首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rates of predation by the invertebrates Aurelia aurita, Thysanoessa raschi and Euchaeta norvegica on larval stages of cod (Gadus morhua L.), flunder (Platichthys flesus L.), plaice (Pleuronectes platessa L.), herring (Clupea harengus L.), and turbot (Scophthalmus maximus L.) were determined. Experiments were conducted in late winter and early spring 1982 with predators collected in Loch Etive, Scotland and prey obtained from several locations in Great Britain. Early stages of the smallest species, cod, flounder and turbot, tended to be most vulnerable to all three predators, while the early stages of the larger species, plaice and herring, and older stages of all species, were less vulnerable. For all stages and species of larvae, predation rates by the three predators were most closely related to larval length and escape swimming speed. Larval length itself was closely correlated to indices of larval escape ability. Low predation rates on large larvae by E. norvegica could be due to handling difficulties, whereas for A. aurita and T. raschi these low rates were due to escape abilities of the larger larvae. Prey movement is an important stimulus eliciting predation in E. norvegica but not in A. aurita or T. raschi.  相似文献   

2.
Some effects of food density on the growth and behaviour of plaice larvae   总被引:1,自引:0,他引:1  
T. Wyatt 《Marine Biology》1972,14(3):210-216
The effect of food density on the growth, survival, and swimming activity of plaice larvae (Pleuronectes platessa L.) was investigated under controlled laboratory conditions. Suboptimal food concentrations decrease the growth of the height of the body musculature relative to length, and increase the amount of time spent searching for food. Older larvae are able to withstand much longer periods without food than young larvae. On the basis of these experiments, it is suggested that food limitation in a larval plaice population is likely to result in a concave mortality curve.  相似文献   

3.
Following yolk resorption, laboratory-reared larval Baltic herring (Clupea harengus L.) were exposed to two sequences of food restriction for 5 d and re-alimentation for 10 d. Comparisons regarding larval growth (standard length and content of water-soluble protein), mortality and content of the sum of trypsin and trypsinogen were made with larvae at a continuous high ration. Larvae exposed to varying prey abundance grew less in length than the control, and during the second high-ration period (Day 22 to 32) growth in length ceased. From the first low-ration period onwards, the content of water-soluble protein in these larvae was lower than that of the control larvae, and the survival rate of the low-high ration group was 59% compared to 77% in the larvae at a continuous high ration. In contrast, the effects of varying food availability were minor on larval content of trypsin and trypsinogen. Results are compared with previous findings in larval Clyde herring, and the effects of larval stock and timing and duration of food restriction on larval growth performance are discussed.  相似文献   

4.
Feeding ecology of Greenland halibut (Gr. halibut) (Reinhardtius hippoglossoides) and sandeel (Ammodytes sp.) larvae on the West Greenland shelf was studied during the main part of the productive season (May, June and July). Copepods were the main prey item for larval Gr. halibut and sandeel, constituting between 88 and 99% of the ingested prey biomass. For both species, absolute size of preferred prey increased during ontogeny. However, preferred copepod size in relation to larval length differed markedly. In Gr. halibut, the relative size of the prey declined during growth of the larvae, while it remained constant for sandeel at a level of 2.7% of larval length. This led to a reduction in prey niche overlap between the two species. The available prey copepod biomass differed distinctly across the shelf area. In May, the prey density of Gr. halibut was the highest in the off-shelf area in Davis Strait. In June and July, the prey-rich areas for both species were mainly located at the slopes of the banks and at the shelf break area. Gut fullness was higher in these areas than in neighbouring areas, suggesting that the larval food resource could be scarce. The feeding ecology of Gr. halibut and sandeel could explain why larval abundance indices of the two species have historically shown opposite responses to yearly environmental conditions and total zooplankton occurrence.  相似文献   

5.
Plaice (Pleuronectes platessa L.) were sampled during periods of growth and starvation, from the end of the yolk-sac stage through metamorphosis, for changes in water, triglyceride, carbohydrate, total nitrogen, total carbon, and ash. The percentage of water in larvae decreased continuously during development. During post-hatching growth (up to late Stage 2) nitrogen and carbohydrate were laid down faster than triglyceride. The pattern changed during later larval development. The early deposition of protein in preference to neutral fat suggests that conversion of food during growth, without simultaneously laying down fatty energy stores, may be advantageous to pelagic marine fish larvae. During starvation the percentage of water in plaice larvae increased. Triglyceride, carbohydrate, nitrogen and carbon (as a percentage of the dry body weight) decreased during starvation, but ash increased sharply. The continuous use of nitrogen during starvation may be a catabolic adaptation to the marine environment.  相似文献   

6.
P. Munk 《Marine Biology》1995,122(2):205-212
Fish larvae meet diverse environmental conditions at sea, and larval growth and chance of survival depend on a flexible response to environmental variability. The present study focuses on the flexibility of the foraging behaviour of larval cod in a series of laboratory experiments on larval search activity, prey selectivity, and hunger in a variable prey environment. Gadus morhua eggs were collected in March 1992 and 1993 from the Kattegat area, Denmark, fertilised and incubated in the laboratory. After hatching, the larvae were transferred to rearing tanks of 172 litres. The behaviour of larvae (6 to 7 mm long) was observed visually, and prey attacks, swimming activity and gut contents were registered across a range of 1 to 120 copepod nauplii l-1. When prey density decreased, larvae increased their swimming activity, increased their responsiveness to prey (distance of reaction) and decreased their prey size selectivity. Behavioural response was to a large degree determined by the level of hunger, represented by the number of newly ingested prey in the gut. The findings show that cod larvae have a flexible response to changes in feeding conditions and imply that larvae can grow and survive even in the lower range of (mean) prey densities measured at sea.  相似文献   

7.
Feeding habits of tropical fish larvae were analysed in a comparative study of four species (Scorpaenodes sp., Carangoides sp., Acanthocepola sp. and Cynoglossus sp.) from the Andaman Sea. We investigated morphological characteristics and their potential influence on larval feeding, and looked for common patterns in larval prey preference. Gut contents of a total of 300 larvae were examined and compared with local zooplankton composition. The feeding habits of the investigated larvae shared a number of characteristics. During ontogeny both the preferred prey size and the number of prey in the gut increased, and across all larval size classes the relative prey size spectrum stayed constant, of approximately the same magnitude for all four species. On the other hand, larval feeding also differed in a number of aspects, especially differences in the taxonomic composition of preferred prey were apparent. Scorpaenodes sp. preferred abundant and large prey taxa, Acanthocepola sp. and Carangoides sp. preferred large, but less common prey taxa, while Cynoglossus sp., which had the relatively smallest mouth size, preferred smaller sized prey groups. Hence, the findings indicate that from an offset of common characteristics, especially related to prey size preference, larvae have their individual feeding patterns related to specific morphology and patterns of distribution.Communicated by M. Kühl, Helsingør  相似文献   

8.
J. M. Last 《Marine Biology》1978,45(4):359-368
An examination was made of the stomach contents of the larvae of the plaice Pleuronectes platessa Linnaeus, 1758; the flounder Platichthys flesus (Linnaeus, 1758), the dab Limanda limanda (Linnaeus, 1758), and the sole Solea solea (Linnaeus, 1758) collected in the eastern English Channel and in the Southern Bight during the winter and spring of 1971. These 4 species of flat fish have distinct diets, and competition for food between them is largely avoided. Plaice larvae fed almost exclusively on Oikopleura dioica; flounder larvae also ate O. dioica, but in addition a wide range of planktonic organisms including phytoplankton, polychaete larvae, lamellibranch larvae, and copepod nauplii. Dab larvae fed mainly on the nauplii and copepodite stages of a variety of copepods, but particularly of Temora longicornis. Some T. longicornis copepodites and polychaete larvae were eaten by sole larvae, but the principal prey of these was lamellibranch larvae. The larvae of all the species began to feed in the yolk-sac stage; the initial food of all except plaice consisted of dino-flagellates, followed by tintinnids and copepod nauplii. Feeding began at dawn and the number of feeding fish and the number of food organisms in their stomachs increased throughout the day to a maximum near sunset. There were no consistent differences between the two areas in the diets of any of the species.  相似文献   

9.
We tested the influence of limiting access to prey on larval development of the crabs Cancer magister and Hemigrapsus oregonensis by raising their Stage 1 larvae in the laboratory on different prey densities and with various periods of access to prey. Experiments were conducted in 1995 and 1996 at the Shannon Point Marine Center in Anacortes, Washington, USA. Our results show that crab larvae do not require continuous access to prey for optimal development nor do they appear to require light for prey capture. Survival and duration of Stage 1 C. magister fed continuously on only one-fourth the amount of the control density of prey and those fed at the control density for only 6 h per day were the same as for larvae fed continuously at the control density (20 ml−1). Larvae with cyclic access to prey at the control density for 24 h and then starved for 72 h showed significantly lower survival and longer instar duration to Stage 2. Experiments on Stage 1 H. oregonensis which investigated a combination of prey density, period of access to prey and light/dark conditions during feeding revealed that survival decreased with decreasing prey density or with decreasing feeding period, but no differences were observed during periods of limited prey availability as a function of light or dark conditions. Stage duration was not affected by reduced prey density nor by the light/dark condition at the time of feeding, but it was prolonged when the period of access to prey was limited. The period of access to prey did not affect the weight of Day 1 Stage 2 larvae. Larvae fed high densities of prey for 4 h followed by 20 h of reduced-density diet exhibited the same survival and stage duration as controls that were continuously fed high-density prey. Our results define sub-optimal diets that can be used experimentally to determine the nutritional contributions made by naturally-occurring prey organisms during larval development in the two species. In nature, larvae may satisfy nutritional requirements through periodic encounters with dense prey patches during vertical migrations by day or night. Received: 12 August 1997 / Accepted: 5 February 1998  相似文献   

10.
L. V. Basch 《Marine Biology》1996,126(4):693-701
Effects of larval and algal culture density and diet composition on development and survival of temperate asteroid larvae were studied in the laboratory at Santa Cruz, California, USA, during summer and fall of 1990. Larvae of Asterina miniata were reared at two densities, 0.5 or 1.0 ml-1, and fed one or two species of cultured phytoflagellates — Dunaliella tertiolecta alone or mixed with Rhodomonas sp. — at three concentrations of 5x102, 5x103, and 5x104 total cells ml-1. Algal concentration strongly influenced larval development; however, larval density also had a marked effect. Development progressed further with increasing algal concentration. Larval growth and differentiation were sometimes uncoupled; i.e., growth measures were directly related to food level, while differentiation indicators were less so. At the lowest food level, growth was negative and differentiation was arrested at early precompetent stages; these larvae never formed juvenile rudiments or brachiolar attachment structures. Development times of larvae given more food ranged from 26 to 50 d and depended directly on food availability. Development time to metamorphosis at the highest food concentration was similar for siblings fed D. tertiolecta alone or mixed with Rhodomonas sp. In contrast, when food level was an order of magnitude lower, larvae fed the algal mixture metamorphosed significantly earlier than larvae fed the unialgal diet. This suggests interactive effects of food quantity and food quality. Survival was little affected by larval or food density, except at the lowest ration. Feeding experiments in well-controlled laboratory conditions are useful to predict and compare the physiological or developmental scope of response of larvae to defined environmental factors; however, results from such studies should not be extrapolated to predict rates and processes of larval development in nature.  相似文献   

11.
A laboratory energy budget was constructed for the larvae and juveniles of the American lobster Homarus americanus Milne-Edwards fed brine shrimp, Artemia saline L. Measured energy flows included ingestion, egestion, excretion of ammonia, routine and fed metabolism, growth, and production of exuvia. Digestion and assimilation were calculated and minimum ration of protein necessary to sustain larval lobsters was estimated. No change associated with metamorphosis was observed in rates of excretion, fed metabolism, and production of exuvia. Routine metabolism is not significantly higher for larvae than for juveniles. Growth changes from exponential in larvae to a slower increase in post-larvae. Consumption reflects changes in other variables. Changes in energy partitioning and energetic efficiencies associated with metamorphosis are largely due to change in rate of growth.  相似文献   

12.
Reared herring (Clupea harengus L.) and plaice (Pleuronectes platessa L.) were examined for morphological and histological changes during growth and starvation. The growth rate of herring larvae of 0.22 mm/day was less than that reported for wild stock, but this difference was attributed to survival of runts in laboratory. Larval plaice had a growth rate of 0.16 mm/day. The relative condition factor (antilogarithm of intercept of length-weight line) was used to assess condition throughout the larval stages. Starvation resulted in a progressive collapse of the larval body, especially of the ventral body surface around the pectoral girdle of both species (assessed by the pectoral angle) and of the spacing between the organs of the head in herring. There was a breakdown of the herring gut with decreases in epithelial cell height and catabolism of the connective tissue coat and a marked reduction in the transverse sectional area of the plaice liver. The changes in the pectoral angle in both herring and plaice and the eye height to head height ratio in herring should be useful to fishery biologists for assessing nutritional condition, even on board ship.  相似文献   

13.
Field and laboratory studies compared two features of larval behavior in a pair of predacious sisterspecies of green lacewings: one (Chrysopa slossonae) a specialist on a single species of colonial aphids (the woolly alder aphid) that occur on branches and trunks of alder trees, the other (C. quadripunctata) a general aphid feeder whose primary prey is dispersed on foliage of diverse types of trees. First, a few hours after hatching, larvae of the two species develop significantly different phototactic responses; the differences correspond well with the spatial distributions of their prey. Most C. slossonae exhibited negative phototaxis, a response that helps move hatchlings inward on alder trees toward the woolly alder aphid colonies, whereas most C. quadripunctata hatchlings showed positive orientation to light, a response that tends to keep them in tree canopies with their prey. Second, in greenhouse experiments, a significantly greater proportion of C. slossonae larvae (second instars) molted within woolly alder aphid colonies and remained with the aphids than did C. quadripunctata larvae. These differences indicate that the specialist larvae have evolved a high degree of behavioral fidelity to their prey. However, larvae (second instars) of the two species that were released near ant-tended woolly alder aphid colonies in the field had similar recovery (= survival) rates. Consequently, natural selection may not act on behavioral traits that influence larval fidelity to prey during the late second and early third instars.  相似文献   

14.
The fate of the protease trypsin in intestines of individual herring larvae Clupea harengus L. was studied following digestion of the copepod Acartia tonsa. Trypsin was retained in the intestine during two consecutive pulses of feeding and defaecation of copepods. Quantification of herring trypsin in digested, defaecated copepods showed that ca. 1% of larval intestinal enzyme was defaecated along with 1 to 3 copepods. Following ingestion of a single meal, the level of intestinal trypsin post-ingestion declined to pre-ingestion levels within 1 to 2 d of starvation. All enzyme data thus indicated that trypsin, released in response to ingestion of a meal, was retained. In addition, analysis of fed subgroups of starved larvae clearly indicated that release of trypsin from the pancreas stopped after 6 to 8 d of starvation. As the fish still contained substantial amounts of trypsinogen, the underlying cause might be defective release mechanisms. Daily secretion of trypsin and processes responsible for enzyme retention in the gut are discussed. Assimilation efficiency in herring larvae was estimated for copepodite prey. Average carbon assimilation was 90%.  相似文献   

15.
The zoeal larvae of brachyuran crabs must feed soon after hatching on a diet that includes large micro- and mesozooplankton in order to satisfy nutritional requirements. However, newly hatched larvae have been shown to ingest a variety of dinoflagellates, perhaps using microbial carbon sources to sustain them until they encounter more favored prey. Ingestion of dinoflagellates by larval crabs has been documented previously under conditions in which the larvae were exposed to algae provided in monoculture or in defined mixtures of cells. We report here on experiments conducted on the hatching stage of five crab species to determine if ingestion of dinoflagellates occurred when they were provided in combination with Artemia sp. nauplii or after a period of feeding on mesozooplankton. Quantitative measurements of chl a in the larval guts provided evidence of ingestion of algal cells. Active ingestion of the dinoflagellate Prorocentrum micans at specified intervals during an extended feeding period was determined on larvae of two crab species using fluorescently labeled cells provided for brief periods at prescribed time intervals. Stage 1 larvae of four of the five crab species ingested dinoflagellates when they were provided in combination with nauplii and larvae of all five species ingested cells after feeding solely on nauplii for 24 h. Ingestion of algal cells was first evident in the larval guts after 6 h of feeding at both low (200 cell ml−1) and high (1,000 cells ml−1) prey densities. Higher prey densities resulted in higher gut chl a. Larvae continuously exposed to dinoflagellates actively ingested cells at every 3 h interval tested over a 36 h period. Results confirm previous studies that larvae will ingest dinoflagellates even when they are encountered in a mixed prey field or when having previously fed. Ingestion of cells may occur on a continual basis over time.  相似文献   

16.
Atlantic blue marlin (Makaira nigricans) and sailfish (Istiophorus platypterus) larvae were collected from 10 monthly cruises (June–October 2003 and 2004) across the Straits of Florida to test (1) whether growth differed between the more productive western region near the Florida shelf, and the less productive eastern region toward the Bahamas, and (2) whether growth was related to prey consumption. Examination of larval sagittal otoliths revealed that instantaneous growth and daily growth during the first 2–3 weeks of life did not vary significantly between the two regions for either species. However, recent growth during the last two full days prior to collection was greater in the west for blue marlin larvae. Recent growth of blue marlin larvae <9 mm SL (primarily zooplanktivorous) was significantly related to prey composition (faster growth when higher proportions of Farranula copepods were consumed). Western larvae grew faster and had higher proportions of Farranula in their guts. Trends for sailfish larvae were not significant. In both species, comparison of early growth between <9 and ≥9 mm SL size groups indicated that growth trajectories diverged around 5–8 mm SL, the time when billfish larvae become capable of piscivory. Significantly faster growth of larger (older) larvae suggests that mortality was selective for fast growers and that the transition to piscivory may be a critical point in the early life of billfish.  相似文献   

17.
Feeding ecology was analysed for the first time in the larvae of the European hake (Merluccius merluccius) to determine whether their diet and selectivity were constrained by environmental conditions and how these feeding characteristics were related to ontogeny, prey availability and visual capabilities. Larvae collected during both day and night were analysed, and it was found that feeding incidence was high, regardless of the time of day. Examination of the visual system corroborated the hypothesis that hake larvae should be able to cope with a wide range of photic conditions and to forage even at low light intensity. A clear preference for adult calanoid copepods and, especially, for Clausocalanus spp. was observed in all sizes analysed. Prey number increased with larval size, but prey size did not. This finding indicates that hake larvae behave as selective and specialist predators that consume an increasing number of prey rather than larger prey during larval growth.  相似文献   

18.
Three species of phytoplankton grown at high (HL) or low light (LL) were fed as saturating rations to laboratory-reared larval Crassostrea gigas. Larval C. gigas fed diets of HL grown Chaetoceros gracilis and HL grown Isochrysis aff. galbana grew faster than those fed LL grown cells of the same phytoplankton species. Faster growth of C. gigas larvae was consistently associated with increases in the percent composition of short chain saturated fatty acids (FA) 14:0+16:0 in the HL grown cells. There were no consistent and significant differences between HL and LL grown phytoplankton cells in their content of carbon, nitrogen, protein, lipid or carbohydrate. Intraspecific increases in percent composition of essential fatty acids (EFAs), 20:53 and 22:63, in the phytoplankton were not associated with improvements in the growth or survival of the oyster larvae. Oyster larvae fed diets of Phaeodactylum tricornutum with a relatively high proportion of EFAs grew more slowly than those fed C. gracilis. In this experiment the proportion of dietary EFA 20:53 was negatively correlated with oyster growth rates. The faster growing oyster larvae contained relatively more of the FAs 14:0+16:0 which may be useful as measures of larval oyster condition. After a diet of one phytoplankton species for ca. 10 d, oyster larvae acquired distinctive FA profiles resembling that of their phytoplankton prey.  相似文献   

19.
Most marine fishes undergo a pelagic larval phase, the early life history stage that is often associated with a high rate of mortality due to starvation and predation. We present the first study that examines the effects of prey swimming behavior on prey-capture kinematics in marine fish larvae. Using a digital high-speed video camera, we recorded the swimming velocity of zooplankton prey (Artemia franciscana, Brachionus rotundiformis, a ciliate species, and two species of copepods) and the feeding behavior of red drum (Sciaenops ocellatus) larvae. From the video recordings we measured: (1) zooplankton swimming velocity in the absence of a red drum larva; (2) zooplankton swimming velocity in the presence of a red drum larva; and (3) the excursion and timing of key kinematic events during prey capture in red drum larvae. Two-way ANOVA revealed that: (1) swimming velocity varied among zooplankton prey; and (2) all zooplankton prey, except rotifers and ciliates, increased their swimming velocity in the presence of a red drum larva. The kinematics of prey capture differed between two developmental stages in S. ocellatus larvae. Hyoid-stage larvae (3–14 days old) fed on slow swimming B. rotundiformis (rotifers) while hyoid-opercular stage larvae (15 days and older) ate fast moving A. franciscana. Hyoid-opercular stage red drum larvae had a larger gape, hyoid depression and lower jaw angle, and a longer gape cycle duration relative to their hyoid-stage conspecifics. Interestingly, the feeding repertoire within either stage of red drum development was not affected by prey type. Knowledge of the direct relationship between fish larvae and their prey aids in our understanding of optimal foraging strategies and of the sources of mortality in marine fish larvae.  相似文献   

20.
Food selection by young larvae of the gulf menhaden (Brevoortia patronus) was studied in the laboratory at Beaufort, North Carolina (USA) in 1982 and 1983; this species is especially interesting, since the larvae began feeding on phytoplankton as well as microzooplankton. When dinoflagellates (Prorocentrum micans), tintinnids (Favella sp.), and N1 nauplii of a copepod (Acartia tonsa) were presented to laboratory-reared, larval menhaden (3.9 to 4.2 mm notochord length), the fish larvae ate dinoflagellates and tintinnids, but not copepod nauplii. Larvae showed significant (P<0.001) selection for the tintinnids. Given the same mixture of food items, larger larvae (6.4 mm notochord length) ate copepod nauplii as well as the other food organisms. These feeding responses are consistent with larval feeding in the northern Gulf of Mexico, where gulf menhaden larvae between 3 and 5 mm in notochord length frequently ate large numbers of dinoflagellates (mostly P. micans and P. compressum) and tintinnids (mostly Favella sp.), but did not eat copepod nauplii. As larvae grew, copepod nauplii and other food organisms became important, while dinoflagellates and tintinnids became relatively less important in the diet. Since the tintinnids and nauplii used in the laboratory feeding experiments were similar in size as well as carbon and nitrogen contents, the feeding selectivity and dietary ontogeny that we observed were likely due to a combination of prey capturability and larval fish maturation and learning.Contribution No. 5575 of the Woods Hole Oceanographic Institution  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号