首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We sketch four possible pathways how carbon dioxide capture and storage (CCS) (r)evolution may occur in the Netherlands, after which the implications in terms of CO2 stored and avoided, costs and infrastructural requirements are quantified. CCS may play a significant role in decarbonising the Dutch energy and industrial sector, which currently emits nearly 100 Mt CO2/year. We found that 15 Mt CO2 could be avoided annually by 2020, provided some of the larger gas fields that become available the coming decade could be used for CO2 storage. Halfway this century, the mitigation potential of CCS in the power sector, industry and transport fuel production is estimated at maximally 80–110 Mt CO2/year, of which 60–80 Mt CO2/year may be avoided at costs between 15 and 40 €/t CO2, including transport and storage. Avoiding 30–60 Mt CO2/year by means of CCS is considered realistic given the storage potential represented by Dutch gas fields, although it requires planning to assure that domestic storage capacity could be used for CO2 storage. In an aggressive climate policy, avoiding another 50 Mt CO2/year may be possible provided that nearly all capture opportunities that occur are taken. Storing such large amounts of CO2 would only be possible if the Groningen gas field or large reservoirs in the British or Norwegian part of the North Sea will become available.  相似文献   

2.
This paper describes the development and application of a methodology to screen and rank Dutch reservoirs suitable for long-term large scale CO2 storage. The screening focuses on off- and on-shore individual aquifers, gas and oil fields. In total 176 storage reservoirs have been taken into consideration: 138 gas fields, 4 oil fields and 34 aquifers, with a total theoretical storage potential of about 3200 Mt CO2. The reservoirs are screened according to three criteria: potential storage capacity, storage costs and effort needed to manage risk. Due to the large number of reservoirs, which limits the possibility to use any pair-wise comparison method (e.g. Multi-Criteria programs such as Bosda or Naiade), a spreadsheet tool was designed to provide an assessment of each of the criteria through an evaluation of the fields present in the database and a set of scores provided by a (inter)national panel of experts. The assessment is sufficiently simple and allows others to review it, re-do it or expand it. The results of the methodology show that plausible comparisons of prospective sites with limited characterization data are possible.  相似文献   

3.
4.
Amine volatility is a key screening criterion for amines to be used in CO2 capture. Excessive volatility may result in significant economic losses and environmental impact. It also dictates the capital cost of the water wash. This paper reports measured amine volatility in 7 m MEA (monoethanolamine), 8 m PZ (piperazine), 7 m MDEA (n-methyldiethanolamine)/2 m PZ (piperazine), 12 m EDA (ethylenediamine), and 5 m AMP (2-amino-2-methyl-1-propanol) at 40–60 °C with lean and rich loadings giving CO2 partial pressures of 0.5 and 5 kPa at 40 °C. The amine concentrations were chosen to maximize CO2 capture capacity at acceptable viscosity. At the lean loading condition (where volatility is of greatest interest), the amines are ranked in order of increasing volatility: 7 m MDEA/2 m PZ (6/2 ppm), 8 m PZ (8 ppm), 12 m EDA (9 ppm), 7 m MEA (31 ppm), and 5 m AMP (112 ppm). The apparent amine partial molar excess enthalpies in these systems were estimated to range from ~10 to 87 kJ/mol of amine.  相似文献   

5.
In order to take up the twin challenge of reducing carbon dioxide (CO2) emissions, while meeting a growing energy demand, the potential deployment of carbon dioxide capture and storage (CCS) technologies is attracting a growing interest of policy makers around the world. In this study we evaluate and compare national approaches towards the development of CCS in the United States, Canada, Norway, the Netherlands, and Australia. The analysis is done by applying the functions of innovation systems approach. This approach posits that new technology is developed, demonstrated and deployed in the context of a technological innovation system. The performance assessment of the CCS innovation system shows that the extensive knowledge base and knowledge networks, which have been accumulated over the past years, have not yet been utilized by entrepreneurs to explore the market for integrated CCS concepts linked to power generation. This indicates that the build-up of the innovation system has entered a critical phase that is decisive for a further thriving development of CCS. In order to move the CCS innovation system through this present difficult episode and deploy more advanced CCS concepts at a larger scale; it is necessary to direct policy initiatives at the identified weak system functions, i.e. entrepreneurial activity, market creation and the mobilization of resources. Moreover, in some specific countries it is needed to provide more regulatory guidance and improve the legitimacy for the technology. We discuss how policy makers and technology managers can use these insights to develop a coherent policy strategy that would accelerate the deployment of CCS.  相似文献   

6.
Electricity and hydrogen can be used as energy carriers to reduce emissions of CO2 from small and mobile energy users. One of the most promising technologies for the production of electricity and hydrogen with low CO2 emissions is coal gasification with CO2 capture and storage. Performance and cost data are presented for plants which produce electricity and hydrogen alone and plants which co-produce both of these energy carriers. The co-production plants include plants which produce a fixed ratio of hydrogen to electricity and plants which are able to vary the ratio while continuing to operate the gasification and CO2 capture parts of the plant at full load. The paper also assesses the ability of these types of plants to satisfy the varying demands for hydrogen and electricity in future energy supply systems. The lowest cost option for the scenarios assessed in the paper is the use of flexible co-production plants with underground buffer storage of hydrogen.  相似文献   

7.
Large-scale, dedicated commercial biomass energy systems are a potentially large contributor to meeting global climate policy targets by the end of the century. We use an integrated assessment model of energy and agriculture systems to show that, given a climate policy in which terrestrial carbon is appropriately valued equally with carbon emitted from the energy system, biomass energy has the potential to be a major component of achieving these low concentration targets. A key aspect of the research presented here is that the costs of processing and transporting biomass energy at much larger scales than current experience are explicitly incorporated into the modeling. From the scenario results, 120–160 EJ/year of biomass energy is produced globally by midcentury and 200–250 EJ/year by the end of this century. In the first half of the century, much of this biomass is from agricultural and forest residues, but after 2050 dedicated cellulosic biomass crops become the majority source, along with growing utilization of waste-to-energy. The ability to draw on a diverse set of biomass-based feedstocks helps to reduce the pressure for drastic large-scale changes in land use and the attendant environmental, ecological, and economic consequences those changes would unleash. In terms of the conversion of bioenergy feedstocks into value added energy, this paper demonstrates that biomass is and will continue to be used to generate electricity as well as liquid transportation fuels. A particular focus of this paper is to show how climate policies and technology assumptions – especially the availability of carbon dioxide capture and storage (CCS) technologies – affect the decisions made about where the biomass is used in the energy system. The potential for net-negative electric sector emissions through the use of CCS with biomass feedstocks provides an attractive part of the solution for meeting stringent emissions constraints; we find that at carbon prices above $150/tCO2, over 90% of biomass in the energy system is used in combination with CCS. Despite the higher technology costs of CCS, it is a very important tool in controlling the cost of meeting a target, offsetting the venting of CO2 from sectors of the energy system that may be more expensive to mitigate, such as oil use in transportation. CCS is also used heavily with other fuels such as coal and natural gas, and by 2095 a total of 1530 GtCO2 has been stored in deep geologic reservoirs. The paper also discusses the role of cellulosic ethanol and Fischer–Tropsch biomass derived transportation fuels as two representative conversion processes and shows that both technologies may be important contributors to liquid fuels production, with unique costs and emissions characteristics.  相似文献   

8.
A chemical absorption, post-combustion CO2 capture unit is simulated and an exergy analysis has been conducted, including irreversibility calculations for all process units. By pinpointing major irreversibilities, new proposals for efficient energy integrated chemical absorption process are suggested. Further, a natural-gas combined-cycle power plant with a CO2 capture unit has been analyzed on an exergetic basis. By defining exergy balances and black-box models for plant units, investigation has been made to determine effect of each unit on the overall exergy efficiency. Simulation of the chemical absorption plant was done using UniSim Design software with Amines Property Package. For natural-gas combined-cycle design, GT PRO software (Thermoflow, Inc.) has been used. For exergy calculations, spreadsheets are created with Microsoft Excel by importing data from UniSim and GT PRO. Results show the exergy efficiency of 21.2% for the chemical absorption CO2 capture unit and 67% for the CO2 compression unit. The total exergy efficiency of CO2 capture and compression unit is 31.6%.  相似文献   

9.
Vacuum swing adsorptive (VSA) capture of CO2 from flue gas and related process streams is a promising technology for greenhouse gas mitigation. Although early reports suggested that VSA was problematic and expensive, through the application of more logical process configurations that are appropriately coupled to the composition of the feed and product gas streams, we can now refute this early assertion. Improved cycle designs coupled with tighter temperature control are also helping to optimise performance for CO2 separation. Simultaneously, new adsorbent materials are being developed. These separate CO2 by selective (acid-base) reaction with surface bound amine groups (chemisorption), rather than on the basis of non-bonding interactions (physisorption). This report describes some of these recent developments from our own laboratories and points to synergies that are anticipated as a result of combining these improvements in adsorbent properties and VSA process cycles.  相似文献   

10.
Stakeholder involvement (SI) can include many activities, from providing information on a website to one-on-one conversations with people confronting an issue in their community. For carbon dioxide capture and storage (CCS), there are now quite a few surveys of public attitudes towards CCS that are being used to inform the design of SI efforts. These surveys, focused on the nascent commercial deployment of CCS technologies, have demonstrated that the general public has little knowledge about CCS—yet the surveys go on to collect what are known as “pseudo opinions” or “non-attitudes” of respondents who know little or nothing about CCS. Beyond establishing the lack of knowledge about CCS, the results of these surveys should not be relied upon by the larger CCS community and public and private decision makers to inform the critical task of implementing and executing SI activities. The paper discusses the issues involved in providing information as part of the survey, maintaining that such information is never unbiased and thus tends to produce pseudo opinions that reflect the pollster's or researcher's bias. Other content and methodological issues are discussed, leading to the conclusion that most of the survey results should be used neither as a gauge of public attitudes nor as an indication of public acceptance. Then the framing of SI in CCS is examined, including the assumptions that clear stakeholder acceptance is a realistic goal and that the public has a decisive say in choosing the energy technologies of the present and the future. Finally, a broader suite of SI activities is recommended as more suited to realistic and contextual goals.  相似文献   

11.
By analyzing how the largest CO2 emitting electricity-generating region in the United States, the East Central Area Reliability Coordination Agreement (ECAR), responds to hypothetical constraints on greenhouse gas emissions, the authors demonstrate that there is an enduring role for post-combustion CO2 capture technologies. The utilization of pulverized coal generation with carbon dioxide capture and storage (PC + CCS) technologies is particularly significant in a world where there is uncertainty about the future evolution of climate policy and in particular uncertainty about the rate at which the climate policy will become more stringent. The paper's analysis shows that within this one large, heavily coal-dominated electricity-generating region, as much as 20–40 GW of PC + CCS could be operating before the middle of this century. Depending upon the state of PC + CCS technology development and the evolution of future climate policy, the analysis shows that these CCS systems could be mated to either pre-existing PC units or PC units that are currently under construction, announced and planned units, as well as PC units that could continue to be built for a number of decades even in the face of a climate policy. In nearly all the cases analyzed here, these PC + CCS generation units are in addition to a much larger deployment of CCS-enabled coal-fueled integrated gasification combined cycle (IGCC) power plants. The analysis presented here shows that the combined deployment of PC + CCS and IGCC + CCS units within this one region of the U.S. could result in the potential capture and storage of between 3.2 and 4.9 Gt of CO2 before the middle of this century in the region's deep geologic storage formations.  相似文献   

12.
Three different types of membranes were experimentally evaluated for CO2 recovery from blast furnace effluents: semi-commercial adsorption selective carbon membranes, in-house tailored carbon molecular sieving membranes, and fixed site carrier (FSC) membranes with amine groups in the polymer backbone for active transport of CO2. In the single gas experiments the FSC membranes showed superior selectivity for CO2 over the other relevant gases (CO, N2 and H2) and high CO2 permeance (productivity). In addition, it is easy to process and handle, relatively inexpensive to produce and the water in the feed gas is an advantage rather than a problem, since the membrane must be humidified during operation. Based on these experiments a simulation study of a full scale process was performed. The technology showed notable low energy cost, even when converted to the thermal equivalent. Total costs for the CO2 recovery unit (CO2 prepared for pipeline transport) were estimated to be in the range 15.0–17.5 €/tonnes CO2.  相似文献   

13.
The capture of CO2 from a hot stove gas in steel making process containing 30 vol% CO2 by chemical absorption in a rotating packed bed (RPB) was studied. The RPB had an inner diameter of 7.6 cm, an outer diameter of 16 cm, and a height of 2 cm. The aqueous solutions containing 30 wt% of single and mixed monoethanolamine (MEA), 2-(2-aminoethylamino)ethanol (AEEA), and piperazine (PZ) were used. The CO2 capture efficiency was found to increase with increasing temperature in a range of 303–333 K. It was also found to be more dependent on gas and liquid flow rates but less dependent on rotating speed when the speed was higher than 700 rpm. The obtained results indicated that the mixed alkanolamine solutions containing PZ were more effective than the single alkanolamine solutions. This was attributed to the highest reaction rate of PZ with CO2. A higher portion of PZ in the mixture was more favorable to CO2 capture. The highest gas flow rates allowed to achieve a desired CO2 capture efficiency and the correspondent height of transfer unit (HTU) were determined at different aqueous solution flow rates. Because all the 30 wt% single and mixed alkanolamine solutions could result in a HTU less than 5.0 cm at a liquid flow rate of 100 mL/min, chemical absorption in a RPB instead of a packed bed adsorber is therefore suggested to capture CO2 from the flue gases in steel making processes.  相似文献   

14.
For the option of “carbon capture and storage”, an integrated assessment in the form of a life cycle analysis and a cost assessment combined with a systematic comparison with renewable energies regarding future conditions in the power plant market for the situation in Germany is done.The calculations along the whole process chain show that CCS technologies emit per kWh more than generally assumed in clean-coal concepts (total CO2 reduction by 72–90% and total greenhouse gas reduction by 65–79%) and considerable more if compared with renewable electricity. Nevertheless, CCS could lead to a significant absolute reduction of GHG-emissions within the electricity supply system.Furthermore, depending on the growth rates and the market development, renewables could develop faster and could be in the long term cheaper than CCS based plants.Especially, in Germany, CCS as a climate protection option is phasing a specific problem as a huge amount of fossil power plant has to be substituted in the next 15 years where CCS technologies might be not yet available. For a considerable contribution of CCS to climate protection, the energy structure in Germany requires the integration of capture ready plants into the current renewal programs. If CCS retrofit technologies could be applied at least from 2020, this would strongly decrease the expected CO2 emissions and would give a chance to reach the climate protection goal of minus 80% including the renewed fossil-fired power plants.  相似文献   

15.
Gas conditioning is commonly referred to as the required processing for a produced natural gas to achieve transport and sales specifications. In this paper, gas conditioning as the processing required in the interface between CO2 capture and transport is studied for nine different natural gas fired power plant concepts and three different CO2 transport processes. Conditioning processes for both pipeline and ship transport are described and an enhanced process for volatile removal is developed. The energy requirement for the conditioning processes is normally between 90 and 120 kWh/tonne CO2; however, this depends on the pressure and composition of the captured CO2-rich stream. The loss of CO2 in the water purge is small for most capture processes. The waste streams from the gas conditioning processes can contain large amounts of CO2 and should therefore be further processed or reintroduced at an appropriate point upstream in the capture or gas conditioning process if possible. The integration benefit may vary depending on the composition of the CO2-rich stream. It could be particularly interesting for processes with “innovative reactors” (membranes, sorbents, chemical looping) to integrate CO2 capture and gas conditioning.  相似文献   

16.
The paper reviews the environmental, health and safety permitting/regulatory issues presented by CO2 capture and storage (CCS) operations across the full project cycle, and reviews existing regulations in the EU, North America and Australia to assess their applicability to CCS, and identify regulatory gaps.  相似文献   

17.
Preventing climate change is among the greatest environmental challenges facing the world today. Recently developed carbon dioxide capture and storage (CCS) technology is an important strategy to mitigate climate change. Public trust in organizations involved in CCS technology is important for successful implementation of this technology. This work adresses how inferred organizational motives and organizational communications affect public trust in these organizations. Study 1 (N = 264) showed that Dutch citizens generally have less trust in the industrial organizations than in the environmental NGOs involved in CCS. As predicted, inferred organizational motives (organization-serving motives versus public-serving motives) accounted for this difference. In Study 2 (N = 78) and Study 3 (N = 51) we used experimental designs. Both experiments showed that organizations that communicated arguments incongruent with inferred organizational motives instigated less trust than organizations that communicated arguments congruent with inferred organizational motives. Study 3 additionally showed that communicating an incongruent and a congruent argument together diminished the negative effects of the incongruent argument. In both Study 2 and Study 3 the effect of congruency on trust was mediated by perceived honesty of the organizations.  相似文献   

18.
Carbon capture and storage (CCS) technology has been endorsed by the IPCC and the UK government as a key mitigation option but remains on the cusp of wide-scale commercial deployment. Here we present a technology roadmap for CCS, depicted in terms of external factors and short- and long-term pathways for its development, moving from a demonstration to commercialisation era. The roadmap was been developed through a two-phase process of stakeholder engagement; the second phase of this, a high level stakeholder workshop, is documented here. This approach has provided a unique overview of the current status, potential and barriers to CCS deployment in the UK. In addition to the roadmap graphics and more detailed review, five consensus conclusions emerging from the workshop are presented. These describe the need for a monetary CO2 value and the financing of carbon capture and storage schemes; the lack of technical barriers to the deployment of demonstration scale CCS plant; the role of demonstration projects in developing a robust regulatory framework; key storage issues; the need for a long-term vision in furthering both the technical and non-technical development of CCS.  相似文献   

19.
The effect of reaction conditions on the carbonation characteristics of K2CO3 calcined from KHCO3 was investigated with a pressurized thermogravimetric apparatus. Results show that the conversion rate decreased as the reaction temperature and pressure increased, and the effect of CO2 and H2O concentration is little. The mean reaction rate maintained constant of 3%/min. The maximum reaction rate increased as the temperature and H2O concentration increased, and the pressure decreased. The reaction temperature and pressure are the key factors, and it is important to control those carefully for this technique. The optimum reaction condition is 60 °C, 18% CO2, 18% H2O, and 1 atm. K2CO3 calcined from KHCO3 showed excellent CO2 capture capability in this condition.  相似文献   

20.
This paper provides a preliminary assessment of the suitability of Tertiary sedimentary basins in Northern, Western and Eastern Greece in order to identify geological structures close to major CO2 emission sources with the potential for long-term storage of CO2. The term “emissions” refers to point source emissions as defined by the International Energy Agency, including power generation, the cement sector and other industrial processes. The Prinos oil field and saline aquifer, along with the saline formations of the Thessaloniki Basin and the Mesohellenic Trough have been identified as prospective CO2 geological storage sites. In addition, a carbonate deep saline aquifer occurring at appropriate depths beneath the Neogene-Quaternary sediments of Ptolemais-Kozani graben (NW Greece) is considered. The proximity of this geological formation to Greece's largest lignite-fired power plants suggests that it would be worthwhile undertaking further site-specific studies to quantify its storage capacity and assess its structural integrity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号