首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To test whether heterotrophic protists modify precursors of long chain n−3 polyunsaturated fatty acids (LCn−3PUFAs) present in the algae they eat, two algae with different fatty acid contents (Rhodomonas salina and Dunaliella tertiolecta) were fed to the heterotrophic protists Oxyrrhis marina Dujardin and Gyrodinium dominans Hulbert. These experiments were conducted in August 2004. Both predators and prey were analyzed for fatty acid composition. To further test the effects of trophic upgrading, the calanoid copepod Acartia tonsa Dana was fed R. salina, D. tertiolecta, or O. marina that had been growing on D. tertiolecta (OM-DT) in March 2005. Our results show that trophic upgrading was species-specific. The presence of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in the heterotrophic protists despite the lack of these fatty acids in the algal prey suggests that protists have the ability to elongate and desaturate 18:3 (n−3), a precursor of LCn−3PUFAs, to EPA and/or DHA. A lower content of these fatty acids was detected in protists that were fed good-quality algae. Feeding experiments with A. tonsa showed that copepods fed D. tertiolecta had a significantly lower content of EPA and DHA than those fed OM-DT. The concentration of EPA was low on both diets, while DHA content was highest in A. tonsa fed R. salina and OM-DT. These results suggest that O. marina was able to trophically upgrade the nutritional quality of the poor-quality alga, and efficiently supplied DHA to the next trophic level. The low amount of EPA in A. tonsa suggests EPA may be catabolized by the copepod.  相似文献   

2.
As intermediaries, some heterotrophic protists can enhance the content of the long chain n-3 essential fatty acids (LCn-3EFAs), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), of low food quality algae for subsequent use at higher trophic levels. However, the mechanisms that produce LCn-3EFAs are presently unknown, although LCn-3EFA production by heterotrophic protists at the phytoplankton–zooplankton interface may potentially affect the nutritional status of the pelagic system. We investigated whether the heterotrophic protists, Oxyrrhis marina and Gyrodinium dominans, produce LCn-3EFAs via elongation and desaturation of dietary LCn-3EFA precursors and/or synthesize LCn-3EFAs de novo by: (1) feeding the two heterotrophic protists with a prey deficient in n-3 fatty acids, (2) incubating them in medium containing 13C-labeled sodium acetate, and (3) feeding the two protists gelatin acacia microspheres (GAMs) containing a deuterium-labeled LCn-3EFA precursor, linolenic acid [18:3(n-3)-d4]. Both O. marina and G. dominans synthesized EPA and DHA when fed the n-3 fatty acid-deficient prey, Perkinsus marinus, a parasitic protozoan. O. marina, but not G. dominans utilized 13C-labeled acetate from the medium to produce uniformly labeled fatty acids, including DHA. Both heterotroph species consumed GAMs containing 18:3(n-3)-d4 and catabolized 18:3(n-3)-d4 to 16:3(n-3)-d4 and 14:3(n-3)-d4, while no 20 or 22 carbon metabolites of 18:3(n-3)-d4 were detected. These results suggest that O. marina and G. dominans do not elongate and desaturate dietary LCn-3EFA precursors to produce LCn-3EFAs, but rather they produce LCn-3EFAs de novo, possibly via a polyketide synthesis pathway.  相似文献   

3.
The fatty acid and alcohol composition of the pelagic amphipod, Themisto libellula, was monitored during the 5 first months of its life cycle (4–20 mm length) in an Arctic fjord, Kongsfjorden, Svalbard. Fatty acids of the three major lipid classes, polar lipids (PL), triacylglycerol (TAG), and wax esters (WE), were analyzed to highlight ontogenic changes in their diet and metabolism. The PL composition of T. libellula did not show any strong variations along their growth except during the first month where an important increase of 20:5(n-3) (EPA) and 22:6(n-3) (DHA) was observed. The TAG composition revealed a clear gradient corresponding to a diet shift from omnivorous juveniles toward carnivorous sub-adults and adults. Indeed, fatty acid trophic markers of diatoms were dominant in the juveniles, whereas 20:1(n-9) and 22:1(n-11), the Calanus sp. trophic markers, overwhelmed in the older stages. The WE composition highlighted the same general trend, however, differences were found with the TAG and are discussed as a result of differences in turnover rates and assimilation pathways between the two lipid classes.  相似文献   

4.
Study of the ecology of mesopelagic fishes is central for assessing the active biological pump in the ocean, especially in the mesopelagic layers. The use of δ13C and fatty acid analysis can help to analysis the ecology of mesopelagic fishes. Here, we analysed the fatty acid composition of mesopelagic fishes from the continental northern slope of the South China Sea (NSSCS) and compared with nearshore SCS fishes and mesopelagic fishes collected from the Southern Ocean. The mesopelagic fishes had unusually high lipids, which resulted in Δδ13C values exceeding 1‰, more than the enrichment factor in the food web. The mesopelagic fishes had higher C18:1n-9/C18:1n-7 and C20:1n-9/ C18:1n-7 ratios compared with other fishes in the SCS, which confirmed that plankton were their main dietary source. The mesopelagic fishes from SCS and Southern Ocean had different ratios of C20:5n-3/C22:6n-3 (EPA/DHA), suggesting geographical locations and diet sources had obvious influence on their fatty acid composition. The SCS mesopelagic fishes had higher C20:4n-6/C22:6n-3 (ARA/DHA) and C20:4n-6/C20:5n-3 (ARA/EPA) ratios than mesopelagic fishes in the Southern Ocean, indicating the influence of physical factors on fatty acid composition. Thus, future studies of the fatty acids in mesopelagic fishes should consider both dietary sources and physical environments.  相似文献   

5.
The Strait of Gibraltar is inhabited throughout the year by a group of pilot whales (Globicephala melas), but their spatial distribution varies between Summer and Autumn. In this paper, we have used carbon (13C/12C) and nitrogen (15N/14N) stable isotope signatures to investigate the differences in diet amongst seasons, sex and stable social units. Skin samples were collected from 56 individually photo-identified pilot whales during Autumn 2005 and Summer 2006. These individuals were genetically sexed and their isotopic signature determined. The level of inter-individual association both within and between stable social units were compared to Euclidean distances between individual isotopes signatures. No differences in either δ15N or δ13C were found according to the sex of individuals, but significant seasonal differences were found in δ15N, although not in the δ13C values. This suggests that pilot whales are resident year round in the Strait, a finding supported by independent photo-identification. The variation in δ15N could reflect a shift in pilot whale diet through the year, with pilot whales feeding at a higher trophic level in Autumn compared to Summer. This could also represent a change in the diet of pilot whale prey species. The δ13C values were significantly different amongst the four stable social units sampled and individual δ13C values were significantly related to the level of inter-individual association, while no relationship was found for δ15N. These results suggest that within the same general area (i.e. the Strait of Gibraltar), there is some level of specialisation in habitat or prey choice between pilot whales social units.  相似文献   

6.
The distribution of n-3 highly unsaturated fatty acids (HUFA) over the major neutral and polar lipid classes was determined for two predominant types of live food used in the larviculture of marine fish and shrimp, i.e. freshly hatched and HUFA-enriched Artemia, and compared with data reported in the literature for wild copepods, representing the natural diet of these larvae. Lipid class composition and their content of n-3 HUFA, particularly eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3), were assessed in freshly hatched, HUFA-enriched and subsequently starved Artemia franciscana. The n-3 HUFA enrichment was based on feeding Artemia a lipid emulsion in which either fatty acid ethyl esters (EE, diluted with olive oil) or triacylglycerol (TAG) provided a level of 30% n-3 HUFA. Enrichment of Artemia with either type of the lipid emulsions resulted in an increase of total lipid content from 20.0 to 28.2–28.7% of dry matter mainly due to the accumulation of neutral lipid, primarily TAG (from 82 to 158 mg g−1 dry wt in freshly hatched and 24-h enriched Artemia). Enriched brine shrimp utilized up to 27–30% of their TAG content during 72 h of starvation at 12 °C. The absolute tissue concentrations of polar lipids remained constant at 71 to 79 mg g−1 dry wt throughout the enrichment and subsequent starvation. The level of n-3 HUFA increased drastically during enrichment from 6.3% of total fatty acids (8.2 mg g−1 dry wt) in freshly hatched nauplii to between 20.4 and 21.8% (40.4 to 43.2 mg g−1 dry wt) in 24-h enriched Artemia and was not significantly affected by the source of n-3 HUFA. During starvation, 18:0, 20:4n-6 and 20:5n-3 were retained, whereas 18:4n-3, 22:5n-3 and 22:6n-3 were specifically catabolized. The major polar lipids, phosphatidylethanolamine (PE) and phosphatidylcholine (PC), of freshly hatched Artemia showed very low levels of DHA (<0.1% of total fatty acids) and carried about 45% of the total EPA present. Enrichment with either of the emulsions resulted in an increase of the neutral lipid fraction which concentrated >64% of the EPA and >91% of the total DHA present. This is in sharp contrast with the high levels of n-3 HUFA, in particular DHA, in the polar lipid fraction reported for wild copepods. The contrasting distribution of DHA in the neutral and polar lipid fractions of enriched brine shrimp compared to the natural diet may influence the efficacy of this essential fatty acid for marine fish larvae in aquaculture systems. Received: 10 June 1997 / Accepted: 8 August 1997  相似文献   

7.
The total lipids and fatty acid composition of natural particulate matter and nutritional quality for zooplankton grazers was studied on a seasonal basis in the Arctic fjord Kongsfjorden (Svalbard) during the spring, summer of 2007 and during the early summer of 2006. Both years were abnormally warm, and the study attempted to evaluate the potential impact of the intrusion of North Atlantic waters. Samples were collected in surface layers and at deep chlorophyll maximum (DCM when present). Both years, chlorophyll concentrations were low (<2 μg L?1) even during bloom periods. Species determination indicated Phaeocystis spp. as main constituent of the May bloom while ciliates and flagellates dominated the rest of the survey period. Total lipids showed similar changes at both depths with maximum values in mid-summer of 2007, while it showed reverse patterns between surface and DCM in 2006. Total fatty acid composition was dominated by saturates and monoenoic acids at both depths with significant percentages of pentaenoic acids and 22:6n-3 (DHA) recorded at all times. The 2007 fatty acid dynamics identified four main successions in term of particulate assemblage related mainly to the succession of living cells versus detrital material and to a lesser extent to phytoplankton community changes (diatoms versus non-diatoms). Redundancy analysis confirmed that live phytoplankton is one of the main drivers in the fatty acid changes. Temperature and density of the surface water are also influential in relation to water mass dynamics. Concentrations of fatty acids available to consumers showed n-3 PUFA ranging from 2 to 15 μg L?1 and n-6 PUFA ranging from 0.3 to 2 μg L?1. Concentration of EPA (20:5) and DHA are potentially limiting, suggesting a negative impact of Phaeocystis pouchetti-type phytoplankton linked to advection of Atlantic waters in relation to global warming of Arctic waters.  相似文献   

8.
The widespread omnivory of consumers and the trophic complexity of marine ecosystems make it difficult to infer the feeding ecology of species. The use of stable isotopic analysis plays a crucial role in elucidating trophic interactions. Here we analysed δ15N, δ13C and δ34S in chick feathers, and we used a Bayesian triple-isotope mixing model to reconstruct the diet of a generalist predator, the yellow-legged gull (Larus michahellis) that breeds in the coastal upwelling area off northwest mainland Spain. The mixing model indicated that although chicks from all colonies were fed with a high percentage of fish, there are geographical differences in their diets. While chicks from northern colonies consume higher percentages of earthworms, refuse constitutes a more important source in the diet of chicks from western colonies. The three-isotope mixing model revealed a heterogeneity in foraging habitats that would not have been apparent if only two stable isotopes had been analysed. Moreover, our work highlights the potential of adding δ34S for distinguishing not only between terrestrial and marine prey, but also between different marine species such as fish, crabs and mussels.  相似文献   

9.
Three strains of the chain-forming diatom Skeletonema marinoi, differing in their production of polyunsaturated aldehydes (PUA) and nutritional food components, were used in experiments on feeding, egg production, hatching success, pellet production, and behavior of three common planktonic copepods: Acartia tonsa, Pseudocalanus elongatus, and Temora longicornis. The three different diatom strains (9B, 1G, and 7J) induced widely different effects on Acartia tonsa physiology, and the 9B strain induced different effects for the three copepods. In contrast, different strains induced no or small alterations in the distribution, swimming behavior, and turning frequency of the copepods. 22:6(n-3) fatty acid (DHA) and sterol content of the diet typically showed a positive effect on either egg production (A. tonsa) or hatching success (P. elongatus), while other measured compounds (PUA, other long-chain polyunsaturated fatty acids) of the algae had no obvious effects. Our results demonstrate that differences between strains of a given diatom species can generate effects on copepod physiology, which are as large as those induced by different algae species or groups. This emphasizes the need to identify the specific characteristics of local diatoms together with the interacting effects of different mineral, biochemical, and toxic compounds and their potential implications on different copepod species.  相似文献   

10.
The impact of supplementing lipid emulsions rich in eicosapentaenoic acid (EmEPA), docosahexaenoic acid (EmDHA) or saturated fatty acids (EmCOCO) to a standard algal diet [3:1 mixture of Isochrysis galbana (T-iso) and Chaetoceros neogracile, St-diet] on Argopecten purpuratus broodstock was evaluated. Broodstock fecundity was compared as well as the egg quality in terms of lipid content, fatty acid composition and lipid class distribution. Fecundity was defined as the number of eggs released in the spawning process, since spawning was virtually complete. Results indicated that the total lipid content of the eggs of A. purpuratus was diet independent. A greater energy reserve was spent on a larger number of oocytes and not on bigger sized oocytes with a higher lipid content. The lipids supplied through the emulsions were at least partially allocated to the eggs, demonstrating that the fatty acid composition of the eggs could be manipulated, especially the neutral lipid fraction. Levels of EPA changed more rapidly than DHA levels, supporting the observation that they fulfilled an energetic and structural role, respectively. The St-diet supplemented with 50%EmCOCO resulted in a significantly higher fecundity compared to the algal diet supplemented with 25%EmEPA+25%EmDHA and the non-supplemented algal diet. It would seem that saturated fatty acids (SAFA) were more easily or preferentially incorporated in the female gonads of A. purpuratus. The relative content of SAFA and 18:2( n-6) in these eggs rose significantly. The relative content of the highly unsaturated fatty acids, EPA and DHA, on the other hand was substantially lower in the neutral lipid fraction, but hardly affected in the polar lipid fraction. It appeared that the maintenance of an adequate DHA/EPA ratio (approximately 1.2) was more important than the absolute levels of the two fatty acids, as long as a threshold value was reached.  相似文献   

11.
Most studies on the foraging ecology of loggerhead turtles (Caretta caretta) have focused on adult females and juveniles. Little is known about the foraging patterns of adult male loggerheads. We analyzed tissues for carbon and nitrogen stable isotopes (δ13C and δ15N) from 29 adult male loggerheads tracked with satellite transmitters from one breeding area in Florida, USA, to evaluate their foraging habitats in the Northwest Atlantic (NWA). Our study revealed large variations in δ13C and δ15N and a correlation between both δ13C and δ15N and the latitude to which the loggerheads traveled after the mating season, thus reflecting a geographic pattern in the isotopic signatures. Variation in δ13C and δ15N can be explained by differences in food web baseline isotopic signatures rather than differences in loggerhead trophic levels. Stable isotope analysis may help elucidate residency and migration patterns and identify foraging sea turtle subpopulations in the NWA due to the isotopically distinct habitats used by these highly migratory organisms.  相似文献   

12.
During austral summer of 1985 different developmental stages (CIII, CIV, CV, females, males) of the Antarctic copepod Euchaeta antarctica and females of Euchirella rostromagna were collected in the southeastern Weddell Sea to determine their lipid contents and compositions. For E. antarctica the analyses revealed a strong ontogenetic accumulation of lipids towards the older copepodids with highest lipid contents in late CV stages and adults. The females of E. rostromagna had moderate lipid levels. The most striking difference between these two species concerns their lipid class compositions. E. antarctica deposited predominantly wax esters, whereas in E. rostromagna the major lipid class consisted of triacylglycerols, an unusual storage lipid in polar marine copepods. Principal fatty acids in E. antarctica were the monounsaturates 18:1(n-9) and 16:1(n-7), especially in the lipid-rich stages, while the polyunsaturated fatty acids 20:5(n-3) and 22:6(n-3), usually membrane lipids, dominated in the lipid-poor stages. The wax ester moieties in E. antarctica consisted almost entirely of 14:0 and 16:0 fatty alcohols. Major components in E. rostromagna were the fatty acids 18:1(n-9), 16:0, 20:5(n-3) and 22:6(n-3). The potential of fatty acids and alcohols as typical trophic markers is rendered largely insignificant in the two species due to catabolic processes.  相似文献   

13.
The present work is a comprehensive study of reproduction and embryonic development of Armases cinereum. Ovigerous A. cinereum (Bosc, 1802) females from Sebastian Inlet, Florida (9.88–19.4 mm CW) lay 2,000–12,000 eggs per brood, depending on their CW (mm): fecundity = 24.662 CW1.9432. A. cinereum displayed significant brood loss through development (ca. 500 eggs per brood) independently from their CW (no senescence). However, since smaller females lay fewer eggs than larger ones, the percentage of eggs lost during embryonic development is greater in smaller females. The number of eggs carried on a later stage of development (potential fertility = 5.5593 CW2.4417) is a more accurate estimate of the reproductive output and subsequent recruitment. Egg volume increased during development (64%, 0.025–0.041 mm3 or 0.36–0.43 mm of diameter, N = 270) and was strongly correlated with egg water content increase (19.21%, r = 0.89). Lipids, particularly fatty acids, seem to be the major energy source for embryonic development, decreasing 56.31 and 37.08% (respectively) during embryonic development; both are negatively correlated with egg volume (r = −0.90). The utilization of fatty acids through the different developmental stages of A. cinereum is presented. The most consumed fatty acids are the monounsatured (43.33 μg mg−1 dw), followed by the saturated (29.91 μg mg−1 dw) and polyunsaturated (24.03 μg mg−1). Palmitic (16:0) and linoleic (18:2n-6) acids are preferentially consumed (19.5 and 17.9 μg mg−1 dw, respectively). The high proportion of essential polyunsaturated fatty acids of C18 and C20 reflects the consumption of primary producers such as mangrove leaves. EPA/DHA ratio (2.85–3.84) and low DHA content indicated that this species appears in a medium-low level of the trophic chain. The low ratio of 18:1n-7/18:1n-9 and high percentage of 18:1n-9 (marker of carnivory) may be a sign of the consumption of juvenile invertebrates. The high percentage of odd-numbered FA indicated the occurrence of detritivores/scavenger behaviours. The fatty acid composition of the eggs reflects adult feeding ecology (omnivorous) and habitat.  相似文献   

14.
This study aims to describe the variability of albacore (Thunnus alalunga) diet in the Northeast Atlantic and Mediterranean Sea and to identify possible relationships between this variability and the features of different feeding areas, the behavior, and the energetic needs of albacore. Stomach contents from albacore caught in five zones of the Bay of Biscay and surrounding waters (n = 654) and three zones of the Mediterranean Sea (n = 152) were analyzed in terms of diet composition and stomach fullness. Carbon and nitrogen stable isotope and C/N ratios were measured for white muscle and liver from albacore in the Bay of Biscay (n = 41) and Mediterranean Sea (n = 60). Our results showed a spatial, seasonal, inter-annual, and size-related variability in the diet of albacore. Albacore diet varied by location in the Mediterranean Sea, with a particularly high proportion of cephalopods, and low δ15N values in the Tyrrhenian Sea. In the Northeast Atlantic, albacore consumed a higher proportion of crustaceans and a lower proportion of fishes in the most offshore sampling zone than inshore. The digestion states of the major prey reflected a diurnal feeding activity, indicative of feeding in deeper waters offshore, whereas on the continental slope, feeding probably occurred in surface waters at night. Important seasonal and inter-annual diet variability was observed in the southeast of the Bay of Biscay, where preferred albacore prey appeared to be anchovy (Engraulis encrasicolus). Stomach fullness was inversely related to body size, probably reflecting higher energetic needs for smaller individuals. Albacore from the Bay of Biscay had significantly lower δ13C and higher δ15N values compared with albacore from the Mediterranean Sea, indicative of regional baseline shifts, and trophic position and muscle lipid stores in albacore increased with body size.  相似文献   

15.
Over 6-million pairs of sooty terns Sterna fuscata breed once a year in the southwest Indian Ocean, mostly on three islands of the Mozambique Channel (Europa, Juan de Nova and Glorieuses) and in the Seychelles region. Seasonal reproduction in either winter or summer is the dominant strategy in the area, but non-seasonal reproduction also occurred in some places like at Glorieuses Archipelago. The feeding ecology of the sooty tern was investigated during the breeding seasons to determine whether terns showed significant differences in their trophic ecology between locations. Regurgitations were analyzed to describe the diet of individuals when breeding, and stable isotopes and mercury concentrations were used to temporally integrate over the medium-term of the trophic ecology of both adults and chicks. Overall, the diet was composed of fish, flying squid and fish larvae in different proportions. At Europa and Aride in the Seychelles, where winter reproduction occurs, large epipelagic prey like flying fish or squid dominated the diet. At Juan de Nova, sooty terns reproduce in summer and rely mostly on fish larvae. At Glorieuses (non-seasonal breeding), the diet was intermediate with fish larvae and flying squid being important prey items. The stable-carbon and nitrogen isotope values in blood confirm the differences observed in dietary analysis, and demonstrate different feeding strategies between colonies. δ13C values of feathers showed spatial segregation between birds from the Mozambique Channel and the Seychelles region. Terns from the Seychelles had also higher δ15N values. Feather δ13C values also suggest a significant shift from summer to wintering habitat for birds from Juan de Nova. This study emphasizes the high phenotypic plasticity of the species, which may explain its numerical dominance in all tropical waters of the World’s Ocean.  相似文献   

16.
Ecological and physiological studies focused on dietary preferences, lipid biochemistry and energetics within the three Antarctic chaetognaths Eukrohnia hamata, E. bathypelagica and E. bathyantarctica from meso- and bathypelagic depths. Eukrohnia hamata and E. bathypelagica respired 0.15 μL O2 mg dry mass (DM)−1 h−1, which translates to an average metabolic loss of only <1.1% of body carbon per day. Lipid storage was not substantial in E. bathypelagica (mean 11.5 ± 6.5% DM) and E. bathyantarctica (mean 15.4 ± 4.1% DM) during summer and winter, suggesting year-round feeding of these predators mainly on copepods. In E. bathypelagica, total fatty acids were dominated by the fatty acids 16:0, 20:5(n-3) and 22:6(n-3) and in E. bathyantarctica also by 18:1(n-9), a fatty acid usually found in storage lipids. Only the latter species was characterized by significant amounts of wax esters, consisting largely of the common fatty alcohols 16:0, 20:1(n-9) and the unusual fatty alcohol isomer 22:1(n-9).  相似文献   

17.
Lipid compositions of the dominant Antarctic copepods Calanoides acutus, Rhincalanus gigas and Calanus propinquus from the Weddell Sea have been investigated in great detail. Copepods were collected during summer in 1985 and late spring/early winter in 1986. The analyses revealed specific adaptations in the lipid biochemistry of these species which result in very different lipid components. The various copepodite stages of C. acutus synthesize wax esters with long-chain monounsaturated moieties and especially the alcohols consisted mainly of 20:1(n-9) and 22:1(n-11). R. gigas also generates wax esters, but with moieties of shorter chain length. The fatty alcohols consisted mainly of 14:0 and 16:0 components, while the major fatty acids were 20:5, 18:4 and 22:6, of which 18:4 probably originated from dietary input. In contrast, C. propinquus accumulates triacylglycerols, a very unusual depot lipid in polar calanoid copepods. Major fatty acids in C. propinquus were the long-chain monounsaturates 22:1(n-9) and 22:1(n-11), which may comprise up to 50% of total fatty acids. In C. acutus and C. propinquus there was a clear increase of long-chain fatty acids with increasing developmental stage. In contrast, the fatty acid and alcohol composition of the R. gigas copepodite stages were characterized by the dominance of the polyunsaturated fatty acids as well as high amounts of the monounsaturates 18:1(n-9) and 16:1(n-7). There was a considerable decrease of the dietary fatty acid 18:4(n-3) towards the older stages during summer; in late winter/early spring 18:4 was only detected in very low amounts. This tendency was also found in the other two species, but was less pronounced. In all three species dry weight and lipid content increased exponentially from younger to older stages. The highest portion of wax esters, or of triacylglycerols in C. propinquus, was found in the adults. Dry weight and lipid content were generally higher during summer. In late winter/early spring the variability was more pronounced and lipid-rich specimens showed a selective retention of long-chain monounsaturated fatty acids, whereas in lipid-poor specimens these fatty acids were very much depleted.  相似文献   

18.
Four species of microalgae (Chaetoceros muelleri, Tetraselmis suecica, Tahitian Isochrysis sp. (T-iso) and Dunaliella tertiolecta) with distinctly different fatty acid profiles were grown in continuous culture and fed to prawn larvae (Penaeus japonicus, P. semisulcatus and P. monodon) as monospecific diets. The best two diets (C. muelleri and T. suecica) were also fed as a mixed diet. Experiments were run until the larvae fed the control diet of C. muelleri metamorphosed to Mysis 1. The survival and development (i.e. performance) of the larvae were affected by algal diet, and the diets were ranked in the order of decreasing nutritional value: C. muelleri ≥ T. suecica > T-iso > D. tertiolecta. Larvae fed a mixed diet of C. muelleri and T. suecica (2:3 by dry weight) performed as well or better than those fed C. muelleri, and the performance of both these groups of larvae was better than those fed T. suecica. The lipid and carbohydrate compositions of the algae had little or no effect on the lipid and carbohydrate compositions of the larvae or their performance. However, the larvae that performed best (i.e. those fed C. muelleri) had significantly more lipid and carbohydrate than those that performed worst (i.e. those fed D. tertiolecta). Larvae fed C. muelleri or the mixed-algae diet had higher proportions of the essential fatty acids eicosapentaenoic acid [EPA, 20:5(n-3)] and arachidonic acid [ARA, 20:4(n-6)] than the larvae fed on other diets. Furthermore, the larvae fed T. suecica, which showed intermediate performance between larvae fed C. muelleri and T-iso or D. tertiolecta, also had higher proportions of EPA and ARA. Both C. muelleri and T. suecica contained EPA and ARA, but T-iso and D. tertiolecta did not, except for trace amounts of EPA in T-iso. The fatty acid ARA appears to be much more important in the diet of larval prawns than has so far been considered. The level of the essential fatty acid docosahexaenoic acid [DHA, 22:6(n-3)] in the algal diet and the larvae was not related to the performance of the larvae; only C. muelleri and T-iso contained DHA. However, the nauplii contained large proportions of DHA, suggesting that these were sufficient to meet the larval requirements for DHA during their development to Mysis 1. Mixed-algae diets could improve the performance of larvae by providing a more comprehensive range of fatty acids. Received: 22 April 1998 / Accepted: 3 December 1998  相似文献   

19.
Cephalopod beaks retrieved from stomachs of dead emperor penguin chicks at Pointe Géologie, Terre Adélie, provide information on taxonomic and size composition of the penguin’s squid diet, on the trophic range of the squid species preyed upon and on the fractional trophic impact of the penguin on the whole food web. Emperor penguins prey upon four squid species (Psychroteuthis glacialis, Kondakovia longimana, Gonatus antarcticus, Alluroteuthis antarcticus) and do not take squid larger than 480 mm mantle length. Larger squid live either below the penguin’s diving range or are beyond its handling capacity. Nitrogen stable isotope ratios indicate that squids cover a range of about two trophic levels (2.5–8‰ δ15N). The impact of the emperor penguin, however, concentrates on the upper part of this range, about 68% of its squid prey being >6‰ δ15N. The principal components of the emperor’s diet, fish, krill and squid, differ distinctly in average trophic level. Consequently the trophic position of the emperor penguin changes accordingly with diet composition and may differ by almost one trophic level between different emperor penguin colonies.  相似文献   

20.
The Greenland shark (Somniosus microcephalus) is the only shark species known to inhabit ice-covered seas in the North Atlantic, but remains a missing component in most studies of Arctic food webs. In the present study, stable isotopes (SIs) of nitrogen (δ15N) and carbon (δ13C) and fatty acids (FAs) were analyzed to identify the role of Greenland sharks (sampled during June 2008–2009) in Kongsfjorden, a productive fjord on the west coast of Svalbard, Norway (~79ºN, 12–13ºE). The Greenland shark fed at a high trophic position (4.8) based on δ15N values, and δ13C confirmed that most (70 %) of their carbon was derived from phytoplankton-based food chains, which is consistent with a heavy reliance on pelagic teleosts and seals. Greenland sharks from Kongsfjorden had fatty acid profiles in both muscle and plasma (e.g., low 20:1n-9, high 22:5n-3) that suggested a low portion of Greenland halibut (Reinhardtius hippoglossoides) and high proportion of gadoids and seals in their diet compared to Greenland sharks sampled in Cumberland Sound, Canada, during April 2008, which were previously shown to derive much of their energy from Greenland halibut. The high proportions of seal fatty acids in both slow- (muscle) and fast- (plasma) turnover tissues indicate that trophic interactions between Greenland sharks and seals in Kongsfjorden are a common occurrence. Results from the present study suggest that Greenland sharks likely play a unique and significant role in Arctic marine food webs as a top predator of fishes and marine mammals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号