首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Simulating the temporal changes of OCP pollution in Hangzhou, China   总被引:4,自引:0,他引:4  
Cao HY  Liang T  Tao S  Zhang CS 《Chemosphere》2007,67(7):1335-1345
A dynamic fugacity model was applied to simulate the changes of contents and transfer fluxes of hexachlorocyclohexane (HCHs) and dichloro-diphenyl-trichloroethane (DDTs) from 1950s in the environment of Hangzhou, China. The receptors are composed of air, surface water, soils, sediment and biota compartments. The model provides a method to combine loadings of HCHs and DDTs from various sources with a series of physical-chemical processes to estimate concentrations and transport fluxes of HCHs and DDTs. Model results suggested that the calculated concentrations were in line with the observed ones. The highest contents of HCH and DDT in the environment of study area were 523 t and 471 t before 1983, among which about 80.7% HCHs and 93.2% DDTs remained in the soil compartment. From 1984 to now, contents of HCHs and DDTs had decreased to about 0.07% and 0.40% of their highest amount (before 1983), and only about 0.001% and 0.014% will expect to be left in 2020 in the study area according to the model prediction. Before 1983, the main transfer fluxes of HCHs were deposition from air to soil, runoff from soil to water and diffusion from soil to air, but for DDTs the main transfer fluxes were deposition from air to soil and water, and transfer from water to sediment. From 1984 to now, runoff from soil to water and transfer from water to sediment became the dominant processes. Although a large amount of HCHs and DDTs had been applied to the study area, their residue levels in the soils were much lower than those in North China (had lesser HCHs and DDTs application than in South China) at present time, and close to other locations of South China (had similar HCHs and DDTs application level). It can be attributed to the high precipitation and temperature that enhances the processes of wet deposition, evaporation and degradation of OCPs. Sensitivities of the input parameters to the calculated concentrations were evaluated using coefficient-of-variation normalized sensitivity coefficients. The model was also subjected to uncertainty analyses using a Monte Carlo simulation.  相似文献   

2.
Soil-air exchange of organochlorine pesticides in the Southern United States   总被引:18,自引:0,他引:18  
Soil samples were collected from 30 farms in Alabama, Louisiana and Texas during 1999-2000 to determine residues of organochlorine pesticides (OCPs). One or more of the DDT compounds (p,p'-DDT, o,p'-DDT, p,p'-DDD, p,p'-DDE, o,p'-DDE) was above the quantitation limit (0.1 ng g(-1) dry weight) in every soil, and toxaphene was above the quantitation limit (3 ng g(-1)) in 26 soils. Chlordanes, dieldrin and hexachlorocyclohexane (HCH) isomers occurred less frequently (quantitation limits 0.1 ng g(-1) for dieldrin and 0.05 ng g(-1) for chlordanes and HCHs). OCPs were measured in air at 40 cm above the soil at selected farms to investigate soil-air partitioning. Concentrations of OCPs in air were positively and significantly (P<0.001-0.004) correlated to soil concentrations for toxaphene, p,p'-DDT, o,p'-DDT, p,p'-DDE, dieldrin, and trans-nonachlor. The regression was weaker (P=0.022) for cis-chlordane and not significant for trans-chlordane (P=0.43) nor gamma-HCH (P=0.80). Approach to soil-air equilibrium was assessed by calculating fugacities in the soil and air (f(s) and f(a)) for samples with quantifiable residues in both compartments. The fugacity fraction f(s)=0.5 at equilibrium and is <0.5 or >0.5 for net deposition and net volatilisation, respectively. Fugacity fractions varied greatly for different soil-air pairs, reflecting generally disequilibrium conditions. Mean fugacity fractions indicated near-equilibrium for some OCPs (p,p'-DDE, chlordanes, trans-nonachlor and dieldrin) and net volatilisation for others (p,p'-DDT, o,p'-DDT, toxaphene, gamma-HCH). Chiral analysis showed that enantioselective degradation of (+) or (-) o,p'-DDT in soil was accompanied by enrichment or depletion of the corresponding enantiomers in the overlying air, although there appeared to be some dilution by racemic o,p'-DDT from regional air transport.  相似文献   

3.
Chicken organs, animal feed, droppings, and ambient air were sampled at a farm in Beijing to determine the concentrations of hexachlorocyclohexane isomers (HCHs) and dichlorodiphenyltrichloroethane and metabolites (DDTs). Mean fresh weight concentrations of HCHs and DDTs were 0.122 ± 0.061 ng/g and 0.051 ± 0.038 ng/g in the muscles. These values are 1-2 orders of magnitude lower than those reported in China in 1980. Contaminated feed was the main source of HCHs and DDTs. Only 12.8% of HCH and 3.3% of DDT of the amount consumed were excreted. Accumulated quantities of HCHs and DDTs increased during growth. However, concentrations of HCHs and DDTs did not increase because of dilution from rapid growth. Based on the observed residual levels in mature chicken and the average diet of residents of China, the contributions from chicken and egg consumption to per capita daily intake of HCHs and DDTs were 487% and 88% of those of fish consumption.  相似文献   

4.
Detailed analyses of persistent organic pollutants (POPs) such as organochlorine pesticides (OCPs), hexachlorocyclohexane (HCH) isomers (HCHs), dichlorodiphenyltrichloro ethane (DDT) and its metabolites (DDTs) and congeners of polychlorinated biphenyls (PCBs) in soil and surface water from the northeastern São Paulo, Brazil allowed the evaluation of the contamination status, distribution and possible pollution sources. The pesticides and PCBs demonstrated markedly different distributions, reflecting different agricultural, domestic and industrial usage in each region studied. The ranges of HCH, DDT, and PCBs concentrations in the soil samples were 0.05–0.92, 0.12–11.01, 0.02–0.25 ng g−1 dry wt, respectively, and in the surface water samples were 0.02–0.6, 0.02–0.58 and 0.02–0.5 ng l−1, respectively. Overall elevated levels of DDT and PCB were recorded in region 2, a site very close to melting, automotive batteries industries, and agricultural practice regions. High ratios of metabolites of DDT to DDT isomers revealed the recent use of DDT in this environment. The sources of contamination are closely related to human activities, such as domestic and industrial discharge, street runoff, agricultural pesticides and soil erosion, due to deforestation as well as atmospheric transport.  相似文献   

5.
Hexachlorocyclohexane (HCH) concentrations in sediments and sediment trap fluxes of particulate organic carbon and HCHs were measured bi-weekly from March 31 to October 18, 2006 in an urban eutrophic lake in Tianjin, China, in order to investigate sedimentation and seasonal variation of HCHs in sediments. HCH concentrations (dry weight basis) ranged from 2.2 to 20.2 ng/g (mean 7.7 ng/g) in surface sediments and from 26.6 to 972.7 ng/g (mean 187.0 ng/g) in settling particles, respectively. A clear seasonal variation in HCH sedimentation and HCH concentrations in sediments was observed. The maximal HCH deposition occurred following a spring phytoplankton bloom. The average flux of HCHs to sediment was approximately 21-fold higher in April to mid-June as compared to late June to October. This was attributed to the high vertical fluxes at the end of the spring phytoplankton bloom. The maximum values of HCH concentrations in sediments were observed in mid-June to late July. Concentrations of HCHs in sediments from the eutrophic lake were well-correlated with organic carbon contents in sediments. The annual sediment trap flux of HCHs in the eutrophic lake, which was estimated using data obtained in the eutrophic lake, was 117 microg/m2 yr, about 72% of which was attributed to the sedimentation corresponding to spring bloom phytoplankton deposition in late May to mid-June. The high sediment trap flux of HCHs in the eutrophic lake was related to serious local contamination.  相似文献   

6.
The distribution of HCH isomers, DDT analogues and selected PCB congeners in pork organs collected from the same individuals raised in Romanian farms was investigated. Organochlorine pesticides (HCHs and DDTs) were the principal contaminants in all samples, while PCB concentrations were low, in accordance with previously reported concentrations from Romanian animal farms. The most part of the pollutant load in the body is retained in the adipose tissue, with HCHs ranging between 16 and 27.7 ng/g lipid and with higher concentrations of DDTs ranging between 65.9 and 334.5 ng/g lipid. The highest PCB levels (up to 32 ng/g lipid) were measured in lung and liver. The lipid-normalized concentrations in the brain were lower than in all other tissues due to the presence of the blood-brain barrier or due to a lower proportion of the neutral lipids such as triglycerides. The highest concentrations of DDTs were measured in muscle and fat, with p,p'-DDE being the principal contributor and with a variable contribution of p,p'-DDD and p,p'-DDT. In liver, p,p'-DDD has a higher contribution to the sum DDTs, while in all analyzed livers, the concentration of p,p'-DDT was very low. beta-HCH was the most persistent HCH isomer in all tissues, accounting for 40-97% of sum HCHs. For all animals, the highest concentrations of beta-HCH and HCHs were found in liver, while the lowest HCH concentrations were measured in brain and spinal marrow. Additionally, the distribution of alpha-HCH enantiomers in the tissues was discussed. In all samples (except 2 brain samples), (+) alpha-HCH was depleted and (-) alpha-HCH was enantioenriched. Enantiomeric ratios in brain were the highest measured values between all organs. For all studied animals, ERs increased in the order fat < muscle < liver < brain.  相似文献   

7.
Hexachlorocyclohexane (HCH) concentrations in sediments and sediment trap fluxes of particulate organic carbon and HCHs were measured bi-weekly from March 31 to October 18, 2006 in an urban eutrophic lake in Tianjin, China, in order to investigate sedimentation and seasonal variation of HCHs in sediments. HCH concentrations (dry weight basis) ranged from 2.2 to 20.2 ng/g (mean 7.7 ng/g) in surface sediments and from 26.6 to 972.7 ng/g (mean 187.0 ng/g) in settling particles, respectively. A clear seasonal variation in HCH sedimentation and HCH concentrations in sediments was observed. The maximal HCH deposition occurred following a spring phytoplankton bloom. The average flux of HCHs to sediment was approximately 21-fold higher in April to mid-June as compared to late June to October. This was attributed to the high vertical fluxes at the end of the spring phytoplankton bloom. The maximum values of HCH concentrations in sediments were observed in mid-June to late July. Concentrations of HCHs in sediments from the eutrophic lake were well-correlated with organic carbon contents in sediments. The annual sediment trap flux of HCHs in the eutrophic lake, which was estimated using data obtained in the eutrophic lake, was 117 μ g/m2 yr, about 72% of which was attributed to the sedimentation corresponding to spring bloom phytoplankton deposition in late May to mid-June. The high sediment trap flux of HCHs in the eutrophic lake was related to serious local contamination.  相似文献   

8.
Liu Z  Quan X  Yang F 《Chemosphere》2007,69(7):1159-1165
The Liao River Basin Multimedia Fate and Transport Model (LRBMFTM), a non-steady state multiple-segment river fugacity-based model, for describing the long-term fate of persistent organic pollutants (POPs) in Liao River basin environment, is used to illustrate a quantitative understanding of the behavior of alpha-, beta-, and gamma-hexachlorocyclohexane (HCH) in more detail in the lower reach of Liao River basin from 1952 to 2001. The major pathway of the three HCHs from the basin to the surrounding environment is the atmospheric advection. One of the major removing of HCHs from the basin is degradation, where 2388.5 ton of alpha-HCH, 405.6 ton of beta-HCH, 382.7 ton of gamma-HCH emitted into the basin have been degraded, especially in the soil of application regions. The main reservoir of the HCHs is the soil in the basin, where there is a positive correlation between the accumulated amount and emission. The model suggests that the mass fluxes of all processes show an obviously seasonal trend. After the use ban, HCHs evaporate from water bodies, soils, and vegetation, and are advected away in the atmosphere. It is believed that the model can provide a valuable understanding of the processes that determine the overall fate of HCHs in the basin.  相似文献   

9.
《Chemosphere》2007,66(11):1949-1958
Detailed analyses of persistent organic pollutants (POPs) such as organochlorine pesticides (OCPs), hexachlorocyclohexane (HCH) isomers (HCHs), dichlorodiphenyltrichloro ethane (DDT) and its metabolites (DDTs) and congeners of polychlorinated biphenyls (PCBs) in soil and surface water from the northeastern São Paulo, Brazil allowed the evaluation of the contamination status, distribution and possible pollution sources. The pesticides and PCBs demonstrated markedly different distributions, reflecting different agricultural, domestic and industrial usage in each region studied. The ranges of HCH, DDT, and PCBs concentrations in the soil samples were 0.05–0.92, 0.12–11.01, 0.02–0.25 ng g−1 dry wt, respectively, and in the surface water samples were 0.02–0.6, 0.02–0.58 and 0.02–0.5 ng l−1, respectively. Overall elevated levels of DDT and PCB were recorded in region 2, a site very close to melting, automotive batteries industries, and agricultural practice regions. High ratios of metabolites of DDT to DDT isomers revealed the recent use of DDT in this environment. The sources of contamination are closely related to human activities, such as domestic and industrial discharge, street runoff, agricultural pesticides and soil erosion, due to deforestation as well as atmospheric transport.  相似文献   

10.
Cheng H  Ma L  Zhao C  Li X  Wang X  Liu Y  Yang K 《Chemosphere》2011,85(3):406-411
The concentrations, spatial distribution and compositional patterns of extensively used hexachlorocyclohexanes (HCHs) and dichlorodiphenyltrichloroethanes (DDTs) in urban dustfall in a metropolis-Beijing are presented in this paper. The potential sources are discussed and soil burdens are predicted based on the fluxes. The hotspots in commercial areas are identified by spatial distribution maps and the fractional value isomers indicates that dustfall in urban Beijing are affected by both current and historical usage of DDTs. It is worth noticing that there is possible application "dicofol-type of DDTs" in Beijing. The measured atmospheric deposition flux is 1.14×10(5) ng h(-1) m(-2) for HCHs and 1.47×10(5) ng h(-1) m(-2) for DDTs, respectively. However, when compared with atmospheric deposition flux, the volatilization flux estimated from concentrations in soils by fugacity model is significantly lower for HCHs (2.41 ng h(-1) m(-2)) and DDTs (0.07 ng h(-1) m(-2)). The net atmospheric flux to the soil suggests that the levels of HCHs and DDTs in soil are dominated by atmospheric deposition and the urban soil in Beijing would be a sink for HCHs and DDTs in the long term.  相似文献   

11.
Mean hexachlorobenzene (HCB) and hexachlorocyclohexane (HCH) concentrations, measured in seawater and air samples, confirmed the decline in levels of these compounds in Antarctic air and water. However, low α/γ-HCH ratios in air at the beginning of the sampling period suggest a predominance of fresh lindane entering the Antarctic atmosphere during the Austral spring probably due to current use in the Southern Hemisphere. Water-air fugacity ratios demonstrate the potential for HCH gas deposition to coastal Antarctic seas, while the water-air fugacity ratios for HCB imply that volatilization does not account for the observed decrease of HCB in surface seawater. HCH concentrations found in krill samples were correlated with seawater concentrations indicative of bioconcentration of HCHs from seawater.  相似文献   

12.

Background, aim, and scope  

Lindane, technically 1, 2, 3, 4, 5, 6-hexachlorocyclohexane (γ- HCH), is the most commonly detected organochlorine pesticide from diverse environmental compartments. Currently, India is the largest consumer and producer of lindane in the world. The production of lindane results in the generation of large quantities of waste HCH isomers (mainly α-, β- and δ-). All these isomers are toxic and have a long-range environmental transport potential. The aim of this study was to monitor the seasonal variation of HCH isomers in an open soil–plant–rhizospheric soil system of a contaminated industrial area. For this, selected plant species and their rhizospheric soil (soil samples collected at a depth range of 0–45 cm near to the root system) and open soil samples (soil samples collected (0–30 cm depth) from 1–1.5 m away from the plant root system) were collected for 2 years (two summer seasons and two winter seasons).  相似文献   

13.
PCBs and chlorinated hydrocarbon pesticides such as DDTs and HCHs (BHCs) were measured in air, water, ice and snow samples collected around the Japanese research stations in Antarctica and adjacent oceans during December 1980 to March 1982. The atmospheric concentrations of chlorinated hydrocarbons decreased in the transport process from northern lands to Antarctica, but the compositions of PCBs, DDT compounds and HCH isomers were relatively uniform throughout this process. Regional and seasonal variations were found in aerial concentrations of these pollutants at Syowa Station and adjacent seas in Antarctica. Chlorinated hydrocarbons were also detected in snow, ice, lake water and sea water samples, in which rather high concentrations were found in snow and ice samples. This suggests that snow and ice serve as media of supply of these pollutants into Antarctic marine environment. Most interestingly, the concentrations of DDTs and higher chlorinated biphenyls were much lower in sea water under fast ice than in that from outer margin of pack ice. This indicates that the active removal of these pollutants is occurred in the sea under fast ice, and that is strongly associated with high primary productivity. It is, therefore, presumed that the concentrations of PCBs and DDTs in marine organisms living under fast ice in Antarctica could be lower than those in other oceans.  相似文献   

14.
Organochlorine pesticides (OCPs) in the seawater collected in the Bering and Chukchi Seas during the First Chinese Arctic Research Expedition were confirmed by gas chromatography-mass spectrometry (GC-MS) and analyzed by capillary gas chromatography with micro-electron capture detector (GC-microECD). The average of hexachlorocyclohexanes (HCHs; sum of isomers alpha-, beta-, gamma-, delta-) was nearly equal in the Bering Sea (mean concentration 412.7 pg/l) and in the Chukchi Sea (mean concentration 445.8 pg/l), which showed no obvious latitudinal difference of these two regions. Compared with previously reported studies, concentrations of OCPs in these regions were much lower than the levels in the last decades. The ratio of alpha:gamma HCH was 5.0 and 3.4 for the Bering and Chukchi sea, respectively, which indicated the different pesticide composition in these two regions. Many other OCPs with different residue patterns were also found for the first time in the investigation regions. Heptachlor epoxide (in the Bering Sea) and heptachlor (in the Chukchi Sea) were main OCPs contaminants besides HCHs.  相似文献   

15.
The distribution and concentration of some organochlorine pesticides (OCPs) in the soil around a pesticide factory in Zibo, China, were examined, including dichlorodiphenyltrichloroethane (DDT) and its metabolites, isomers of hexachlorocyclohexane (HCH) and endosulfan (ENDO). The results showed that the OCPs concentrations were extraordinary high in this region. The concentrations of DDTs, HCHs, and ENDO were measured in the range of 0.775–226.711, 0.248–42.838, and 0.081–1.644 mg kg?1, respectively. DDT and its isomers were identified to be the dominate contaminants in most of the sampling sites. In the vertical direction, the distribution pattern of the total OCPs was in order of DDTs, HCHs, and ENDO in the 0–20 cm, but in 20–40 and 40–60 cm the trends were unobvious. Although no recent input occurred in most areas, the residues of OCPs remained in deep soil due to their persistence. Unlike ENDO, DDTs and HCHs appeared to have the similar property in terms of not only the migration pattern in soil, but also the relationship to the same dominant impact factor (i.e. organic matter). DDTs and HCHs were affected positively by the organic matter, whereas ENDO was affected negatively. Due to the interrelationship among various impact factors, the spatial distribution of pesticides in the soil was considered to be a combined result.  相似文献   

16.
Wurl O  Obbard JP 《Chemosphere》2005,58(7):925-933
Persistent organic pollutants (POPs) are ubiquitous pollutants in the marine environment, particular in coastal areas affected by industry and shipping traffic. POPs are known for their recalcitrance and toxicity in the environment, and there is increasing concern over their global distribution and impact upon wildlife. Marine surface sediment samples taken within 6 km of the coastline of Singapore were analyzed to determine prevailing concentrations of organochlorine pesticides (OCPs), polychlorinated biphenyl (PCBs) and polybrominated diphenyl ethers (PBDEs). Total PCB concentrations varied widely from 1.4 to 329.6 ng/g (average 73.9 ng/g), where high concentrations were detected at sample locations closest to industrial areas with intensive shipping traffic. Total DDT concentrations ranged from 2.2 to 11.9 ng/g (average 6.7 ng/g) and were lower than the concentration range of 3.3-46.2 ng/g measured for total HCH (average 18.1 ng/g). Ratios of DDT/(DDE+DDD) in sediments do not indicate recent inputs of DDT into Singapore's marine environment, but high concentrations of alpha-HCH and gamma-HCH show evidence for the usage of HCHs in Southeast Asia. Peak concentrations of cis- and trans-Chlordane were 10 ng/g. Among the PBDE congeners BDE 47, 99, and 100 only BDE 47 could be detected at a range of 3.4-13.8 ng/g (average 6.2 ng/g). The levels of OCPs, PCBs and PBDEs were compared to available data for other countries in Asia, and indicated relatively moderate levels of contamination. Peak concentrations of PCBs, HCH isomers, Chlordane, Heptachlor, Heptachlor epoxide and Dieldrin have the potential to induce ecotoxicological impacts based on levels specified in the sediment quality standards of the USEPA and Canadian Council of Ministers of the Environment.  相似文献   

17.
The behaviour of the organochlorine pesticide hexachlorocyclohexane (HCH) is investigated. The concentrations of alpha-, beta-, gamma-, and delta-HCH isomers were measured in soils, rhizosphere and vegetation in a contaminated area in Galicia (NW Spain). The total concentration of HCH in soils reached values close to 20,000 mgkg(-1). The plants analysed (Avena sativa L., Chenopodium spp., Solanum nigrum L., Cytisus striatus (Hill) Roth, and Vicia sativa L.) accumulated HCH, especially the beta-HCH isomer, in their tissues. The most likely mechanisms of HCH accumulation in plants were sorption of soil HCH on roots and sorption of volatilized HCH on aerial plant tissues. The concentrations of HCH obtained from the bulk and rhizosphere soils of selected plant species suggest that roots tend to reduce levels of the HCH isomers in the rhizosphere. The results reflect the importance of vegetation in the distribution of organochlorine compounds in the soil-plant system.  相似文献   

18.
Concentrations of polychlorinated biphenyls (PCBs), DDT and its metabolites (DDTs), HCH isomers (HCHs), chlordane compounds (CHLs) and hexachlorobenzene (HCB) were determined in sediment, soil, whole body homogenates of resident and migratory birds and their prey items (including fish, green mussel, snail, earthworm, crabs, prawn, lizard and frogs), bird eggs and bats collected from southern India during 1995 and 1998. Accumulation pattern of organochlorines (OCs) in biota was, in general, in the order, HCHs > DDTs > PCBs > CHLs = HCB. Magnitude of OC concentrations increased in the order of sediments < green mussel < earthworm < from < lizard < fish < bird egg < bats < birds tissues. Biomagnification features of OCs were examined in resident and migrant birds to evaluate the exposure levels of these chemicals in wintering grounds of migrant birds. Accumulation of DDTs in migratory birds during wintering in India may be of concern due to the great biomagnification potential of DDTs. Eggs of some resident species contained noticeable concentrations of OCs. Concentrations of OCs in three species of bats analyzed in this study were lower than that found in passerine birds. In addition to OCs, butyltin compounds were also detected at low concentrations in bats.  相似文献   

19.
Wang XL  Tao S  Dawson RW  Wang XJ 《Chemosphere》2004,55(4):525-531
A Monte Carlo simulation for uncertainty analysis of three key parameters (local coal consumption rate Q(1L), dry deposition velocity of aerosol particulate Kp and biodegradation rate of benzo(a)pyrene in soil and sediment K(R3)) was conducted in this study. Results of the simulation indicate that the three parameters were influenced by uncertainty and that all equilibrium concentrations in the four bulk compartments and various sub-compartments were log-normally distributed. However, the results also indicated that among the six primary transfer fluxes, erosion associated with solids in soil and deposition associated with solids in water, along with output from sewers were also log-normally distributed, while deposition from air to soil and biodegradation in soil and sediment followed normal distributions. The effect of uncertainty on the model results of the three key parameters was derived using a comparison of upper and lower of confidence interval boundaries at the 95% level of confidence. The results reveal that uncertainty in the key parameters had a more significant influence on equilibrium concentrations of the chemical in the bulk compartments of soil and sediment than on concentrations in the other two bulk compartments, various sub-compartments and the six predominant transfer fluxes.  相似文献   

20.
The dynamics of the disappearance of lindane, HCH isomers and HCB in soil after lindane application were studied, as well as the phenomenon of lindane bioisomerization to HCH isomers. The disappearance of the compounds studied depended on their volatilization into the atmosphere, plant absorption and degradation. During the experiment, lindane was bioisomerized in very small amounts to alpha-, beta-, delta-HCH and HCB, but not to epsilon-HCH. The limited magnitude of this phenomenon indicates that bioisomerization does not contribute to the contamination of food and the environment with HCH isomers that has been observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号