe, Mn, Zn, Ni, Co, Cr, Cu, and Cd) in its surface sediment. Large heavy metals fluctuations were detected along the studied area. The results pointed out to the highly significant correlations among Fe, Cu, Ni, and Co heavy metals and their similar lithogenic origin beside their input sources. The sediment quality was performed by using the geo-accumulation index (I (geo)) and different sediment criteria guidelines; China State Bureau of Quality and Technical Supervision (CSBTS), and Canadian guidelines. Among the studied heavy metals, Cd was the only metal that showed moderate pollution for I (geo) as well as it exceeded the primary and the secondary criteria of CSBTS and the threshold effect level of the Canadian guidelines (TEL). On the other hand, the other heavy metals were within the natural background levels.  相似文献   

17.
Concentrations of Cu, Zn, Cd, Pb, Ni, Co, Fe, Mn, and Hg were measured successively in water, sediments, and six macroalgal species belonging to three algal classes during 3 years (2008–2010) from Abu Qir Bay, Alexandria, Egypt: Chlorophyceae (Enteromorpha compressa, Ulva fasciata), Phaeophyceae (Padina boryana), and Rhodophyceae (Jania rubens, Hypnea musciformis, Pterocladia capillacea). The study aimed to assess the bioaccumulation potential of the seaweeds, as well as to evaluate the extent of heavy metal contamination in the selected study site. Metals were analyzed using atomic absorption spectrophotometry coupled with MH-10 hydride system. The obtained data showed that the highest mean concentrations of Cu, Zn, Fe, and Mn were recorded in E. compressa; Cd, Ni, and Hg exhibited their highest mean concentrations in P. boryana, while Pb and Co were found in J. rubens. Abundance of the heavy metals in the algal species was as follow: Fe?>?Mn?>?Zn?>?Pb?>?Ni?>?Co?>?Cu?>?Cd?>?Hg. E. compressa showed the maximum metal pollution index (MPI) which was 11.55. Bioconcentration factor (BCF) for the metals in algae was relatively high with a maximum value for Mn. The Tomlinson pollution load index (PLI) values for the recorded algal species were low, which ranged between 1.00 in P. boryana and 2.72 in E. compressa. Enrichment factors for sediments were low fluctuating between 0.43 for Hg to 2.33 for Mn. Accordingly, the green alga E. compressa, brown alga P. boryana, and red alga J. rubens can be nominated as bioindicators. Based on MPI and PLI indices, Abu Qir Bay in the present study is considered as low-contaminated area.  相似文献   

18.
Chemical weathering is one of the major geochemical processes that control the mobilization of heavy metals. The present study provides the first report on heavy metal fractionation in sediments (8–156 m) of Lake Titicaca (3,820 m a.s.l.), which is shared by the Republic of Peru and the Plurinational State of Bolivia. Both contents of total Cu, Fe, Ni, Co, Mn, Cd, Pb, and Zn and also the fractionation of these heavy metals associated with four different fractions have been determined following the BCR scheme. The principal component analysis suggests that Co, Ni, and Cd can be attributed to natural sources related to the mineralized geological formations. Moreover, the sources of Cu, Fe, and Mn are effluents and wastes generated from mining activities, while Pb and Zn also suggest that their common source is associated to mining activities. According to the Risk Assessment Code, there is a moderate to high risk related to Zn, Pb, Cd, Mn, Co, and Ni mobilization and/or remobilization from the bottom sediment to the water column. Furthermore, the Geoaccumulation Index and the Enrichment Factor reveal that Zn, Pb, and Cd are enriched in the sediments. The results suggest that the effluents from various traditional mining waste sites in both countries are the main source of heavy metal contamination in the sediments of Lake Titicaca.  相似文献   

19.
In this work, the atmospheric concentrations of selected heavy metals including lead (Pb), iron (Fe), cadmium (Cd), copper (Cu), nickel (Ni), manganese (Mn), and zinc (Zn) were measured for two different sampling sites (urban and rural) in the northern part of Jordan (Irbid city). Samples were collected according to a certain schedule for 1 year. High volume air samplers and glass fiber filters were used to collect the samples. Collected samples were digested using a mixture of analytical grade nitric acid and analytical grade hydrochloric acid, and analyzed to evaluate the levels of heavy metals by atomic absorption spectrophotometry. Six heavy metals (Pb, Fe, Cu, Ni, Mn, and Zn) were measured in all samples; the concentrations of Cd and Co were not detected in Irbid atmosphere by atomic absorption spectroscopy. The results were used to determine the levels of heavy metal pollutants in air, possible sources, and to compare the levels of selected heavy metals in the two studied sites. Aerosols from the rural site have lower concentrations for all the metals compared to those from the urban site. The daily and monthly variations of the elements were investigated. All heavy metals in urban and rural sites reached maximum concentrations in June, July, and August. This is consistent with the increased activities leading to particulate matter emission during the summer period. The enrichment factors with respect to earth crust and correlation coefficients of heavy metals were investigated to predict the possible sources of heavy metals in air.  相似文献   

20.
Water from 15 sampling stations in Tasik Chini (Chini Lake), Peninsular Malaysia were sampled for 12 months from September 2004 until August 2005 and analyzed for 11 metals including iron (Fe), aluminum (Al), manganese (Mn), barium (Ba), zinc (Zn), lead (Pb), copper (Cu), cadmium (Cd), nickel (Ni), chromium (Cr) and cobalt (Co). Results showed that the mean (min-max) metal concentrations (in micrograms per liter) in Tasik Chini waters for the 12 months sampling based on 15 sampling stations (in descending order) for Fe, Al, Mn, Ba, Zn, Pb, Cu and Cd were 794.84 (309.33-1609.07), 194.53 (62.37-665.93), 29.16 (16.68-79.85), 22.07 (15.64-29.71), 5.12 (2.224-6.553), 2.36 (1.165-4.240), 0.832 (0.362-1.443) and 0.421 (0.254-0.696) respectively. Concentration for three metals i.e. Ni, Cr and Co were too low and not detected by the graphite furnace Atomic Absorption Spectrophotometry (AAS). Comparison with various water quality standards showed that the mean metals concentration in surface water of Tasik Chini were low and within the range of natural background except for Fe and Al. In general, metal concentrations in Tasik Chini water varied temporally and spatially. The main factors influencing these metal concentrations in the water were the raining season and mining activities. Stations located at Tanjung Jerangking and Melai areas were the most effected due to those factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号