首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hybrid life cycle assessment has been used to assess the environmental impacts of natural gas combined cycle (NGCC) electricity generation with carbon dioxide capture and storage (CCS). The CCS chain modeled in this study consists of carbon dioxide (CO2) capture from flue gas using monoethanolamine (MEA), pipeline transport and storage in a saline aquifer.Results show that the sequestration of 90% CO2 from the flue gas results in avoiding 70% of CO2 emissions to the atmosphere per kWh and reduces global warming potential (GWP) by 64%. Calculation of other environmental impacts shows the trade-offs: an increase of 43% in acidification, 35% in eutrophication, and 120–170% in various toxicity impacts. Given the assumptions employed in this analysis, emissions of MEA and formaldehyde during capture process and generation of reclaimer wastes contributes to various toxicity potentials and cause many-fold increase in the on-site direct freshwater ecotoxicity and terrestrial ecotoxicity impacts. NOx from fuel combustion is still the dominant contributor to most direct impacts, other than toxicity potentials and GWP. It is found that the direct emission of MEA contribute little to human toxicity (HT < 1%), however it makes 16% of terrestrial ecotoxicity impact. Hazardous reclaimer waste causes significant freshwater and marine ecotoxicity impacts. Most increases in impact are due to increased fuel requirements or increased investments and operating inputs.The reductions in GWP range from 58% to 68% for the worst-case to best-case CCS system. Acidification, eutrophication and toxicity potentials show an even large range of variation in the sensitivity analysis. Decreases in energy use and solvent degradation will significantly reduce the impact in all categories.  相似文献   

2.
Among the various configurations of fossil fuel power plants with carbon capture, this paper focuses on pre-combustion techniques applied to natural gas combined cycles. With more detail, the plant configuration here addressed includes: (i) the steam reforming of natural gas, based on an air-blown autothermal process, following a recuperative pre-reforming treatment, (ii) the water gas shift producing CO2 and H2, (iii) the separation of CO2 by means of a mixed physical–chemical absorption system using a MDEA solution, and (iv) a hydrogen fuelled combined cycle.Similar configurations have been studied quite extensively, being among the most attractive for full-scale realizations in a near-mid term future. This paper proposes a detailed thermodynamic study and optimization of the plant configuration, bringing to a reliable performance estimation based on today's best available technology as far as the various plant sections are concerned (gas and steam turbine, natural gas reforming process, CO2 separation). The predicted LHV efficiency for the base configuration is about 50%. Being this value at the top of the range quoted in the open literature studies (35–50%), the paper includes a quite extensive sensitivity analysis, showing that more conservative assumptions may bring to significantly poorer performance, especially considering the pretty large number of operating parameters involved in the process.  相似文献   

3.
CO2 capture and storage from energy conversion systems is one option for reducing power plant CO2 emissions to the atmosphere and for limiting the impact of fossil-fuel use on climate change. Among existing technologies, chemical looping combustion (CLC), an oxy-fuel approach, appears to be one of the most promising techniques, providing straightforward CO2 capture with low energy requirements.This paper provides an evaluation of CLC technology from an economic and environmental perspective by comparing it with to a reference plant, a combined cycle power plant that includes no CO2 capture. Two exergy-based methods, the exergoeconomic and the exergoenvironmental analyses, are used to determine the economic and environmental impacts, respectively. The applied methods facilitate the iterative optimization of energy conversion systems and lead towards the improvement of the effectiveness of the overall plant while decreasing the cost and the environmental impact of the generated product. For the plant with CLC, a high increase in the cost of electricity is observed, while at the same time the environmental impact decreases.  相似文献   

4.
This paper explores the integration and evaluation of a power plant with a CaO-based CO2 capture system. There is a great amount of recoverable heat in the CaO-based CO2 capture process. Five cases for the possible integration of a 600 MW power plant with CaO-based CO2 capture process are considered in this paper. When the system is configured so that recovered heat is used to replace part of the boiler heat load (Case 2), modelling not only shows that this is the system recovering the most heat of 1008.8 MW but also results in the system with the lowest net power output of 446 MW and the second lowest of efficiency of 34.1%. It is indicated that system performance depends both on the amount of heat recovery and the type of heat utilization. When the system is configured so that a 400 MW power plant is built using the recovered heat (Case 4), modelling shows that this is the system with the most net power output of 846 MW, the highest efficiency of 36.8%, the lowest cost of electricity of 54.3 €/MWh and the lowest cost of CO2 avoided of 28.9 €/tCO2. This new built steam cycle will not affect the operation of the reference plant which vents its CO2 to the atmosphere, highly reducing the connection between the CO2 capture process and the reference plant which vents its CO2 to the atmosphere. The average cost of electricity and the cost of CO2 avoided of the five cases are about 58.9 €/kWh and 35.9 €/tCO2, respectively.  相似文献   

5.
Most of the current CO2 capture technologies are associated with large energy penalties that reduce their economic viability. Efficiency has therefore become the most important issue when designing and selecting power plants with CO2 capture. Other aspects, like reliability and operability, have been given less importance, if any at all, in the literature.This article deals with qualitative reliability and operability analyses of an integrated reforming combined cycle concept. The plant reforms natural gas into a syngas, the carbon is separated out as CO2 after a water-gas shift section, and the hydrogen-rich fuel is used for a gas turbine. The qualitative reliability analysis in the article consists of a functional analysis followed by a failure mode, effects, and criticality analysis (FMECA). The operability analysis introduces the comparative complexity indicator (CCI) concept.Functional analysis and FMECA are important steps in a system reliability analysis, as they can serve as a platform and basis for further analysis. Also, the results from the FMECA can be interesting for determining how the failures propagate through the system and their effects on the operation of the process. The CCI is a helpful tool in choosing the level of integration and to investigate whether or not to include a certain process feature. Incorporating the analytical approach presented in the article during the design stage of a plant can be advantageous for the overall plant performance.  相似文献   

6.
The capture of CO2 from a hot stove gas in steel making process containing 30 vol% CO2 by chemical absorption in a rotating packed bed (RPB) was studied. The RPB had an inner diameter of 7.6 cm, an outer diameter of 16 cm, and a height of 2 cm. The aqueous solutions containing 30 wt% of single and mixed monoethanolamine (MEA), 2-(2-aminoethylamino)ethanol (AEEA), and piperazine (PZ) were used. The CO2 capture efficiency was found to increase with increasing temperature in a range of 303–333 K. It was also found to be more dependent on gas and liquid flow rates but less dependent on rotating speed when the speed was higher than 700 rpm. The obtained results indicated that the mixed alkanolamine solutions containing PZ were more effective than the single alkanolamine solutions. This was attributed to the highest reaction rate of PZ with CO2. A higher portion of PZ in the mixture was more favorable to CO2 capture. The highest gas flow rates allowed to achieve a desired CO2 capture efficiency and the correspondent height of transfer unit (HTU) were determined at different aqueous solution flow rates. Because all the 30 wt% single and mixed alkanolamine solutions could result in a HTU less than 5.0 cm at a liquid flow rate of 100 mL/min, chemical absorption in a RPB instead of a packed bed adsorber is therefore suggested to capture CO2 from the flue gases in steel making processes.  相似文献   

7.
A chemical absorption, post-combustion CO2 capture unit is simulated and an exergy analysis has been conducted, including irreversibility calculations for all process units. By pinpointing major irreversibilities, new proposals for efficient energy integrated chemical absorption process are suggested. Further, a natural-gas combined-cycle power plant with a CO2 capture unit has been analyzed on an exergetic basis. By defining exergy balances and black-box models for plant units, investigation has been made to determine effect of each unit on the overall exergy efficiency. Simulation of the chemical absorption plant was done using UniSim Design software with Amines Property Package. For natural-gas combined-cycle design, GT PRO software (Thermoflow, Inc.) has been used. For exergy calculations, spreadsheets are created with Microsoft Excel by importing data from UniSim and GT PRO. Results show the exergy efficiency of 21.2% for the chemical absorption CO2 capture unit and 67% for the CO2 compression unit. The total exergy efficiency of CO2 capture and compression unit is 31.6%.  相似文献   

8.
Canadian oil sands are considered to be the second largest oil reserves in the world. However, the upgrading of bitumen from oil sands to synthetic crude oil (SCO) requires nearly ten times more hydrogen (H2) than conventional crude oils. The current H2 demand for oil sands operations is met mostly by steam reforming of natural gas (SMR). The future expansion of oil sands operations is likely to quadruple the demand of H2 for oil sand operations in the next decade.This paper presents modified process schemes that capture CO2 at minimum energy penalty in modern SMR plants. The approach is to simulate a base case H2 plant without CO2 capture and then look for the best operating conditions that minimize the energy penalty associated with CO2 capture while maximizing H2 production. The two CO2 capture schemes evaluated in this study include a membrane separation process and the monoethanolamine (MEA) absorption process. A low energy penalty is observed when there is lower CO2 production and higher steam production. The process simulation results show that the H2 plant with CO2 capture has to be operated at lower steam to carbon ratio (S/C), higher inlet temperature of the SMR and lower inlet temperatures for the water gas-shift (WGS) converters to attain lowest energy penalty. Also it is observed that both CO2 capture processes, the membrane process and the MEA absorption process, are comparable in terms of energy penalty and CO2 avoided when both are operated at conditions where lowest energy penalty exists.  相似文献   

9.
Hydrotalcite-based materials have been identified as suitable materials for high temperature (400 °C) adsorption of CO2. In pre-combustion decarbonisation processes for natural gas based power cycles, it should be possible to use this material to improve conversions in the water-gas shift (WGS) and steam-reforming (SMR) reaction. The efficiencies for electricity production from natural gas have been calculated for some different system configurations, in which hydrotalcite-based material could be used. The calculated efficiency penalties ranged from 5.5 to 8.6 percentage points. The assumptions made in the system study have been tested on the laboratory scale. Hydrotalcite-based materials are found to be an excellent choice for use in the sorption-enhanced WGS reactor. The requirements for very low residual concentrations of CO2 at 400 °C and large amounts of catalyst in the sorption-enhanced SMR reactor make its application less likely. Suggestions are made to how the SE-SMR could be improved.  相似文献   

10.
This study assesses potential environmental impacts of the absorption-based carbon dioxide (CO2) capture unit that is integrated to coal-fired power plant for post-combustion treatment of flue gas. The assessment was performed by identifying potential pollutants and their sources as well as amounts of emissions from the CO2 capture unit and also by reviewing toxicology, potential implications to human health and the environment, as well as the environmental laws and regulations associated with such pollutants. The assessment shows that, while offering a significant environmental benefit through a reduction of greenhouse gas emissions, the installation of CO2 capture units for post-combustion treatment might induce unintentional and potential burdens to human health and the environment through four emission pathways, including treated gas, process wastes, fugitive emissions, and accidental releases. Such burdens nevertheless can be predetermined and properly mitigated through a well-established environmental management program and mitigation measures. Recommendations to minimize these impacts are provided in this paper.  相似文献   

11.
This study investigates the possibility of capturing CO2 from flue gas under pressurised conditions, which could prove to be beneficial in comparison to working under atmospheric conditions. Simulations of two hybrid combined cycles with pressurised fluidised bed combustion and CO2 capture are presented. CO2 is captured from pressurised flue gas by means of chemical absorption after the boiler but before expansion. The results show a CO2 capture penalty of approximately 8 percentage points (including 90% CO2 capture rate and compression to 110 bar), which makes the efficiency for the best performing cycle 43.9%. It is 5.2 percentage points higher than the most probable alternative, i.e. using a natural gas fired combined cycle and a pulverised coal fired condensing plant separately with the same fuel split ratio. The largest part of the penalty is associated with the lower mass flow of flue gas after CO2 capture, which leads to a decrease in work output in the expander and potential for feed water heating. The penalty caused by the regeneration of absorbent is quite low, since the high pressure permits the use of potassium carbonate, which requires less regeneration heat than for example the more commonly proposed monoethanolamine. Although the efficiencies of the cycles look promising it will be important to perform a cost estimate to be able to make a fair comparison with other systems. Such a cost estimate has not been done in this study. A significant drawback of these hybrid cycles in that respect is the complex nature of the systems that will have a negative effect on the economy.  相似文献   

12.
Due to its compatibility with the current energy infrastructures and the potential to reduce CO2 emissions significantly, CO2 capture and geological storage is recognised as one of the main options in the portfolio of greenhouse gas mitigation technologies being developed worldwide. The CO2 capture technologies offer a number of alternatives, which involve different energy consumption rates and subsequent environmental impacts. While the main objective of this technology is to minimise the atmospheric greenhouse gas emissions, it is also important to ensure that CO2 capture and storage does not aggravate other environmental concerns. This requires a holistic and system-wide environmental assessment rather than focusing on the greenhouse gases only. Life Cycle Assessment meets this criteria as it not only tracks energy and non-energy-related greenhouse gas releases but also tracks various other environmental releases, such as solid wastes, toxic substances and common air pollutants, as well as the consumption of other resources, such as water, minerals and land use. This paper presents the principles of the CO2 capture and storage LCA model developed at Imperial College and uses the pulverised coal post-combustion capture example to demonstrate the methodology in detail. At first, the LCA models developed for the coal combustion system and the chemical absorption CO2 capture system are presented together with examples of relevant model applications. Next, the two models are applied to a plant with post-combustion CO2 capture, in order to compare the life cycle environmental performance of systems with and without CO2 capture. The LCA results for the alternative post-combustion CO2 capture methods (including MEA, K+/PZ, and KS-1) have shown that, compared to plants without capture, the alternative CO2 capture methods can achieve approximately 80% reduction in global warming potential without a significant increase in other life cycle impact categories. The results have also shown that, of all the solvent options modelled, KS-1 performed the best in most impact categories.  相似文献   

13.
Existing coal-fired power plants were not designed to be retrofitted with carbon dioxide post-combustion capture (PCC) and have tended to be disregarded as suitable candidates for carbon capture and storage on the grounds that such a retrofit would be uneconomical. Low plant efficiency and poor performance with capture compared to new-build projects are often cited as critical barriers to capture retrofit. Steam turbine retrofit solutions are presented that can achieve effective thermodynamic integration between a post-combustion CO2 capture plant and associated CO2 compressors and the steam cycle of an existing retrofitted unit for a wide range of initial steam turbine designs. The relative merits of these capture retrofit integration options with respect to flexibility of the capture system and solvent upgradability will be discussed. Provided that effective capture system integration can be achieved, it can be shown that the abatement costs (or cost per tonne of CO2 to justify capture) for retrofitting existing units is independent of the initial plant efficiency. This then means that a greater number of existing power plants are potentially suitable for successful retrofits of post-combustion capture to reduce power sector emissions. Such a wider choice of retrofit sites would also give greater scope to exploit favourable site-specific conditions for CCS, such as ready access to geological storage.  相似文献   

14.
Three different types of membranes were experimentally evaluated for CO2 recovery from blast furnace effluents: semi-commercial adsorption selective carbon membranes, in-house tailored carbon molecular sieving membranes, and fixed site carrier (FSC) membranes with amine groups in the polymer backbone for active transport of CO2. In the single gas experiments the FSC membranes showed superior selectivity for CO2 over the other relevant gases (CO, N2 and H2) and high CO2 permeance (productivity). In addition, it is easy to process and handle, relatively inexpensive to produce and the water in the feed gas is an advantage rather than a problem, since the membrane must be humidified during operation. Based on these experiments a simulation study of a full scale process was performed. The technology showed notable low energy cost, even when converted to the thermal equivalent. Total costs for the CO2 recovery unit (CO2 prepared for pipeline transport) were estimated to be in the range 15.0–17.5 €/tonnes CO2.  相似文献   

15.
Vacuum swing adsorptive (VSA) capture of CO2 from flue gas and related process streams is a promising technology for greenhouse gas mitigation. Although early reports suggested that VSA was problematic and expensive, through the application of more logical process configurations that are appropriately coupled to the composition of the feed and product gas streams, we can now refute this early assertion. Improved cycle designs coupled with tighter temperature control are also helping to optimise performance for CO2 separation. Simultaneously, new adsorbent materials are being developed. These separate CO2 by selective (acid-base) reaction with surface bound amine groups (chemisorption), rather than on the basis of non-bonding interactions (physisorption). This report describes some of these recent developments from our own laboratories and points to synergies that are anticipated as a result of combining these improvements in adsorbent properties and VSA process cycles.  相似文献   

16.
In this study the methodology of life cycle assessment has been used to assess the environmental impacts of three pulverized coal fired electricity supply chains with and without carbon capture and storage (CCS) on a cradle to grave basis. The chain with CCS comprises post-combustion CO2 capture with monoethanolamine, compression, transport by pipeline and storage in a geological reservoir. The two reference chains represent sub-critical and state-of-the-art ultra supercritical pulverized coal fired electricity generation. For the three chains we have constructed a detailed greenhouse gas (GHG) balance, and disclosed environmental trade-offs and co-benefits due to CO2 capture, transport and storage. Results show that, due to CCS, the GHG emissions per kWh are reduced substantially to 243 g/kWh. This is a reduction of 78 and 71% compared to the sub-critical and state-of-the-art power plant, respectively. The removal of CO2 is partially offset by increased GHG emissions in up- and downstream processes, to a small extent (0.7 g/kWh) caused by the CCS infrastructure. An environmental co-benefit is expected following from the deeper reduction of hydrogen fluoride and hydrogen chloride emissions. Most notable environmental trade-offs are the increase in human toxicity, ozone layer depletion and fresh water ecotoxicity potential for which the CCS chain is outperformed by both other chains. The state-of-the-art power plant without CCS also shows a better score for the eutrophication, acidification and photochemical oxidation potential despite the deeper reduction of SOx and NOx in the CCS power plant. These reductions are offset by increased emissions in the life cycle due to the energy penalty and a factor five increase in NH3 emissions.  相似文献   

17.
There is strong world-wide interest in developing new and improved processes for post-combustion capture of CO2, often using chemical absorption. Developers of new processes make positive claims for their proposals in terms of low energy consumption, but these are usually difficult to validate. This paper demonstrates that rigorous application of thermodynamic analysis and process simulation provides a powerful way to quantitatively estimate the energy requirements of CO2-capture processes by applying the methodology to the analysis and evaluation of the chilled-ammonia process.  相似文献   

18.
Post-combustion CO2 capture and storage (CCS) presents a promising strategy to capture, compress, transport and store CO2 from a high volume–low pressure flue gas stream emitted from a fossil fuel-fired power plant. This work undertakes the simulation of CO2 capture and compression integration into an 800 MWe supercritical coal-fired power plant using chemical process simulators. The focus is not only on the simulation of full load of flue gas stream into the CO2 capture and compression, but also, on the impact of a partial load. The result reveals that the energy penalty of a low capture efficiency, for example, at 50% capture efficiency with 10% flue gas load is higher than for 90% flue gas load at the equivalent capture efficiency by about 440 kWhe/tonne CO2. The study also addresses the effect of CO2 capture performance by different coal ranks. It is found that lignite pulverized coal (PC)-fired power plant has a higher energy requirement than subbituminous and bituminous PC-fired power plants by 40.1 and 98.6 MWe, respectively. In addition to the investigation of energy requirement, other significant parameters including energy penalty, plant efficiency, amine flow rate and extracted steam flow rate, are also presented. The study reveals that operating at partial load, for example at half load with 90% CO2 capture efficiency, as compared with full load, reduces the energy penalty, plant efficiency drop, amine flow rate and extracted steam flow rate by 9.9%, 24.4%, 50.0% and 49.9%, respectively. In addition, the effect of steam extracted from different locations from a series of steam turbine with the objective to achieve the lowest possible energy penalty is evaluated. The simulation shows that a low extracted steam pressure from a series of steam turbines, for example at 300 kPa, minimizes the energy penalty by up to 25.3%.  相似文献   

19.
The widespread use of fossil fuels within the current energy infrastructure is considered as the largest source of anthropogenic emissions of carbon dioxide, which is largely blamed for global warming and climate change. At the current state of development, the risks and costs of non-fossil energy alternatives, such as nuclear, biomass, solar, and wind energy, are so high that they cannot replace the entire share of fossil fuels in the near future timeframe. Additionally, any rapid change towards non-fossil energy sources, even if possible, would result in large disruptions to the existing energy supply infrastructure. As an alternative, the existing and new fossil fuel-based plants can be modified or designed to be either “capture” or “capture-ready” plants in order to reduce their emission intensity through the capture and permanent storage of carbon dioxide in geological formations. This would give the coal-fired power generation units the option to sustain their operations for longer time, while meeting the stringent environmental regulations on air pollutants and carbon emissions in years to come.Currently, there are three main approaches to capturing CO2 from the combustion of fossil fuels, namely, pre-combustion capture, post-combustion capture, and oxy-fuel combustion. Among these technology options, oxy-fuel combustion provides an elegant approach to CO2 capture. In this approach, by replacing air with oxygen in the combustion process, a CO2-rich flue gas stream is produced that can be readily compressed for pipeline transport and storage. In this paper, we propose a new approach that allows air to be partially used in the oxy-fired coal power plants. In this novel approach, the air can be used to carry the coal from the mills to the boiler (similar to the conventional air-fired coal power plants), while O2 is added to the secondary recycle flow as well as directly to the combustion zone (if needed). From a practical point of view, this approach eliminates problems with the primary recycle and also lessens concerns about the air leakage into the system. At the same time, it allows the boiler and its back-end piping to operate under slight suction; this avoids the potential danger to the plant operators and equipment due to possible exposure to hot combustion gases, CO2 and particulates. As well, by integrating oxy-fuel system components and optimizing the overall process over a wide range of operating conditions, an optimum or near-optimum design can be achieved that is both cost-effective and practical for large-scale implementation of oxy-fired coal power plants.  相似文献   

20.
Making new plants CO2 capture ready (CCR) would enable them to retrofit to capture CO2 at a later date at lower cost when the appropriate policy and/or economic drivers are in place. In order to understand the economic value and investment characteristics of making new plants CCR in China, a typical 600 MW pulverised coal-fired ultra-supercritical power plant, locating in Guangdong province, was examined. Combined with an engineering assessment, costs were estimated for different CCR scenarios. To analyze CCR investment opportunities, the paper applies a cash flow model for valuing capture options and CCR investment. Results were obtained by Monte-Carlo simulation, based on engineering surveys and an IEA GHG CCR study, as well as plant performance information and expert projections on carbon prices, coal prices and electricity prices.CCR investments are justified by factors such as higher retrofitting probabilities, lower early closure probabilities and fair economic return. However, the economic case for CCR largely depends on two factors: (a) whether the original plant is retrofittable without CCR; and (b) the type of investments made, for example, investments essential to CCR tend to be more economic than additional non-essential CCR features such as clutched low pressure turbines. The carbon price and discount rate were found to have significant impacts on the economics of CCR. Overall, it appears that the value of the ‘capture options’ that CCR generates for retrofitting CCS is significant, and so could justify a modest CCR investment, even assuming the original plant is retrofittable without CCR. It was also found the value of CCR might be significantly understated if the range of potential retrofitting dates is artificially constrained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号