首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We sketch four possible pathways how carbon dioxide capture and storage (CCS) (r)evolution may occur in the Netherlands, after which the implications in terms of CO2 stored and avoided, costs and infrastructural requirements are quantified. CCS may play a significant role in decarbonising the Dutch energy and industrial sector, which currently emits nearly 100 Mt CO2/year. We found that 15 Mt CO2 could be avoided annually by 2020, provided some of the larger gas fields that become available the coming decade could be used for CO2 storage. Halfway this century, the mitigation potential of CCS in the power sector, industry and transport fuel production is estimated at maximally 80–110 Mt CO2/year, of which 60–80 Mt CO2/year may be avoided at costs between 15 and 40 €/t CO2, including transport and storage. Avoiding 30–60 Mt CO2/year by means of CCS is considered realistic given the storage potential represented by Dutch gas fields, although it requires planning to assure that domestic storage capacity could be used for CO2 storage. In an aggressive climate policy, avoiding another 50 Mt CO2/year may be possible provided that nearly all capture opportunities that occur are taken. Storing such large amounts of CO2 would only be possible if the Groningen gas field or large reservoirs in the British or Norwegian part of the North Sea will become available.  相似文献   

2.
This paper summarizes the results of a first-of-its-kind holistic, integrated economic analysis of the potential role of carbon dioxide (CO2) capture and storage (CCS) technologies across the regional segments of the United States (U.S.) electric power sector, over the time frame 2005–2045, in response to two hypothetical emissions control policies analyzed against two potential energy supply futures that include updated and substantially higher projected prices for natural gas. This paper's detailed analysis is made possible by combining two specialized models developed at Battelle: the Battelle CO2-GIS to determine the regional capacity and cost of CO2 transport and geologic storage; and the Battelle Carbon Management Electricity Model, an electric system optimal capacity expansion and dispatch model, to examine the investment and operation of electric power technologies with CCS against the background of other options. A key feature of this paper's analysis is an attempt to explicitly model the inherent heterogeneities that exist in both the nation's current and future electricity generation infrastructure and in its candidate deep geologic CO2 storage formations. Overall, between 180 and 580 gigawatts (GW) of coal-fired integrated gasification combined cycle with CCS (IGCC + CCS) capacity is built by 2045 in these four scenarios, requiring between 12 and 41 gigatonnes of CO2 (GtCO2) storage in regional deep geologic reservoirs across the U.S. Nearly all of this CO2 is from new IGCC + CCS systems, which start to deploy after 2025. Relatively little IGCC + CCS capacity is built before that time, primarily under unique niche opportunities. For the most part, CO2 emissions prices will likely need to be sustained at over $20/tonne CO2 before CCS begins to deploy on a large scale within the electric power sector. Within these broad national trends, a highly nuanced picture of CCS deployment across the U.S. emerges. Across the four scenarios studied here, power plant builders and operators within some North American Electric Reliability Council (NERC) regions do not employ any CCS while other regions build more than 100 GW of CCS-enabled generation capacity. One region sees as much as 50% of its geologic CO2 storage reservoirs’ total theoretical capacity consumed by 2045, while most of the regions still have more than 90% of their potential storage capacity available to meet storage needs in the second half of the century and beyond. A detailed presentation of the results for power plant builds and operation in two key regions: ECAR in the Midwest and ERCOT in Texas, provides further insight into the diverse set of economic decisions that generate the national and aggregate regional results.  相似文献   

3.
This article examines the characteristics of and reasons for Norwegian farmers’ ceasing or planning to cease certified organic production. We gathered cross-sectional survey data in late 2007 from organic farmers deregistering between January 2004 and September 2007 (n = 220), and similar data from a random sample of farmers with certified organic management in 2006 (n = 407). Of the respondents deregistering by November 2007, 17% had quit farming altogether, 61% now farmed conventionally, and 21% were still farming by organic principles, but without certification. Nearly one in four organic farmers in 2007 indicated that they planned to cease certification within the next 5–10 years. From the two survey samples, we categorised farmers who expect to be deregistered in 5–10 years into three groups: conventional practices (n = 139), continuing to farm using organic principles (uncertified organic deregistrants, n = 105), and stopped farming (n = 33). Of the numerous differences among these groups, two were most striking: the superior sales of uncertified organic deregistrants through consumer-direct marketing and the lowest shares of organic land among conventional deregistrants. We summarised a large number of reasons for deregistering into five factors through factor analysis: economics, regulations, knowledge-exchange, production, and market access. Items relating to economics and regulations were the primary reasons offered for opting out. The regression analysis showed that the various factors were associated with several explanatory variables. Regulations, for example, figured more highly among livestock farmers than crop farmers. The economic factor strongly reflected just a few years of organic management. Policy recommendations for reducing the number of dropouts are to focus on economics, environmental attitudes, and the regulatory issues surrounding certified organic production.  相似文献   

4.
By analyzing how the largest CO2 emitting electricity-generating region in the United States, the East Central Area Reliability Coordination Agreement (ECAR), responds to hypothetical constraints on greenhouse gas emissions, the authors demonstrate that there is an enduring role for post-combustion CO2 capture technologies. The utilization of pulverized coal generation with carbon dioxide capture and storage (PC + CCS) technologies is particularly significant in a world where there is uncertainty about the future evolution of climate policy and in particular uncertainty about the rate at which the climate policy will become more stringent. The paper's analysis shows that within this one large, heavily coal-dominated electricity-generating region, as much as 20–40 GW of PC + CCS could be operating before the middle of this century. Depending upon the state of PC + CCS technology development and the evolution of future climate policy, the analysis shows that these CCS systems could be mated to either pre-existing PC units or PC units that are currently under construction, announced and planned units, as well as PC units that could continue to be built for a number of decades even in the face of a climate policy. In nearly all the cases analyzed here, these PC + CCS generation units are in addition to a much larger deployment of CCS-enabled coal-fueled integrated gasification combined cycle (IGCC) power plants. The analysis presented here shows that the combined deployment of PC + CCS and IGCC + CCS units within this one region of the U.S. could result in the potential capture and storage of between 3.2 and 4.9 Gt of CO2 before the middle of this century in the region's deep geologic storage formations.  相似文献   

5.
This paper clarifies household income, living and working conditions of dumpsite waste pickers at Bantar Gebang final disposal site for municipal solid waste generated in Jakarta, and investigates the feasibility of integrating the informal sector into formal waste management in Indonesia. The first author did fieldwork for totally 16 months at the site and quantitative field surveys were conducted twice during the period. All respondents in the first round quantitative survey (n = 1390) were categorized as follows: waste pickers, family workers, wage labors, bosses, family of the bosses, housewives, pupils/students, preschoolers, the unemployed, and others. Based on the results of the second round quantitative survey (n = 69 households), their average household income was estimated to be approximately US 216 dollars per month (n = 59 households), which was virtually equivalent to the minimum wage in Jakarta in 2013. Living conditions of scavengers at the site were horrible, and their working conditions were dangerous due to medical waste and other sharp waste. Polluted groundwater was one of the serious environmental problems at the site. Despite the social, health and environmental problems, they were attracted to the freedom of entering the informal recycling system in Bantar Gebang and withdrawing from the system, in which a lot of opportunities were provided for the people having few marketable skills to obtain cash earnings. The freedom of their choice should be guaranteed as a prerequisite before integrating the informal sector into formal waste management. Furthermore, special attentions are required when incomes of scavengers are the same level as minimum wages and the national economy is rapidly growing, because scavengers cannot easily change their jobs due to few marketable skills. Indonesian national waste laws and regulations should be properly applied to facilitate a socialization process at final disposal sites. Measures need to be taken to prevent children from working as informal recycling actors, especially for waste pickers aged 15 or younger.  相似文献   

6.
The low productivity of salmonids in many river systems across the UK is testament to their intolerance of water quality perturbations including those associated with excessive sedimentation. Catchment and fishery managers concerned with combating such issues require reliable information on the key sources of the sediment problem to target management and on the efficacy of the mitigation options being implemented. In recognition of the latter requirement, a pre- and post-remediation sediment sourcing survey was used to examine the potential for using sediment tracing to assemble preliminary information on the efficacy of riparian fencing schemes for reducing sediment contributions from eroding channel banks to salmonid spawning gravels in the Rivers Camel, Fal, Lynher, Plym, Tamar and Tavy in the south west of the UK. Respective estimates of the overall mean proportion (±95% confidence limits) of the interstitial sediment input to salmonid spawning gravels originating from eroding channel banks during the pre- (1999–2000) and post-remediation (2008–2009) study periods were computed at 97 ± 1% vs. 69 ± 1%, 94 ± 1% vs. 91 ± 1%, 12 ± 1% vs. 10 ± 1%, 92 ± 1% vs. 34 ± 1%, 31 ± 1% vs. 16 ± 1% and 90 ± 1% vs. 66 ± 1%. Whilst the study demonstrates the potential utility of the fingerprinting approach for helping to assemble important information on the efficacy of bank fencing as a sediment source control measure at catchment scale, a number of limitations of the work and some suggestions for improving experimental design are discussed. Equivalent data are urgently required for many sediment mitigation options to help inform the development of water quality policy packages designed to protect aquatic ecosystems.  相似文献   

7.
Desires to enhance the energy security of the United States have spurred renewed interest in the development of abundant domestic heavy hydrocarbon resources including oil shale and coal to produce unconventional liquid fuels to supplement conventional oil supplies. However, the production processes for these unconventional fossil fuels create large quantities of carbon dioxide (CO2) and this remains one of the key arguments against such development. Carbon dioxide capture and storage (CCS) technologies could reduce these emissions and preliminary analysis of regional CO2 storage capacity in locations where such facilities might be sited within the U.S. indicates that there appears to be sufficient storage capacity, primarily in deep saline formations, to accommodate the CO2 from these industries. Nevertheless, even assuming wide-scale availability of cost-effective CO2 capture and geologic storage resources, the emergence of a domestic U.S. oil shale or coal-to-liquids (CTL) industry would be responsible for significant increases in CO2 emissions to the atmosphere. The authors present modeling results of two future hypothetical climate policy scenarios that indicate that the oil shale production facilities required to produce 3 MMB/d from the Eocene Green River Formation of the western U.S. using an in situ retorting process would result in net emissions to the atmosphere of between 3000 and 7000 MtCO2, in addition to storing potentially 900–5000 MtCO2 in regional deep geologic formations via CCS in the period up to 2050. A similarly sized, but geographically more dispersed domestic CTL industry could result in 4000–5000 MtCO2 emitted to the atmosphere in addition to potentially 21,000–22,000 MtCO2 stored in regional deep geologic formations over the same period. While this analysis shows that there is likely adequate CO2 storage capacity in the regions where these technologies are likely to deploy, the reliance by these industries on large-scale CCS could result in an accelerated rate of utilization of the nation's CO2 storage resource, leaving less high-quality storage capacity for other carbon-producing industries including electric power generation.  相似文献   

8.
Environmental concerns are increasing rapidly, and the public and industry are concerned about natural resources. The products are produced to meet the customer's demand as to quality. However, today it is equally important to take into account cost, ecological factors in production and recycling of products. The same way, the dentistry must contribution with a recasting the alloys used to rehabilitation oral.This study evaluated the effect of the condition of Ti (as-received and re-cast) on its mechanical properties, microstructure and fractography. Castings (n = 6) with Ti in the as-received and once recast condition were made in a centrifugal casting machine using a high-purity argon gas. The ultimate tensile strength (UTS), proportional limit (PL) and elongation (EL) of the as-received specimens were evaluated in a universal testing machine at a crosshead speed of 1 mm/min. The fractured specimens were polished down for Vicker's microhardness (VHN) measurement (100 g/15 s) from 25 μm below the cast surface, then at depths of 50, 100, 200 and 500 μm. The microstructures of the alloys were also revealed. Scanning electron microscopy fractography was undertaken for the fractured surfaces after testing. The data from the mechanical tests and hardness were subjected to the Student's t-test and two-way repeated measures ANOVA, respectively. Tukey's test was used for pairwise comparison (α = 0.05). Higher UTS, PL and VHN and lower EL were observed for recast cp Ti. The microstructure was not influenced by recasting, but the mode of fracture was.The use of the recasting procedure can lower the costs of cp Ti castings and can be safely in dentistry.  相似文献   

9.
10.
A carbon budget was calculated for Tompkins County, NY, a semi-rural upstate county with a population density of 78 pp/km2. The costs and potential for several carbon mitigation options were analyzed in four categories: terrestrial C sequestration, local power generation, transportation, and energy end-use efficiency. This study outlines a methodology for conducting this type of local-scale analysis, including sources and calculations adaptable to different localities. Effective carbon mitigation strategies for this county based on costs/Mg C and maximum potential include reforestation of abandoned agricultural lands, biomass production for residential heating and co-firing in coal power plants, changes in personal behavior related to transportation (e.g., public transportation), installation of residential energy efficient products such as programmable thermostats or compact fluorescent light bulbs, and development of local wind power. The total county emissions are about 340 Gg C/year, with biomass sequestration rates of 121 Gg C/year. The potential for mitigation, assuming full market penetration, amounts to about 234 Gg C/year (69%), with 100 Gg C/year (29%) at no net cost to the consumer. The development of local-scale C mitigation plans based on this sort of model of analysis is feasible and would be useful for guiding investments in climate change prevention.  相似文献   

11.
This investigation deals with the characterization carried out in zones around two pipeline pumping stations and one pipeline right-of-way in the north of Mexico. In particular those areas where contamination was evaluated: (a) south area of the separation ditch in the Avalos station, (b) the area between the separation ditch at the Avalos station, (c) km 194 + 420 of the Moctuzma station, and (d) km 286 + 900 in the Candelaria station. Results of this investigation showed that only four samples showed TPH values higher than the Mexican limit for 2004: AVA 1B, with 21,191 mg kg?1; AVA 1C, with 9348 mg kg?1; AVA 2B, with 13,970 mg kg?1; and MOC 2A, with 4108 mg kg?1.None of the sampled points showed the presence of PAHs at values higher than those found in the Mexican or American legislations. PAH were detected in the range of 0.0004 and 13.05 mg kg?1.It is suggested to implement surfactant soil washing as a remediation technique for the approximately 600 m3 that need to be treated.  相似文献   

12.
Recently, the concept of pollution-safe cultivars (PSCs) was proposed to minimize the influx of pollutants to the human food chain. Variations in lead (Pb) uptake and translocation among Chinese cabbage (Brassica pekinensis L.) cultivars were investigated in a pot-culture experiment and a field-culture experiment to screen out Pb-PSCs for food safety. The results of the pot-culture experiment showed that shoot Pb concentrations under two Pb treatments (500 and 1500 mg kg?1) varied significantly (p < 0.05) between cultivars, with average values of 3.01 and 6.87 mg kg?1, respectively. Enrichment factors (EFs) and translocation factors (TFs) in cultivars were less than 0.50 and varied significantly (p < 0.05) between cultivars. Shoot Pb concentrations in 12 cultivars under treatment T1 (500 mg kg?1) were lower than 2.0 mg kg?1. The field-culture experiment further confirmed Qiuao, Shiboqiukang and Fuxing 80 as Pb-PSCs, which were suitable to be cultivated in low-Pb (<382.25 mg kg?1) contaminated soils and harmless to human health as foods.  相似文献   

13.
14.
Qualitative proposals to control atmospheric CO2 concentrations by spreading crushed olivine rock along the Earth's coastlines, thereby accelerating weathering reactions, are presently attracting considerable attention. This paper provides a critical evaluation of the concept, demonstrating quantitatively whether or not it can contribute significantly to CO2 sequestration. The feasibility of the concept depends on the rate of olivine dissolution, the sequestration capacity of the dominant reaction, and its CO2 footprint. Kinetics calculations show that offsetting 30% of worldwide 1990 CO2 emissions by beach weathering means distributing of 5.0 Gt of olivine per year. For mean seawater temperatures of 15–25 °C, olivine sand (300 μm grain size) takes 700–2100 years to reach the necessary steady state sequestration rate and is therefore of little practical value. To obtain useful, steady state CO2 uptake rates within 15–20 years requires grain sizes <10 μm. However, the preparation and movement of the required material poses major economic, infrastructural and public health questions. We conclude that coastal spreading of olivine is not a viable method of CO2 sequestration on the scale needed. The method certainly cannot replace CCS technologies as a means of controlling atmospheric CO2 concentrations.  相似文献   

15.
The formulation and scale-up of batch processes is one of the major challenges in the development of pharmaceutical dosage forms and at the same time a significant resource demanding process which is generally overlooked in environmental sustainability assessments. First, this paper proposes general trends in the experience curve of cumulative resource consumption of pharmaceutical tablet manufacturing of PREZISTA® 800 mg through wet granulation (WG) at four consecutive scales in both R&D and manufacturing environments (resp. WG1 = 1 kg/h, WG5 = 5 kg/h, WG30 = 30 kg/h and WG240 = 240 kg/h). Second, the authors aim at evaluating the environmental impact from a life cycle perspective of a daily consumption of PREZISTA® 2× 400 mg tablets versus the bioequivalent PREZISTA® 800 mg tablet which was launched to enhance patient compliance. Environmental sustainability assessment was conducted at three different system boundaries, which enables identification, localization and eventually reduction of burdens, in this case natural resource extraction. Exergy Analysis (EA) was used at process level (α) and plant level (β) while a cradle-to-gate Exergetic Life Cycle Assessment (ELCA) was conducted at the overall industrial level (γ) by means of the CEENE method (Cumulative Exergy Extraction from the Natural Environment). Life cycle stages taken into account are Active Pharmaceutical Ingredient (API) production, Drug Product (DP) production and Packaging. At process level (α), the total resource extraction for the manufacturing of one daily dose of PREZISTA® (800 mg tablet) amounted up to 0.44 MJex at the smallest scale (WG1) while this amount proved to be reduced by 58%, 79% and 83% at WG5, WG30 and WG240 respectively. Expanding the boundaries to the overall industrial level (γ) reveals that the main resource demand is at the production of the Active Pharmaceutical Ingredient (API), excipients, packaging materials and cleaning media used in DP production. At the largest scale (WG240) the use of cleaning media during DP production contributes considerably less to the total resource extraction. Overall, the effect of scale-up and learning on resource consumption during DP production showed to possess a power-law experience curve y = 2.40 * x−0.57 when shifting from WG1 (smallest lab scale) to WG240 (industrial manufacturing). Tablet dosage (2× 400 mg versus 1× 800 mg) did not significantly affect the absolute environmental burden. However, the relative contribution of resource categories did change due to the different production technology. It could be concluded that in meeting social and economic demands by launching the PREZISTA® 800 mg tablet, no trade-off in environmental burden occurred. On the long term, future research should strive to take into account R&D processes and all services related to pipeline activities taking place prior to market launch and eventually to allocate impacts to the final product.  相似文献   

16.
Basic research on the corrosive effect of flue gases has been performed at the BAM Federal Institute for Materials Research and Testing (Germany). Conditions at both high and low temperatures were simulated in specially designed experiments. Carburization occured in flue gases with high CO2 content and temperatures higher than 500 °C. In SO2 containing flue gases sulphur was detected in the oxide scale. At lower temperatures no corrosion was observed when gases with low humidity were investigated. Humidity higher than 1500 ppm was corrosive and all steels with Cr contents lower than 12% revealed corroded surfaces. At low temperatures below 10 °C a mixture of sulphuric and nitric acid condensed on metal surfaces. Acid condensation caused severe corrosion. Humidity, CO2, O2, and SO2 contents are the important factors determining corrosion. Below 300 °C acid condensation is the primary reason for corrosion. Low humidity and low temperatures are conditions which can be expected in the CO2 separation and treatment process. This work includes major conditions of the flue gas and CO2 stream in CCS plants and CCS technology.  相似文献   

17.
Treatment of a basic dye, methylene blue, by electrochemical oxidation, fly ash adsorption, and combined electrochemical oxidation-fly ash adsorption was compared. Methylene blue at 100 mg L?1 was used in this study. The toxicity was also monitored by the Vibrio fischeri light inhibition test.When electrochemical oxidation was used, 99% color and 84% COD were removed from the methylene blue solution in 20 min at a current density of 428 A m?2, NaCl of 1000 mg L?1, and pH0 of 7. However, the decolorized solution showed high toxicity (100% light inhibition).For fly ash adsorption, a high dose of fly ash (>20,000 mg L?1) was needed to remove methylene blue, and the Freundlich isotherm described the adsorption behavior well.In the combined electrochemical oxidation-fly ash adsorption treatment, the addition of 4000 mg L?1 fly ash effectively reduced intermediate toxicity and decreased the COD of the electrochemical oxidation-treated methylene blue solution. The results indicated that the combined process effectively removed color, COD, and intermediate toxicity of the methylene blue solution.  相似文献   

18.
Grassland vegetation can provide visual cover for terrestrial vertebrates. The most commonly used method to assess visual cover is the Robel pole. We test the use of digital photography as a more accurate and repeatable method. We assessed the digital photography method on four forage grassland species (Pseudoroegneria spicata, Festuca campestris, Poa pratensis, Achnatherum richardsonii). Digital photos of 2-dimensional cutout silhouettes of three bird species sharp-tailed grouse, western meadowlark and savannah sparrow were used to model the impact of clipping (i.e., grazing) on visual cover. In addition, photos of artificial voles were used to model litter on cover available to small mammals. Nine sites were sampled and data were analyzed by the dominant grass species in each study plot. Regression analysis showed that digital photos (r2 = 0.62) were a better predictor than the Robel pole (r2 = 0.26) for assessment of cover. Clipping heights showed that clipping at less than 15 cm left the silhouettes 50% exposed. Digital photo analysis revealed that visual cover was affected by the type of grass species, with F. campestris > P. pratensis > A. richardsonii > P. spicata. Biomass and litter were both positively related to cover for small mammals.  相似文献   

19.
Research on biofuel production pathways from algae continues because among other potential advantages they avoid key consequential effects of terrestrial oil crops, such as competition for cropland. However, the economics, energetic balance, and climate change emissions from algal biofuels pathways do not always show great potential, due in part to high fertilizer demand. Nutrient recycling from algal biomass residue is likely to be essential for reducing the environmental impacts and cost associated with algae-derived fuels. After a review of available technologies, anaerobic digestion (AD) and hydrothermal liquefaction (HTL) were selected and compared on their nutrient recycling and energy recovery potential for lipid-extracted algal biomass using the microalgae strain Scenedesmus dimorphus. For 1 kg (dry weight) of algae cultivated in an open raceway pond, 40.7 g N and 3.8 g P can be recycled through AD, while 26.0 g N and 6.8 g P can be recycled through HTL. In terms of energy production, 2.49 MJ heat and 2.61 MJ electricity are generated from AD biogas combustion to meet production system demands, while 3.30 MJ heat and 0.95 MJ electricity from HTL products are generated and used within the production system.Assuming recycled nutrient products from AD or HTL technologies displace demand for synthetic fertilizers, and energy products displace natural gas and electricity, the life cycle greenhouse gas reduction achieved by adding AD to the simulated algal oil production system is between 622 and 808 g carbon dioxide equivalent (CO2e)/kg biomass depending on substitution assumptions, while the life cycle GHG reduction achieved by HTL is between 513 and 535 g CO2e/kg biomass depending on substitution assumptions. Based on the effectiveness of nutrient recycling and energy recovery, as well as technology maturity, AD appears to perform better than HTL as a nutrient and energy recycling technology in algae oil production systems.  相似文献   

20.
Industrial Combined Heat and Power plants (CHPs) are often operated at partial load conditions. If CO2 is captured from a CHP, additional energy requirements can be fully or partly met by increasing the load. Load increase improves plant efficiency and, consequently, part of the additional energy consumption would be offset. If this advantage is large enough, industrial CHPs may become an attractive option for CO2 capture and storage CCS. We therefore investigated the techno-economic performance of post-combustion CO2 capture from small-to-medium-scale (50–200 MWe maximum electrical capacity) industrial Natural Gas Combined Cycle- (NGCC-) CHPs in comparison with large-scale (400 MWe) NGCCs in the short term (2010) and the mid-term future (2020–2025). The analyzed system encompasses NGCC, CO2 capture, compression, and branch CO2 pipeline.The technical results showed that CO2 capture energy requirement for industrial NGCC-CHPs is significantly lower than that for 400 MWe NGCCs: up to 16% in the short term and up to 12% in the mid-term future. The economic results showed that at low heat-to-power ratio operations, CO2 capture from industrial NGCC-CHPs at 100 MWe in the short term (41–44 €/tCO2 avoided) and 200 MWe in the mid-term future (33–36 €/tCO2 avoided) may compete with 400 MWe NGCCs (46–50 €/tCO2 avoided short term, 30–35 €/tCO2 avoided mid-term).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号