首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reliable predictions of the fate and behaviour of pesticides in soils is dependent on the use of accurate ‘equilibrium’ sorption constants and/or rate coefficients. However, the sensitivity of these parameters to changes in the physicochemical characteristics of soil solids and interstitial solutions remains poorly understood. Here, we investigate the effects of soil organic matter content, particle size distribution, dissolved organic matter and the presence of crop residues (wheat straw and ash) on the sorption of the herbicides atrazine and isoproturon by a clay soil. Sorption Kd's derived from batch ‘equilibrium’ studies for both atrazine and isoproturon by <2 mm clay soil were approximately 3.5 L/kg. The similarity of Koc's for isoproturon sorption by the <2 mm clay soil and <2 mm clay soil oxidised with hydrogen peroxide suggested that the sorption of this herbicide was strongly influenced by soil organic matter. By contrast, Koc's for atrazine sorption by oxidised soil were three times greater than those for <2 mm soil, indicating that the soil mineral components might have affected sorption of this herbicide. No significant differences between the sorption of either herbicide by <2 mm clay soil and (i) <250 μm clay soil, (ii) clay soil mixed with wheat straw or ash at ratios similar to those observed under field conditions, (iii) <2 mm clay soil in the presence of dissolved organic matter as opposed to organic free water, were observed.  相似文献   

2.
Determination of triazines herbicides (atrazine and simazine) by high performance liquid chromatography (HPLC) in samples of trophic chain were worked out. Determination limits of 0.5 μg g−1 for atrazine, 0.8 μg g−1 for simazine with pesticides recovery of 70–77% in trophic chain samples were obtained. The content of simazine in soils was in range 1.72–57.89 μg g−1, in grass 5–88 μg g−1, in milk 2.32–15.29 μg g−1, in cereals 10.98–387 μg g−1, in eggs 30.14–59.48 μg g−1, for fruits: 2.45–6.19 μg g−1. The content of atrazine in soils was in range 0.69–19.59 μg g−1, in grass 7.85–23.85 μg g−1, in cereals 1.88–43.08 μg g−1. Cadmium, lead and zinc were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES) in the same samples as atrazine and simazine. Determination limits for cadmium 5 × 10−3 μg g−1, for lead 1 × 10−2 μg g−1, and for zinc 0.2 × 10−3 μg g−1, were obtained. The content of cadmium in soil was in range 0.13–5.89 μg g−1, in grass 114–627.72 × 10−3 μg g−1, in milk 8.88–61.88 × 10−3 μg g−1, in cereals 0.20–0.31 μg g−1, in eggs 0.11–0.15 μg g−1, in fruits 0.23–0.59 μg g−1. The content of lead in soils was in range 0.57–151.50 μg g−1, in grass 0.16–136.57 μg g−1, in milk 1.16–3.74 μg g−1, in cereals 1.05–5.47 μg g−1, in eggs 5.79–55.87 μg g−1, in fruits 21.00–87.36 μg g−1. Zinc content in soil was in range 9.15–424.5 μg g−1, in grass 35.20–55.87 μg g−1, in milk 20.00–34.38 μg g−1, in cereals 14.94–28.78 μg g−1, in eggs 15.67–32.01 μg g−1, in fruits 14.94–18.88 μg g−1.

Described below extraction and mineralization methods for particular trophic chains allowed to determine of atrazine, simazine, cadmium, lead and zinc with good repeatability and precision. Emphasis was focused on liquid–liquid extraction and solid-phase extraction of atrazine and simazine from analysed materials, as well as, on monitoring the content of herbicides and metals in soil and along trophic chain. Higher concentration of pesticides in samples from west region of Poland in comparison to that of east region is likely related to common applying them in Western Europe in relation to East Europe. The content of metals strongly depends on samples origin (industry area, vicinity of motorways).  相似文献   


3.
To elucidate mechanisms of Cr3+ sorption onto the unaltered solid natural organic matter, the comparative studies of this ion binding from a solution at pH 4.0 onto three selected particle size fractions: 2000–1000 μm, 630–200 μm and 63–20 μm of markedly different HS content and structure, separated by a wet sieving from an overall sample of peat (Brushwood Peat Humus) were carried out. Comparable patterns of COOH groups and CECt confirmed that for cation exchange capacity were responsible mainly cations connected with COO functional groups. It was though found that aliphatic acids in the solid state did not take part in Cr3+ binding, thus the finest studied fraction 63–20 μm of the highest contents of functional groups showed the lowest sorption capacity for Cr3+, while similar patterns of sorbed Cr3+, soluble HS content and base CEC0 indicated that these parameters were directly interrelated. The base ion exchange processes determined by CEC0 (with Ca2+ as a predominant exchangeable cation) appeared to be not the major mechanisms responsible for Cr3+ sorption. For this metal, strong binding to insoluble large molecular weight organic pool two- to threefold prevailed over the ion exchange processes. Very low acid desorption indicated generally low mobility of Cr3+-organic compounds.  相似文献   

4.
The enhancement of photodegradation efficiency using Pt-TiO2 catalyst   总被引:19,自引:0,他引:19  
Li FB  Li XZ 《Chemosphere》2002,47(10):1103-1111
The residues from the extraction of lead/zinc (Pb/Zn) ores of most Pb/Zn mines are permanently stored in tailings ponds, which require revegetation to reduce their environmental impact. This can only be done if the main constraints on plant establishment are evaluated. This can readily be done by field and greenhouse studies.

To test this, the properties of different tailings from Lechang Pb/Zn mine located at the north of Guangdong Province in southern China have been studied. Physical and chemical properties including concentrations of metals (Pb, Zn, Cd and Cu) in the tailings and soils collected from different sites have been measured. The results showed that tailings contain low nitrogen (0.016–0.075%), low-organic matter (0.58–1.78%), high salt (3.55–13.85 dS/m), and high total and diethylene–tetramine–pentaacetic acid (DTPA)-extractable metal concentrations (total: 1019–1642 μg g−1 Pb, 3078–6773 μg g−1 Zn, 8–23 μg g−1 Cd, and 85–192 μg g−1 Cu; DTPA-extractable: 59–178 μg g−1 Pb, 21–200 μg g−1 Zn, 0.30–1.5 μg g−1 Cd, and 4.3–12 μg g−1 Cu). Aqueous extracts of tailings/soils (10%, 20% and 30%, w/v) from different sites were prepared for testing their effects on seed germination and root elongation of a vegetable crop Brassica chinensis and a grass species Cynodon dactylon. It was found that root elongation provided a better evaluation of toxicity than seed germination. The ranking of toxicity using root elongation was: high-sulfur tailings>tailingdam>sparsely vegetated tailings>densely vegetated tailings>mountain soil for both plants. This order was consistent with DTPA-extractable Pb contents in the tailings and soils. B. chinensis seedlings were then grown in the mixtures of different proportions of tailings and farm soil for 4 weeks, and the results (dry weights of seedlings) were in line with the root elongation test. All these demonstrated that heavy metal toxicity, especially available Pb, low content of nutrient, and poor physical structure were major constraints on plant establishment and colonization on the Pb/Zn mine tailings.  相似文献   


5.
Laboratory studies were conducted to evaluate effects of tillage reversal and rainfall on 14C-atrazine (2-chloro4-ethylamino-6-isopropylamino- -triazine) leaching patterns. Twelve intact soil cores (16 cm dia x 20 cm deep) were collected from 8-yr no-till (NT) fields. Half the cores were tilled (5 cm deep) prior to 14C-atrazine treatment (2.7 mg core−1) to all cores. All cores received two rains (27 mm rain in 1.5 h, one day after application followed, two days later, by a 17 mm rain in 2.5 h) and leachate was collected and analyzed for atrazine. These rains simulated the timing, amount and duration of natural rainfall events from a tillage reversal field study. During the first high inte ity rainfall event, a pulse (2.1 μg L-1) of atrazine leached through tilled cores while leaching rate was linear and decreased (1.25 to 0.9 μg L-1) through un-tilled cores. Leaching rate was linear for both the tilled and un-tilled cores during the second rain. Less atrazine was left in the surface 5 cm of tilled soil than un-tilled after the two rains. Results confirmed field observations and suggested that when tillage is reversed on well structured soils, pesticide leaching may increase relative to un-tilled soil but these effects are probably confined to the first rain events after application only.  相似文献   

6.
This paper reports the release behavior of two triazines (atrazine and simazine) in stabilised soils from a pesticide-contaminated site in South Australia. The soils were contaminated with a range of pesticides, especially with triazine herbicides. With multiple extractions of each soil sample with deionised water (eight in total), 15% of atrazine and 4% of simazine residues were recovered, resulting in very high concentrations of the two herbicides in leachate. The presence of small fractions of surfactants was found to further enhance the release of the residues. Methanol content up to 10% did not substantially influence the concentration of simazine and atrazine released. The study demonstrated that while the stabilisation of contaminated soil with particulate activated carbon (5%) and cement mix (15%) was effective in locking the residues of some pesticides, it failed to immobilise triazine herbicides residues completely. Given the higher water solubility of these herbicides than other compounds more effective strategies to immobilise their residues is needed.  相似文献   

7.
Belden JB  Lydy MJ 《Chemosphere》2001,44(8):1685-1689
Acetylcholinesterase activity was determined for midge larvae (Chironomus tentans) exposed to either organophosphorus insecticides (OPs) alone or OP insecticides in binary combination with atrazine (200 μg/l). Although atrazine by itself did not reduce the level of acetylcholinesterase activity, atrazine in combination with chlorpyrifos significantly decreased acetylcholinesterase activity as compared to chlorpyrifos only treatments. Although similar trends existed for malathion and methyl parathion, differences were not statistically significant. These results match previously published toxicity data where atrazine, although not acutely toxic even at much higher levels, decreased EC50 values for chlorpyrifos by a magnitude of 4, decreased methyl parathion values by a magnitude of 2, and did not decrease values for malathion.  相似文献   

8.
Zhu R  Sun L 《Chemosphere》2005,59(11):1583-1593
Methane fluxes were measured from three exposed tundra sites and four snowpack sites on the Fildes Peninsula in the maritime Antarctic in the summertime of 2002. The average fluxes at two normal tundra sites were −15.3 μg m−2 h−1 and −14.3 μg m−2 h−1, respectively. The fluxes from tundra site with fresh penguin dropping addition showed positive values with the average of 36.1 μg m−2 h−1, suggesting that the deposition of fresh droppings greatly enhanced CH4 emissions from the poor Antarctic tundra during penguin breeding periods. The summertime variation in CH4 flux was correlated with surface ground temperature and the precipitation. The correlation between the flux and PT0, which is the product of the precipitation and surface ground temperature, was quite strong. The diurnal cycle of CH4 flux from the tundra soils was not obtained due to local fluky weather conditions. The fluxes through four snowpack sites were also obtained by the vertical CH4 concentration gradient and their average fluxes were −46.5 μg m−2 h−1, −28.2 μg m−2 h−1, −46.4 μg m−2 h−1 and −17.9 μg m−2 h−1, respectively, indicating that tundra soils under snowpack also consume atmospheric CH4 in the maritime Antarctic; therefore these fluxes could constitute an important part of the annual CH4 budget for Antarctic tundra ecosystem.  相似文献   

9.
Abstract

Movement and degradation of 14C‐atrazine (2‐chloro 4‐(ethylamino)‐6‐(isopropylamino)‐s‐triazine, was studied in undisturbed soil columns (0.50m length × 0.10m diameter) of Gley Humic and Deep Red Latosol from a maize crop region of Sao Paulo state, Brazil. Atrazine residues were largely confined to the 0–20cm layers over a 12 month period Atrazine degraded to the dealkylated metabolites deisopropylatrazine and deethylatrazine, but the major metabolite was hydroxyatrazine, mainly in the Gley Humic soil. Activity detected in the leachate was equivalent to an atrazine concentration of 0.08 to 0.11μg/1.

The persistence of 14C‐atrazine in a maize‐bean crop rotation was evaluated in lysimeters, using Gley Humic and Deep Red Latosol soils. Uptake of the radiocarbon by maize plants after 14‐days growth was equivalent to a herbicide concentration of 3.9μg/g fresh tissue and was similar in both soils. High atrazine degradation to hydroxyatrazine was detected by tic of maize extracts. After maize harvest, when beans were sown the Gley Humic soil contained an atrazine concentration of 0.29 μg/g soil and the Deep Red Latosol, 0.13 μg/g soil in the 0–30 cm layer. Activity detected in bean plants corresponded to a herbicide concentration of 0.26 (Gley Humic soil) and 0.32μg/g fresh tissue (Deep Red Latossol) after 14 days growth and 0.43 (Gley Humic soil) and 0.50 μg/g fresh tissue (Deep Red Latossol) after 97 days growth. Traces of activity equivalent to 0.06 and 0.02μg/g fresh tissue were detected in bean seeds at harvest. Non‐extractable (bound) residues in the soils at 235 days accounted for 66.6 to 75% (Gley Humic soil and Deep Red Latossol) of the total residual activity.  相似文献   

10.
Biotransformation studies of atrazine, metolachlor and evolution of their metabolites were carried out in soils and subsoils of Northern Greece. Trace atrazine, its metabolites and metolachlor residues were detected in field soil samples 1 year after their application. The biotransformation rates of atrazine were higher in soils and subsoils of field previously exposed to atrazine (maize field sites) than in respective layers of the field margin. The DT50 values of atrazine ranged from 5 to 18 d in the surface layers of the adapted soils. DT50 values of atrazine increased as the soil depth increased reaching the value of 43 d in the 80-110 cm depth layer of adapted soils. Metolachlor degraded at slower rates than atrazine in surface soils, subsoils of field and field margins with the respective DT50 values ranging from 56 to 72 d in surface soils and from 165 to 186 d in subsoils. Hydroxyatrazine was the most frequently detected metabolite of atrazine. The maximum concentrations of metolachlor-OXA and metolachlor-ESA were detected in the soil layers of 20-40 cm depth after 90 d of incubation. Principal Component Analysis (PCA) of soil Phospholipid Fatty Acids (PLFAs), fungal/bacterial and Gram-negative/Gram-positive ratios of the PLFA profiles revealed that the higher biotransformation rates of atrazine were simultaneously observed with the abundance of Gram-negative bacteria while the respective rates of metolachlor were observed in soil samples with abundance of fungi.  相似文献   

11.
The atrazine behaviour in soils when submitted to an electric field was studied and the applicability of the electrokinetic process in atrazine soil remediation was evaluated. Two polluted soils were used, respectively with and without atrazine residues, being the last one spiked. Four electrokinetic experiments were carried out at a laboratory scale. Determination of atrazine residues were performed by enzyme-linked immunosorbent assay (ELISA). The results show that the electrokinetic process is able to remove efficiently atrazine in soil solution, mainly towards the anode compartment: Estimations show that 30-50% of its initial amount is removed from the soil within the first 24h. A one-dimensional model is developed for simulating the electrokinetic treatment of a saturated soil containing atrazine. The movement of atrazine is modelized taking into account the diffusion transport resulting from atrazine concentration gradients and the reversed electro-osmotic flow at acidic soil pH.  相似文献   

12.
Kraal P  Jansen B  Nierop KG  Verstraten JM 《Chemosphere》2006,65(11):2193-2198
The speciation of titrated copper in a dissolved tannic acid (TA) solution with an initial concentration of 4 mmol organic carbon (OC)/l was investigated in a nine-step titration experiment (Cu/OC molar ratio = 0.0030–0.0567). We differentiated between soluble and insoluble Cu species by 0.45 μm filtration. Measurements with a copper ion selective electrode (ISE) and diffusive gradients in thin films (DGT) were conducted to quantify unbound Cu(II) cations (‘free’ Cu) and labile soluble Cu complexes. For the DGT measurements, we used an APA hydrogel and a Chelex 100 chelating resin (Na form). Insoluble organic Cu complexes (>0.45 μm) was the dominant Cu species for Cu/OC = 0.0030–0.0567 with a maximum fraction of 0.96 of total Cu. At Cu/OC > 0.0100, Cu-catalysed degradation of aggregate structures resulted in a strong increase of free Cu and (labile) soluble Cu complexes with a maximum fraction of 0.28 and 0.32 of total Cu, respectively. Labile (i.e. DGT-detectable) soluble Cu complexes had a relatively high averaged diffusion coefficient (D) in the APA hydrogel (3.50 × 10−6– 5.58 × 10−6 cm2 s−1).  相似文献   

13.
Zhu R  Sun L  Ding W 《Chemosphere》2005,59(11):1667-1675
The nitrous oxide emissions were measured at three tundra sites and one snowpack on the Fildes Peninsula in the maritime Antarctic in the summertime of 2002. The average fluxes at two normal tundra sites were 1.1 ± 2.2 and 0.6 ± 1.7 μg N2O m−2 h−1, respectively. The average flux from tundra soil site with penguin dropping addition was 3.7 ± 2.0 μg N2O m−2 h−1, 3–6 times those from the normal tundra soils, suggesting that the deposition of fresh droppings enhanced N2O emissions during penguin breeding period. The summer precipitation had an important effect on N2O emissions; the flux decreased when heavy precipitation occurred. The diurnal cycle of the N2O fluxes from Antarctic tundra soils was not obtained due to local fluky weather conditions. The N2O fluxes through four snowpack sites were obtained by the vertical N2O concentration gradient and their average fluxes were 0.94, 1.36, 0.81 and 0.85 μg N2O m−2 h−1, respectively. The tundra soils under snowpack emitted N2O in the maritime Antarctic and increased local atmospheric N2O concentrations; therefore these fluxes could constitute an important part of the annual N2O budget for Antarctic tundra ecosystem.  相似文献   

14.
Zhu L  Chen B  Wang J  Shen H 《Chemosphere》2004,56(11):99-1095
The concentrations of 10 polycyclic aromatic hydrocarbons (PAHs) were simultaneously measured for five times (July and November 1999–2002) in four water bodies of Hangzhou, China. To investigate possible sources of PAH contamination, sediments, soils, runoff water and atmospheric particles of the region were also analyzed for their PAH contents. The maximum levels of PAHs in the water bodies (34.4–67.7 μg/l) were found in July, while significantly lower PAH concentrations (4.7–15.3 μg/l) were measured in November. The contamination is substantial and it may have resulted in acute toxic effects on aquatic organisms. The measured PAH concentrations in sediments and soils (224–4222 ng/g), runoff water (8.3 μg/l) and air particles (2.3 μg/m3) are discussed in relation to concentrations and patterns found in the surface water bodies. Comparison of PAH levels in sediments and soils led to the conclusion that the erosion of soil material does not contribute significantly to the contamination of sediments. The atmospheric PAH deposition to water bodies in the city area of Hangzhou was estimated to be 530 tons/a, while the contribution of surface runoff water was estimated to be 30.7 tons/a. The ratios of selected PAH were then used to illuminate the possible origin of PAHs in the examined samples (petrogenic, pyrogenic).  相似文献   

15.
Constructed wetlands offer promise for removal of nonpoint source contaminants such as herbicides from agricultural runoff. Laboratory studies assessed the potential of soils to degrade and sorb atrazine and fluometuron within a recently constructed wetland. The surface 3 cm of soil was sampled from two cells of a Mississippi Delta constructed wetland; one shallow area disturbed only hydrologically, and the second excavated to provide greater water-holding capacity. The excavated area was more acidic on average (pH 4.85 versus 5.21), but otherwise the physical properties and general microbial enzyme activities in the two areas were similar. Soils were treated with 84 and 68 microg kg(-1) soil (14)C-ring labeled atrazine and fluometuron, respectively, and incubated under either saturated (88% moisture, w:w) or flooded (1cm standing water) conditions. Soils were sampled over 32 days and extracted for herbicide and metabolite analysis. Under saturated conditions, fluometuron metabolized to desmethylfluometuron (DMF) with a half-life equal 25-27 days. However, under flooded conditions, the half-life of fluometuron was more than 175 days. Atrazine dissipated rapidly in saturated and flooded soil with a half-life of approximately 23 days, but only 10% of atrazine was mineralized to CO(2). The overall atrazine and fluometuron dissipation rates were similar between the two cells, but each area had a different pattern of metabolite accumulation. The major route of atrazine dissipation was incorporation of atrazine residues into methanol-nonextractable (soil-bound) components, with minimal extractable metabolite accumulation. A mixed-mode extractant (potassium phosphate:acetonitrile) recovered greater amounts of (14)C-residues from atrazine-treated soils, suggesting that hydrolysis of atrazine to hydroxylated metabolites was a major component of the bound residues. These studies indicate the potential for herbicide dissipation in wetland soils and a differential effect of flooding on the fate of these herbicides.  相似文献   

16.
The influence of different fractions of soil organic matter on the retention of the herbicide isoproturon (IPU) has been evaluated. Water and methanol extractable residues of (14)C labeled isoproturon have been determined in two Moroccan soils by beta -counting-liquid chromatography. The quantification of bound residues in soil and in different fractions of soil humic substances has been performed using pyrolysis/scintillation-detected gas-chromatography. Microbial mineralization of the herbicide and soil organic matter has been also monitored. Retention of isoproturon residues after 30-days incubation ranged from 22% to 32% (non-extractable fraction). The radioactivity extracted in an aqueous environment was from 20% to 33% of the amount used for the treatment; meanwhile, methanol was able to extract another 48%. Both soils showed quantities of bound residues into the humin fraction higher than humic and fulvic acids. The total amount of residues retained into the organic matter of the soils was about 65 % of non-extractable fraction, and this percentage did not change with incubation time; on the contrary, the sorption rate of the retention reaction is mostly influenced by the clay fraction and organic content of the soil. Only a little part of the herbicide was mineralized during the experimental time.  相似文献   

17.
The influence of different fractions of soil organic matter on the retention of the herbicide isoproturon (IPU) has been evaluated. Water and methanol extractable residues of 14C labeled isoproturon have been determined in two Moroccan soils by β -counting–liquid chromatography. The quantification of bound residues in soil and in different fractions of soil humic substances has been performed using pyrolysis/scintillation-detected gas-chromatography. Microbial mineralization of the herbicide and soil organic matter has been also monitored. Retention of isoproturon residues after 30-days incubation ranged from 22% to 32% (non-extractable fraction). The radioactivity extracted in an aqueous environment was from 20% to 33% of the amount used for the treatment; meanwhile, methanol was able to extract another 48%. Both soils showed quantities of bound residues into the humin fraction higher than humic and fulvic acids. The total amount of residues retained into the organic matter of the soils was about 65 % of non-extractable fraction, and this percentage did not change with incubation time; on the contrary, the sorption rate of the retention reaction is mostly influenced by the clay fraction and organic content of the soil. Only a little part of the herbicide was mineralized during the experimental time.  相似文献   

18.
A chemical and toxicological profile of Dutch North Sea surface sediments   总被引:5,自引:0,他引:5  
Chemical and toxicological profiles were assessed in surface sediments (fraction <63 μm) from the southern North Sea. In extracts of freeze-dried samples, polybrominated biphenyl (PBB), Irgarol 1051 and phthalate concentrations were below the respective detection limits (except di(2-ethylhexyl)phthalate, which was between 170 and 3300 μg kg−1 dry weight (dw)). Hexabromocyclododecane (HBCD) concentrations were between 0.8 and 6.9 μg kg−1 dw, with highest concentrations at river mouths. Polybrominated diphenylethers (PBDE) concentrations were 0.4–0.6 μg kg−1 dw, decabromodiphenylether (BDE209) 1–32 μg kg−1 dw. The ratio BDE209/PCB153 was used as a tracer for recent emissions, and pointed towards a BDE209 source in the Western Scheldt’s upper estuary. PCBs and PAHs were between 0.19–4.7 and 2.6–200 μg kg−1 dw respectively and generally had highest concentrations at near-shore locations and river mouths.

Responses in the Microtox broad-spectrum and the Mutatox genotoxicity assays were generally low, with near-shore locations giving higher responses. The umu-C genotoxicity and the ER-CALUX assay for estrogenicity showed no response, with the exception of one near-shore location (IJmuiden outer harbour, ER-CALUX).

Highest dioxin-like toxicity (DR-CALUX) was found at near-shore locations, in the outflow of the Rhine/Meuse estuary including a dumping site of harbour sludge. At the Oyster Grounds, DR-CALUX responses appeared to be linked to the occurrence of larger PAHs (4–6 rings). A new, non-destructive clean up procedure resulted in significantly higher DR-CALUX responses than the current protocol. The Dutch legislation on disposal of harbour sludge at sea, dictates the use of the conventional clean up procedure. Our results therefore indicate that probably more dioxin-like toxicity associated with harbour sludge is disposed off at sea than assumed.  相似文献   


19.
Fang GC  Wu YS  Lin JB  Lin CK  Rau JY  Huang SH 《Chemosphere》2006,63(11):1912-1923
Air aerosol samples for TSP (total suspended particulate), coarse particulate (particle matter with aerodynamical diameter 2.5–10 μm, PM2.5–10), fine particulate (particle matter with aerodynamical diameter <2.5 μm, PM2.5) and metallic elements were collected during March 2004 to January 2005 at TH (Taichung Harbor) in central Taiwan. The seasonal variation average concentration of TSP (total suspended particulate), coarse particulate (particle matter with aerodynamical diameter 2.5–10 μm, PM2.5–10) and fine particulate (particle matter with aerodynamical diameter <2.5 μm, PM2.5) were in the range 132–171.1 μg m−3 and 43–49.5 μg m−3, respectively. Seasonal variation of metallic elements Cu, Mn, Zn and Fe in the TSP (total suspended particulate) shows that higher concentration was observed during spring. Seasonal variation of metallic elements Pb, Cr and Mg in the TSP (total suspended particulate) shows that higher concentration was observed during winter. The average metallic element TSP (total suspended particulate) concentration order was Fe > Zn > Mg > Cu > Cr > Mn > Pb in spring. In addition, at the TH sampling site, the average concentration variation of TSP (total suspended particulate) displayed the following order: spring > winter > autumn > summer. However, the average concentration variation of coarse particulate (particle matter with aerodynamical diameter 2.5–10 μm, PM2.5–10) displayed the following order: spring > winter > summer > autumn. Finally, the average concentration variations of fine particulate (particle matter with aerodynamical diameter <2.5 μm, PM2.5) were in the following order: winter > spring > summer > autumn at the TH sample site.  相似文献   

20.
In this study, the rates of degradation of organic compounds by several AOPs (H2O2/UV, Fe(III)/UV, Fe(III)/H2O2/UV, Fe(II)/H2O2 and Fe(III)/H2O2) have been compared. Experiments were carried out at pH ≈ 3 (perchloric acid / sodium perchlorate solutions) and with UV reactors equipped with a low-pressure mercury vapour lamp (emission at 253.7 run). The data obtained with atrazine ([Atrazine]o = 100 μg/L) showed that the rate of degradation of atrazine in very dilute aqueous solution is much more rapid with Fe(III)/UV than with H2O2/UV. Photo-Fenton process (Fe(III)/H2O2/UV) was found to be more efficient than H2O2/UV and Fe(II)/H2O2 for the mineralization of acetone ([Acetone]o = 1 mM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号