共查询到20条相似文献,搜索用时 15 毫秒
1.
Dharmendra Kumar Singh Lakshay Tarun Gupta 《Environmental science and pollution research international》2014,21(6):4551-4564
This study presents the performance evaluation of a novel denuder-equipped PM1 (particles having aerodynamic diameter less than 1 μm) sampler, tested during fog-dominated wintertime, in the city of Kanpur, India. One PM1 sampler and one denuder-equipped PM1 sampler were co-located to collect ambient PM1 for 25 days. The mean PM1 mass concentration measured on foggy days with the PM1 sampler and the denuder-equipped PM1 sampler was found to be 165.95 and 135.48 μg/m3, respectively. The mean PM1 mass concentration measured on clear days with the PM1 sampler and the denuder-equipped PM1 sampler was observed to be 159.66 and 125.14 μg/m3, respectively. The mass concentration with denuder-fitted PM1 sampler for both foggy and clear days was always found less than the PM1 sampler. The same drift was observed in the concentrations of water-soluble ions and water-soluble organic carbon (WSOC). Moreover, it was observed that the use of denuder leads to a significant reduction in the PM positive artifact. The difference in the concentration of chemical species obtained by two samplers indicates that the PM1 sampler without denuder had overestimated the concentrations of chemical species in a worst-case scenario by almost 40 %. Denuder-fitted PM1 sampler can serve as a useful sampling tool in estimating the true values for nitrate, ammonium, potassium, sodium and WSOC present in the ambient PM. 相似文献
2.
《Atmospheric environment (Oxford, England : 1994)》2007,41(39):8834-8845
The chemical composition and size distribution of submicron aerosols were analyzed at a suburban site at Saitama, Japan, in the winter of 2004/2005, using an Aerodyne aerosol mass spectrometer. Although organics and nitrate were the dominant species during the sampling period, a large fraction of sulfate was observed at the accumulation mode when mass loading was low and wind speed was high. The size distributions of m/z 44 (mostly CO2+) and sulfate aerosols during periods of high wind speed showed remarkable similarities in the accumulation mode, indicating that oxygenated organics were aged aerosols and internally mixed with sulfate. Ozone concentrations were also increased during these high wind speed periods although nighttime (e.g., 12/17 2004), indicating that the oxygenated compounds were strongly influenced by transported and aged air masses. The diurnal profiles of ultrafine-mode organics and hydrocarbon-like organic aerosols (HOA) were similar to NOX derived from traffic and other combustion sources. The temporal variation of oxygenated organic aerosols (OOA) agreed well with that of nitrate as a secondary aerosol tracer, and the diurnal profile of the OOA fraction of organics increased during the day associated with higher UV light intensity. The result of time and size-resolved chemical composition of submicron particles indicated that the OOA is associated with both photochemical activity and transboundary pollution, and ultrafine-mode organic and HOA aerosols are mainly associated with combustion sources. 相似文献
3.
K. Frans G. Olofson Patrik U. Andersson Mattias Hallquist Evert Ljungström Lin Tang Deliang Chen Jan B.C. Pettersson 《Atmospheric environment (Oxford, England : 1994)》2009,43(2):340-346
Aerosol temporal and spatial distributions during wintertime temperature inversions in Gothenburg, Sweden, have been characterized by ground-based and airborne particle measurements combined with lidar measurements. Ground inversions frequently developed during evenings and nights with stable cold conditions, and the low wintertime insolation often resulted in near neutral boundary layer conditions during day-time. Under these conditions ground level aerosol concentrations peaked during morning rush hours and often remained relatively high throughout the day due to inefficient ventilation. The particle number concentrations decreased slowly with increasing altitude within the boundary layer, and measurements slightly above the boundary layer suggested limited entrainment of polluted air into the free troposphere. High concentrations of ultrafine particles were observed throughout the boundary layer up to altitudes of 1100 m, which suggested that nucleation took place within the residual layer during the night and early morning. Recently formed particles were also observed around midday when the layer near ground was ventilated by mixing into the boundary layer, which indicated that ultrafine particles were either transported down from the residual layer to ground level or formed when the polluted surface layer mixed with the cleaner air above. 相似文献
4.
《Atmospheric environment(England)》1985,19(8):1225-1236
The continuing upsurge in residential wood combustion has raised questions about potential adverse effects on ambient air quality. A study to investigate the effects of wood-burning emissions on ambient aerosol concentrations was conducted in Waterbury, Vermont, from January to March 1982. Data on total, inhalable and respirable particles (24-h averages) were collected at a central monitoring site and augmented with similar measurements at two auxiliary stations. Mass concentrations were determined gravimetrically and selected samples were analyzed for elemental composition (XRF), polycyclic aromatic hydrocarbons (GC/MS, HPLC), and organic and elemental carbon (thermal-optical method). In addition, continuous data from an integrating nephelometer and a meteorological data acquisition system were collected at the central site. This paper presents results of organic and elemental characterization of wintertime aerosol and examines several different source-apportionment methods, focusing on the contribution of residential wood combustion to measured ambient concentrations. 相似文献
5.
《Atmospheric environment (Oxford, England : 1994)》2001,35(8):1421-1437
The sources and source variations for aerosol at Mace Head, Ireland, were studied by applying positive matrix factorization (PMF), a variant of factor analysis, to a 5-yr data set for bulk aerosol. Signals for the following six sources were evident year round: (1) mineral dust, (2) sea salt, (3) general pollution, (4) a secondary SO42−–Se signal that is composed of both natural (marine) and pollution (coal) components, (5) ferrous industries, (6) and a second marine (possibly biogenic) source. Analyses of seasonally stratified data suggested additional sources for iodine and oil emissions but these were present only in certain seasons, respectively. The marine signal is particularly strong in winter. The main pollution transport from Europe to Mace Head occurs in May, but the influence of continental European emissions is evident throughout the year. Mineral aerosol evidently follows a transport pathway similar to that of pollution aerosol, i.e., recirculation via the westerlies brings pollutants mixed with dust to the site from nearby land, i.e., Ireland, the United Kingdom, and the Belgium, Netherlands, and Luxemburg (Benelux) region, with some inputs from Scandinavia, Western Europe, Eastern Europe, and even the Mediterranean region. Compared with Bermuda, aerosol at Mace Head has stronger marine sources (especially marine-derived secondary SO42− and Se) but weaker crustal and oil signals. Transport across the North Atlantic, especially in winter, cannot be ruled out. 相似文献
6.
Source contributions to PM10 and sulfate aerosol at McMurdo Station, Antarctica during the austral summers of 1995-1996 and 1996-1997 were estimated using Chemical Mass Balance (CMB) receptor modeling. The average PM10 (particles with aerodynamic diameters less than 10 microm) concentration at Hut Point, located less than 1 km downwind of downtown McMurdo, was 3.4 microg/m3. Emissions profiles were determined for potentially important aerosol source types in McMurdo: exposed soil, power generation, space heating, and surface vehicles. Soil dust, sea salt, combustion emissions, sulfates, marine biogenic emissions as methanesulfonate, and nitrates contributed 57%, 15%, 14%, 10%, 3%, and 1%, respectively, of average estimated PM10 at Hut Point (3.2 microg/m3). Soil dust, sea salt, and combustion sources contributed 12%, 8%, and 20%, respectively, of the average PM10 sulfate concentration of 0.46 microg/m3. Marine biogenic sources contributed 0.17 microg/m3 (37%). The remaining sulfate is thought to have come from emissions from Mt. Erebus or hemispheric pollution sources. 相似文献
7.
Jianjun Chen Qi Ying Michael J. Kleeman 《Atmospheric environment (Oxford, England : 1994)》2010,44(10):1331-1340
The UCD/CIT air quality model with the Caltech Atmospheric Chemistry Mechanism (CACM) was used to predict source contributions to secondary organic aerosol (SOA) formation in the San Joaquin Valley (SJV) from December 15, 2000 to January 7, 2001. The predicted 24-day average SOA concentration had a maximum value of 4.26 μg m?3 50 km southwest of Fresno. Predicted SOA concentrations at Fresno, Angiola, and Bakersfield were 2.46 μg m?3, 1.68 μg m?3, and 2.28 μg m?3, respectively, accounting for 6%, 37%, and 4% of the total predicted organic aerosol. The average SOA concentration across the entire SJV was 1.35 μg m?3, which accounts for approximately 20% of the total predicted organic aerosol. Averaged over the entire SJV, the major SOA sources were solvent use (28% of SOA), catalyst gasoline engines (25% of SOA), wood smoke (16% of SOA), non-catalyst gasoline engines (13% of SOA), and other anthropogenic sources (11% of SOA). Diesel engines were predicted to only account for approximately 2% of the total SOA formation in the SJV because they emit a small amount of volatile organic compounds relative to other sources. In terms of SOA precursors within the SJV, long-chain alkanes were predicted to be the largest SOA contributor, followed by aromatic compounds. The current study identifies the major known contributors to the SOA burden during a winter pollution episode in the SJV, with further enhancements possible as additional formation pathways are discovered. 相似文献
8.
McDade C Tombach I Hering S Kreisberg N 《Journal of the Air & Waste Management Association (1995)》2000,50(5):849-857
Wintertime atmospheric light scattering in Dallas, TX, was estimated through the use of aerosol models. Input data for the aerosol models were provided by measurements of aerosol chemistry, physical particle size distributions, and distributions of particulate sulfur by particle size, and by predictions by an atmospheric simulation model. Light scattering measurements provided a basis for testing the aerosol models. The SCAPE thermodynamic equilibrium model was used to estimate the amount of liquid water associated with particles and the ELSIE Mie scattering model was applied to estimate the resulting light scattering. The calculations were based on aerosol properties measured in Dallas during December 1994 and February 1995, and changes in scattering due to hypothetical changes in the aerosol were predicted. The predicted light scattering was compared to scattering measured by an Optec nephelometer; agreement was within 20% in every case. 相似文献
9.
《Atmospheric environment (Oxford, England : 1994)》1999,33(22):3669-3681
A laboratory study was conducted to examine formation of secondary organic aerosols. A smog chamber system was developed for studying gas–aerosol interactions in a dynamic flow reactor. These experiments were conducted to investigate the fate of gas and aerosol phase compounds generated from hydrocarbon–nitrogen oxide (HC/NOx) mixtures irradiated in the presence of fine (<2.5 μm) particulate matter. The goal was to determine to what extent photochemical oxidation products of aromatic hydrocarbons contribute to secondary organic aerosol formation through uptake on pre-existing inorganic aerosols in the absence of liquid water films. Irradiations were conducted with toluene, p-xylene, and 1,3,5-trimethylbenzene in the presence of NOx and ammonium sulfate aerosol, with propylene added to enhance the production of radicals in the system. The secondary organic aerosol yields were determined by dividing the mass concentration of organic fraction of the aerosol collected on quartz filters by the mass concentration of the aromatic hydrocarbon removed by reaction. The mass concentration of the organic fraction was obtained by multiplying the measured organic carbon concentration by 2.0, a correction factor that takes into account the presence of hydrogen, nitrogen, and oxygen atoms in the organic species. The mass concentrations of ammonium, nitrate, and sulfate concentrations as well as the total mass of the aerosols were measured. A reasonable mass balance was found for each of the aerosols. The largest secondary organic aerosol yield of 1.59±0.40% was found for toluene at an organic aerosol concentration of 8.2 μm−3, followed by 1.09±0.27% for p-xylene at 6.4 μg m−3, and 0.41±0.10% for 1,3,5-trimethylbenzene at 2.0 μg m−3. In general, these results agree with those reported by Odum et al. and appear to be consistent with the gas–aerosol partitioning theory developed by Pankow. The presence of organic in the aerosol did not affect significantly the hygroscopic properties of the aerosol. 相似文献
10.
《Atmospheric environment (Oxford, England : 1994)》1999,33(9):1385-1397
Gaseous air pollutants and aerosol particle concentrations were monitored in an urban street canyon for two weeks. The measurements were performed simultaneously at two different heights: at street level (gases 3 m, aerosol particles 1.5 m) and at a rooftop 25 m above the ground. The main objective of the study was to investigate the vertical changes in concentrations of pollutants and the factors leading to the formation of the differences. The physical parameters controlling the concentration gradients (e.g. the flow and micrometeorology) were not directly measured and the conclusions of the study rely mostly on the high time resolution concentration measurements. It was concluded that dilution and dispersion decreases the concentrations of pollutants emitted at street level by a factor of roughly 5 between the two sampling heights. However, for some compounds the chemical reactions were seen to be of more importance when the vertical gradient is formed. In order to determine the processes leading to gradients in aerosol particle concentrations the photochemical formation of submicrometer aerosol particles was investigated using a theoretical expression based on the measured data. It was clearly seen that most of the particles originate from traffic in the vicinity of the measurement site. Also a few events were detected which might have been due to local gas-to-particle conversion. 相似文献
11.
《Atmospheric environment (Oxford, England : 1994)》2002,36(3):465-475
A winter PM2.5 episode that achieved a maximum 24-h average of 138 μg m−3 at the Fresno Supersite in California's San Joaquin Valley between 2 and 12 January, 2000 is examined using 5-min to 1-h continuous measurements of mass, nitrate, black carbon, particle-bound PAH, and meteorological measurements. Every day PM2.5 sampling showed that many episodes, including this one, are missed by commonly applied sixth-day monitoring, even though quarterly averages and numbers of US air quality standard exceedances are adequately estimated. Simultaneous measurements at satellite sites show that the Fresno Supersite represented PM2.5 within the city, and that half or more of the urban concentrations were present at distant, non-urban locations unaffected by local sources. Most of the primary particles accumulated during early morning and nighttime, decreasing when surface temperatures increased and the shallow radiation inversion coupled to a valleywide layer. When this coupling occurred, nitrate levels increased rapidly over a 10–30 min period as black carbon and gaseous concentrations dropped. This is consistent with a conceptual model in which secondary aerosol forms above the surface layer and is effectively decoupled from the surface for all but the late-morning and early afternoon period. Primary pollutants, such as organic and black carbon, accumulate within the shallow surface layer in urban areas where wood burning and vehicle exhaust emissions are high. Such a model would explain why earlier studies find nitrate concentrations to be nearly the same among widely separated sites in urban areas, as winds aloft of 1 to 6 m s−1 could easily disperse the elevated aerosol throughout the valley. 相似文献
12.
《Atmospheric environment (Oxford, England : 1994)》2007,41(32):6909-6915
Altitude profiles of the mass concentrations of aerosol black carbon (BC) and composite aerosols were obtained from the collocated measurements of these quantities onboard an aircraft, over the urban area of Kanpur, in the Ganga basin of northern India during summer, for the first time in India. The enhancement in the mean BC concentration was observed at ∼1200 m in the summer, but the vertical gradient of BC concentration is less than the standard deviation at that altitude. The difference in the BC altitude profile and columnar concentration in the winter and summer is attributed to the enhanced turbulent mixing within the boundary layer in summer. This effect is more conspicuous with BC than the composite aerosols, resulting in an increase in the BC mass fraction (FBC) at higher levels in summer. This high BC fraction results in an increase in the lower atmospheric heating rate in both the forenoon, FN and afternoon, AN, but with contrasting altitude profile. The FN profile shows fluctuating trend with highest value (2.1 K day−1) at 300 m and a secondary peak at 1200 m altitudes, whereas the AN profile shows increasing trend with highest value (1.82 K day−1) at 1200 m altitude. 相似文献
13.
《Atmospheric environment (Oxford, England : 1994)》2005,39(17):3055-3068
We analyse the air quality data measured at a green area of Buenos Aires City (Argentina) during 38 days in winter. We study the relationships between ambient concentrations of nitric oxide (NO), nitrogen dioxide (NO2), ozone (O3) and nitrogen oxides (NOx=NO+NO2). The variation of the level of oxidant (OX=O3+NO2) with the NOx is obtained. It can be seen that the level of OX at a given location is made up of two contributions: one independent and another dependent on the NOx concentration. The first one can be considered as a regional contribution, equivalent to the background O3 concentration and the second one as a local contribution that depends on the level of primary pollution. Local oxidant sources may include direct NO2 emissions, the reaction of NO with O2 at high-NOx levels, and the emission of species that promote the conversion of NO to NO2. The final category of emissions may include the nitrous acid (HONO) that is emitted directly in vehicle exhaust. Finally, we present a diurnal variation of the local as well as regional contributions and the dependence of the last one on wind direction. 相似文献
14.
《Atmospheric environment (Oxford, England : 1994)》2001,35(15):2647-2655
Sulphate size distributions were measured at the coastal station of Mumbai (formerly Bombay) through 1998, during the Indian ocean experiment (INDOEX) first field phase (FFP), to fill current gaps in size-resolved aerosol chemical composition data. The paper examines meteorological, seasonal and source-contribution effects on sulphate aerosol and discusses potential effects of sulphate on regional climate. Sulphate size-distributions were largely trimodal with a condensation mode (mass median aerodynamic diameter or MMAD 0.6 μm), a droplet mode (MMAD 1.9–2.4 μm) and a coarse mode (MMAD 5 μm). Condensation mode sulphate mass-fractions were highest in winter, consistent with the high meteorological potential for gas-to-particle conversion along with low relative humidity (RH). The droplet mode concentrations and MMADs were larger in the pre-monsoon and winter than in monsoon, implying sulphate predominance in larger sized particles within this mode. In these seasons the high RH, and consequently greater aerosol water in the droplet mode, would favour aerosol-phase partitioning and reactions of SO2. Coarse mode sulphate concentrations were lowest in the monsoon, when continental contribution to sulphate was low and washout was efficient. In winter and pre-monsoon, coarse mode sulphate concentrations were somewhat higher, likely from SO2 gas-to-particle conversion. Low daytime sulphate concentrations with a large coarse fraction, along with largely onshore winds, indicated marine aerosol predominance. High nighttime sulphate concentrations and a coincident large fine fraction indicated contributions from anthropogenic/industrial sources or from gas-to-particle conversion. Monthly mean sulphate concentrations increased with increasing SO2 concentrations, RH and easterly wind direction, indicating the importance of gas-to-particle conversion and industrial sources located to the east. Atmospheric chemistry effects on sulphate size distributions in Mumbai, indicated by this data, must be further examined. 相似文献
15.
16.
《Atmospheric environment (Oxford, England : 1994)》2001,35(20):3529-3537
The water-soluble fraction of an aerosol determines its chemical and physical properties and also its behaviour. The origin of the aerosol and its atmospheric transport influence its solubility. Cloud process simulations have been conducted on both Saharan and anthropogenic aerosols. The rate of solubilisation was followed for native and processed aerosol particles; it is controlled by the pH variations due to release of acids or bases. It appears that one condensation/evaporation cycle increases the solubility of aerosol particles. Increasing the number of cloud process simulations does not affect the solubility profile. The solubility depends only on the conditions of the last cloud cycle and, in particular, on the factor controlling pH during this process. 相似文献
17.
《Atmospheric environment (Oxford, England : 1994)》2007,41(26):5410-5422
During Winter 2004, a series of elevated PM2.5 events occurred in Logan, Utah, coinciding with strong winter inversions. This period resulted in 17 exceedances of the 24-h PM2.5 standard, and some of the highest PM2.5 mass loadings recorded in the United States, including 9 days of 24-h PM2.5 measurements over 100 μg m−3. During the 3-month period, we monitored the size and mass concentrations of airborne particles using an aerosol mass spectrometer. PM2.5 concentrations were dominated by the formation of ammonium nitrate, accounting for over 50% of the non-refractory aerosol matter throughout the study and 80% on the highest pollution days. Another 15–20% of the particulate matter was composed of organic carbon. The high particle concentration loadings in Utah's Cache Valley result from a combination of unfavorable meteorology dominated by a severe cold-temperature inversion, a mix of rural and urban emission sources, and a confined geographical area. As a rapidly growing formerly rural area, the Cache Valley is representative of future air pollution problems facing areas of the interior west undergoing rapid urbanization. 相似文献
18.
19.
《Atmospheric environment (Oxford, England : 1994)》2001,35(4):693-702
Measurements on size distribution of atmospheric aerosol were made at Dayalbagh, Agra during July to September 1998. A 4-stage cascade particle sampler (CPS - 105) which fractionates particles in sizes ranging between 0.7 and >10.9 μm, was used. Samples were collected on Whatman 41 filters. The filters were analyzed for the major water-soluble ions. The anions (F, Cl, NO3 and SO4) were analyzed by Dionex DX-500 ion chromatograph while atomic absorption and colorimetric techniques were used for the analysis of cations (Na, K, Ca and Mg) and NH4, respectively. The average mass of aerosol was found to be 131.6 μg m−3 and aerosol composition was found to be influenced by terrigeneous sources. The mass size distribution of total aerosol and the ions NH4, Cl, NO3, K, Ca, Mg, SO4 and Na was bimodal while that of F was unimodal. SO4, F, K and NH4 dominated in the fine mode while Ca, Mg, Cl and NO3 were in abundance in coarse fraction. Na was found in both coarse as well as fine mode. Coarse mode SO4 and NO3 have been ascribed to contribution from re-suspension of soil and formation by heterogeneous oxidation on soil derived particles. Preponderance of K in fine mode is attributed to emissions from vegetation and from burning of plant materials. Ca, Mg, Cl and NO3 are largely soil derived and hence dominate in coarse fraction. Equivalent ratios of NH4/(SO4+NO3) were calculated for both fine and coarse aerosols. The coarse mode ratio varied between 0.7 and 1.4 while in fine mode it ranged between 1.4 and 1.9. It shows that aerosol is basic, the basicity of coarse mode is due to higher concentration of soil-derived alkaline components while the basicity in fine mode is due to neutralization of acidity by NH3. 相似文献
20.
Hansen AD Lowenthal DH Chow JC Watson JG 《Journal of the Air & Waste Management Association (1995)》2001,51(4):593-600
Aerosol light absorption as black carbon (BC) was measured from November 19, 1995, to February 6, 1996, at a location 0.65 km downwind of the center of McMurdo Station on the Antarctic coast. The results show a bimodal frequency distribution of BC concentrations. Approximately 65% of the measurements were found in a mode at a low range of concentrations centered at approximately 20 ng/m3. These concentrations are higher than those found at other remote Antarctic locations and probably represent contamination from the station. The remaining measurements were in a high-concentration mode (BC approximately 300 ng/m3), indicating direct impact of local emissions from combustion activities at the station. High values of BC were associated with winds from the direction of the station, and the BC flux showed a clear directionality. Maximum BC concentrations occurred between 7:00 and 11:00 a.m. The "polluted" mode accounted for more than 80% of the BC frequency-weighted impact at this location. 相似文献