首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hybrid life cycle assessment has been used to assess the environmental impacts of natural gas combined cycle (NGCC) electricity generation with carbon dioxide capture and storage (CCS). The CCS chain modeled in this study consists of carbon dioxide (CO2) capture from flue gas using monoethanolamine (MEA), pipeline transport and storage in a saline aquifer.Results show that the sequestration of 90% CO2 from the flue gas results in avoiding 70% of CO2 emissions to the atmosphere per kWh and reduces global warming potential (GWP) by 64%. Calculation of other environmental impacts shows the trade-offs: an increase of 43% in acidification, 35% in eutrophication, and 120–170% in various toxicity impacts. Given the assumptions employed in this analysis, emissions of MEA and formaldehyde during capture process and generation of reclaimer wastes contributes to various toxicity potentials and cause many-fold increase in the on-site direct freshwater ecotoxicity and terrestrial ecotoxicity impacts. NOx from fuel combustion is still the dominant contributor to most direct impacts, other than toxicity potentials and GWP. It is found that the direct emission of MEA contribute little to human toxicity (HT < 1%), however it makes 16% of terrestrial ecotoxicity impact. Hazardous reclaimer waste causes significant freshwater and marine ecotoxicity impacts. Most increases in impact are due to increased fuel requirements or increased investments and operating inputs.The reductions in GWP range from 58% to 68% for the worst-case to best-case CCS system. Acidification, eutrophication and toxicity potentials show an even large range of variation in the sensitivity analysis. Decreases in energy use and solvent degradation will significantly reduce the impact in all categories.  相似文献   

2.
Post-combustion CO2 capture and storage (CCS) presents a promising strategy to capture, compress, transport and store CO2 from a high volume–low pressure flue gas stream emitted from a fossil fuel-fired power plant. This work undertakes the simulation of CO2 capture and compression integration into an 800 MWe supercritical coal-fired power plant using chemical process simulators. The focus is not only on the simulation of full load of flue gas stream into the CO2 capture and compression, but also, on the impact of a partial load. The result reveals that the energy penalty of a low capture efficiency, for example, at 50% capture efficiency with 10% flue gas load is higher than for 90% flue gas load at the equivalent capture efficiency by about 440 kWhe/tonne CO2. The study also addresses the effect of CO2 capture performance by different coal ranks. It is found that lignite pulverized coal (PC)-fired power plant has a higher energy requirement than subbituminous and bituminous PC-fired power plants by 40.1 and 98.6 MWe, respectively. In addition to the investigation of energy requirement, other significant parameters including energy penalty, plant efficiency, amine flow rate and extracted steam flow rate, are also presented. The study reveals that operating at partial load, for example at half load with 90% CO2 capture efficiency, as compared with full load, reduces the energy penalty, plant efficiency drop, amine flow rate and extracted steam flow rate by 9.9%, 24.4%, 50.0% and 49.9%, respectively. In addition, the effect of steam extracted from different locations from a series of steam turbine with the objective to achieve the lowest possible energy penalty is evaluated. The simulation shows that a low extracted steam pressure from a series of steam turbines, for example at 300 kPa, minimizes the energy penalty by up to 25.3%.  相似文献   

3.
Storage of cattle slurry leads to emissions of methane (CH(4)), nitrous oxide (N(2)O), ammonia (NH(3)), and carbon dioxide (CO(2)). On dairy farms, winter is the most critical period in terms of slurry storage due to cattle housing and slurry field application prohibition. Slurry treatment by separation results in reduced slurry dry matter content and has considerable potential to reduce gaseous emissions. Therefore, the efficiency of slurry separation in reducing gaseous emissions during winter storage was investigated in a laboratory study. Four slurry fractions were obtained: a solid and a liquid fraction by screw press separation (SPS) and a supernatant and a sediment fraction by chemically enhanced settling of the liquid fraction. Untreated slurry and the separated fractions were stored in plastic barrels for 48 d under winter conditions, and gaseous emissions were measured. Screw press separation resulted in an increase of CO(2) (650%) and N(2)O (1240%) emissions due to high releases observed from the solid fraction, but this increase was tempered by using the combined separation process (CSP). The CSP resulted in a reduction of CH(4) emissions ( approximately 50%), even though high emissions of CH(4) (46% of soluble C) were observed from the solid fraction during the first 6 d of storage. Screw press separation increased NH(3) emissions by 35%, but this was reduced to 15% using the CSP. During winter storage greenhouse gas emissions from all treatments were mainly in the form of CH(4) and were reduced by 30 and 40% using SPS and CSP, respectively.  相似文献   

4.
A post-combustion CO2 capture process intended for offshore operations has been designed and optimised for integration with a natural gas-fired power plant on board a floating structure developed by the Norway-based company Sevan Marine ASA—designated Sevan GTW (gas-to-wire). The concept is constrained by the structure of the floater carrying a SIEMENS modular power system rated at 450 MWe, with a capture rate of 90% and CO2 compression (1.47 Mtpa) for pipeline pressure at 12 MPa. A net efficiency of 45% (based on a lower heating value) is estimated for the system with CO2 capture, thus suggesting that the post-combustion CO2 capture system is accountable for a fuel penalty of nine percentage points.The rationale behind the technology selection is the urgency of replacing the dispersed aero-derivative gas turbines which power the offshore oil and gas production units in Norwegian waters with near-zero emission power.As (inherently) fresh water usually constitutes a limiting factor in sea operations, efforts are made to obtain a neutral water balance to obtain an optimal design. This is primarily achieved by controlling the cleaned flue gas temperature at the top of the absorber column.  相似文献   

5.
The application of post-combustion capture (PCC) processes in coal fired power stations can result in large reductions of the CO2-emissions, but the consequential decrease in generation efficiency is an important draw-back. The leading PCC technology is based on chemical absorption processes as this technology is the one whose scale-up status is closest to full-scale capture in power plants. The energy performance of this process is analysed in this contribution. The analysis shows that the potential for improvement of the energy performance is quite large. It is demonstrated that further development of the capture technology and the power plant technology can lead to generation efficiencies for power plants with 90% CO2 capture which are equivalent to the current generation efficiencies without CO2 capture, i.e. 0.4 (HHV), leading to an additional resource consumption of 16%. These improvements are possible throughout a combined improvement for the capture process and power generation processes.  相似文献   

6.
In this article, we present a life cycle assessment (LCA) of CO2 capture and storage (CCS) for several lignite power plant technologies. The LCA includes post-combustion, pre-combustion and oxyfuel capture processes as well as subsequent pipeline transport and storage of the separated CO2 in a depleted gas field.The results show an increase in cumulative energy demand and a substantial decrease in greenhouse gas (GHG) emissions for all CO2 capture approaches in comparison with power plants without CCS, assuming negligible leakage within the time horizon under consideration. Leakage will, however, not be zero. Due to the energy penalty, CCS leads to additional production of CO2. However, the CO2 emissions occur at a much lower rate and are significantly delayed, thus leading to different, and most likely smaller, impacts compared to the no-sequestration case. In addition, a certain share of the CO2 will be captured permanently due to chemical reactions and physical trapping.For other environmental impact categories, the results depend strongly on the chosen technology and the details of the process. The post-combustion approach, which is closest to commercial application, leads to sharp increases in many categories of impacts, with the impacts in only one category, acidification, reduced. In comparison with a conventional power plant, the pre-combustion approach results in decreased impact in all categories. This is mainly due to the different power generation process (IGCC) which is coupled with the pre-combustion technology.In the case of the oxyfuel approach, the outcome of the LCA depends highly on two uncertain parameters: the energy demand for air separation and the feasibility of co-capture of pollutants other than CO2. If co-capture were possible, oxyfuel could lead to a near-zero emission power plant.  相似文献   

7.
Plug-in hybrid electric vehicles (PHEVs) have the potential to be an economic means of reducing direct (or tailpipe) carbon dioxide (CO2) emissions from the transportation sector. However, without a climate policy that places a limit on CO2 emissions from the electric generation sector, the net impact of widespread deployment of PHEVs on overall U.S. CO2 emissions is not as clear. A comprehensive analysis must consider jointly the transportation and electricity sectors, along with feedbacks to the rest of the energy system. In this paper, we use the Pacific Northwest National Laboratory's MiniCAM model to perform an integrated economic analysis of the penetration of PHEVs and the resulting impact on total U.S. CO2 emissions. In MiniCAM, the deployment of PHEVs (or any technology) is determined based on its relative economics compared to all other methods of providing fuels and energy carriers to serve passenger transportation demands. Under the assumptions used in this analysis where PHEVs obtain 50–60% of the market for passenger automobiles and light-duty trucks, the ability to deploy PHEVs under the two climate policies modelled here results in over 400 million tons (MT) CO2 per year of additional cost-effective emissions reductions from the U.S. economy by 2050. In addition to investments in nuclear and renewables, one of the key technology options for mitigating emissions in the electric sector is CO2 capture and storage (CCS). The additional demand for geologic CO2 storage created by the introduction of the PHEVs is relatively modest: approximately equal to the cumulative geologic CO2 storage demanded by two to three large 1000 megawatt (MW) coal-fired power plants using CCS over a 50-year period. The introduction of PHEVs into the U.S. transportation sector, coupled with climate policies such as those examined here, could also reduce U.S. demand for oil by 20–30% by 2050 compared to today's levels.  相似文献   

8.
In order to take up the twin challenge of reducing carbon dioxide (CO2) emissions, while meeting a growing energy demand, the potential deployment of carbon dioxide capture and storage (CCS) technologies is attracting a growing interest of policy makers around the world. In this study we evaluate and compare national approaches towards the development of CCS in the United States, Canada, Norway, the Netherlands, and Australia. The analysis is done by applying the functions of innovation systems approach. This approach posits that new technology is developed, demonstrated and deployed in the context of a technological innovation system. The performance assessment of the CCS innovation system shows that the extensive knowledge base and knowledge networks, which have been accumulated over the past years, have not yet been utilized by entrepreneurs to explore the market for integrated CCS concepts linked to power generation. This indicates that the build-up of the innovation system has entered a critical phase that is decisive for a further thriving development of CCS. In order to move the CCS innovation system through this present difficult episode and deploy more advanced CCS concepts at a larger scale; it is necessary to direct policy initiatives at the identified weak system functions, i.e. entrepreneurial activity, market creation and the mobilization of resources. Moreover, in some specific countries it is needed to provide more regulatory guidance and improve the legitimacy for the technology. We discuss how policy makers and technology managers can use these insights to develop a coherent policy strategy that would accelerate the deployment of CCS.  相似文献   

9.
Preventing climate change is among the greatest environmental challenges facing the world today. Recently developed carbon dioxide capture and storage (CCS) technology is an important strategy to mitigate climate change. Public trust in organizations involved in CCS technology is important for successful implementation of this technology. This work adresses how inferred organizational motives and organizational communications affect public trust in these organizations. Study 1 (N = 264) showed that Dutch citizens generally have less trust in the industrial organizations than in the environmental NGOs involved in CCS. As predicted, inferred organizational motives (organization-serving motives versus public-serving motives) accounted for this difference. In Study 2 (N = 78) and Study 3 (N = 51) we used experimental designs. Both experiments showed that organizations that communicated arguments incongruent with inferred organizational motives instigated less trust than organizations that communicated arguments congruent with inferred organizational motives. Study 3 additionally showed that communicating an incongruent and a congruent argument together diminished the negative effects of the incongruent argument. In both Study 2 and Study 3 the effect of congruency on trust was mediated by perceived honesty of the organizations.  相似文献   

10.
Climate change is being caused by greenhouse gases such as carbon dioxide (CO2). Carbon capture and storage (CCS) is of interest to the scientific community as one way of achieving significant global reductions of atmospheric CO2 emissions in the medium term. CO2 would be captured from large stationary sources such as power plants and transported via pipelines under high pressure conditions to underground storage. If a downward leakage from a surface transportation system module occurs, the CO2 would undergo a large temperature reduction and form a bank of “dry ice” on the ground surface; the sublimation of the gas from this bank represents an area source term for subsequent atmospheric dispersion, with an emission rate dependent on the energy balance at the bank surface. Gaseous CO2 is denser than air and tends to remain close to the surface; it is an asphyxiant, a cerebral vasodilator and at high concentrations causes rapid circulatory insufficiency leading to coma and death. Hence a subliming bank of dry ice represents safety hazard. A model is presented for evaluating the energy balance and sublimation rate at the surface of a solid frozen CO2 bank under different environmental conditions. The results suggest that subliming gas behaves as a proper dense gas (i.e. it remains close to the ground surface) only for low ambient wind speeds.  相似文献   

11.
The risk associated with storage of carbon dioxide in the subsurface can be reduced by removal of a comparable volume of existing brines (e.g. Buscheck et al., 2011). In order to avoid high costs for disposal, the brines should be processed into useful forms such as fresh and low-hardness water. We have carried out a cost analysis of treatment of typical subsurface saline waters found in sedimentary basins, compared with conventional seawater desalination. We have also accounted for some cost savings by utilization of potential well-head pressures at brine production wells, which may be present in some fields due to CO2 injection, to drive desalination using reverse osmosis. Predicted desalination costs for brines having salinities equal to seawater are about half the cost of conventional seawater desalination when we assume the energy can be obtained from excess pressure at the well head. These costs range from 32 to 40¢ per m3 permeate produced. Without well-head energy recovery, the costs are from 60 to 80¢ per m3 permeate. These costs do not include the cost of any brine production or brine reinjection wells, or pipelines to the well field, or other site-dependent factors.  相似文献   

12.
Concentrated, aqueous piperazine (PZ) is a novel solvent for carbon dioxide (CO2) capture by absorption/stripping. One of the major advantages of PZ is its resistance to thermal degradation and oxidation.At 135 and 150 °C, 8 m PZ is up to two orders of magnitude more resistant to thermal degradation than 7 m monoethanolamine (MEA). After 18 weeks at 150 °C, only 6.3% of the initial PZ was degraded, yielding an apparent first order rate constant for amine loss of 6.1 × 10?9 s?1. PZ was the most resistant amine tested, with the other screened amines shown in order of decreasing resistance: 7 m 2-amino-2-methyl-1-propanol, 7 m Diglycolamine®, 7 m N-(2-hydroxyethyl)piperazine, 7 m MEA, 8 m ethylenediamine, and 7 m diethylenetriamine. Thermal resistance allows the use of higher temperatures and pressures in the stripper, potentially leading to overall energy savings.Concentrated PZ solutions demonstrate resistance to oxidation compared to 7 m MEA solutions. Experiments investigating metal-catalyzed oxidation found that PZ solutions were 3–5 times more resistant to oxidation than MEA. Catalysts tested were 1.0 mM iron (II), 4.0–5.0 mM copper (II), and a combination of stainless steel metals (iron (II), nickel (II), and chromium (III)). Inhibitor A reduced PZ degradation catalyzed by iron (II) and copper (II).  相似文献   

13.
European Union agri-environmental schemes aim to reduce the environmental impact of agricultural production, but were developed before consideration of greenhouse gas emissions from agriculture. Life cycle assessment methodology provided a framework for comparing emissions as kg CO2 equivalent per kg of energy corrected milk (ECM) (kg CO2 kg(-1) ECM yr(-1)) and per hectare (kg CO2 ha(-1) yr(-1)) for farms both within and outside the Irish agri-environmental scheme. The agri-environmental scheme farms operate extensive systems from 40 to 120 cows producing between 3032 and 5946 kg ECM cow(-1) lactation(-1). The cows are fed on grass, conserved silage, and concentrates. Supplementation ranged between 250 and 620 kg cow(-1) yr(-1). The conventional farms had between 30 and 77 milking cows producing 4736 to 6944 kg ECM cow(-1) lactation(-1). Supplementation ranged from 400 to 1000 kg cow(-1) yr(-1). The emissions from each unit were estimated using published emissions factors and possible error was evaluated by using ranges for each factor. Calculated emissions ranged from 0.92 to 1.51 kg CO2 kg(-1) ECM yr(-1) and 5924 to 8323 kg CO2 ha(-1). On average, total emissions from conventional farms were around 18% (p = 0.01) greater than the agri-environmental scheme farms and emissions per hectare (total area required) were 17% greater (p = 0.02) but there was no significant difference (p = 0.335) in terms of emission per unit milk produced. To evaluate greenhouse gas emissions for each farm in terms of the system intensity it was necessary to define a measure of intensification and area per liter of milk produced that was best.  相似文献   

14.
The extent of social acceptance of carbon capture and storage (CCS) is likely to significantly influence the sustainable development of CO2 storage projects. Acceptance of CCS by the key stakeholders (policy makers, the general public, the media and the local community), linked to specific projects, as well as how the technology is communicated about and perceived by the public, have become matters of interest for the social sciences. This article reports on an investigation of the public perception of CCS technology in Spain. Individuals’ views on CCS are analysed through focus groups with lay citizens using “stimulus materials”. As the analysis shows, lay views of CCS differ significantly from the views of decision-makers and experts. Public concerns and reactions to CCS technology and potential projects, as well as the degree of consensus on its acceptance or rejection are detailed. Implications for the future use of CCS are discussed.  相似文献   

15.
16.
Parties to the United Nations Framework Convention on Climate Change (UNFCCC) are required to submit national greenhouse gas (GHG) inventories, together with information on methods used in estimating their emissions. Currently agricultural activities contribute a significant portion (approximately 20%) of global anthropogenic GHG emissions, and agricultural soils have been identified as one of the main GHG source categories within the agricultural sector. However, compared to many other GHG sources, inventory methods for soils are relatively more complex and have been implemented only to varying degrees among member countries. This review summarizes and evaluates the methods used by Annex 1 countries in estimating CO2 and N2O emissions in agricultural soils. While most countries utilize the Intergovernmental Panel on Climate Change (IPCC) default methodology, several Annex 1 countries are developing more advanced methods that are tailored for specific country circumstances. Based on the latest national inventory reporting, about 56% of the Annex 1 countries use IPCC Tier 1 methods, about 26% use Tier 2 methods, and about 18% do not estimate or report N2O emissions from agricultural soils. More than 65% of the countries do not report CO2 emissions from the cultivation of mineral soils, organic soils, or liming, and only a handful of countries have used country-specific, Tier 3 methods. Tier 3 methods usually involve process-based models and detailed, geographically specific activity data. Such methods can provide more robust, accurate estimates of emissions and removals but require greater diligence in documentation, transparency, and uncertainty assessment to ensure comparability between countries. Availability of detailed, spatially explicit activity data is a major constraint to implementing higher tiered methods in many countries.  相似文献   

17.
In this study the methodology of life cycle assessment has been used to assess the environmental impacts of three pulverized coal fired electricity supply chains with and without carbon capture and storage (CCS) on a cradle to grave basis. The chain with CCS comprises post-combustion CO2 capture with monoethanolamine, compression, transport by pipeline and storage in a geological reservoir. The two reference chains represent sub-critical and state-of-the-art ultra supercritical pulverized coal fired electricity generation. For the three chains we have constructed a detailed greenhouse gas (GHG) balance, and disclosed environmental trade-offs and co-benefits due to CO2 capture, transport and storage. Results show that, due to CCS, the GHG emissions per kWh are reduced substantially to 243 g/kWh. This is a reduction of 78 and 71% compared to the sub-critical and state-of-the-art power plant, respectively. The removal of CO2 is partially offset by increased GHG emissions in up- and downstream processes, to a small extent (0.7 g/kWh) caused by the CCS infrastructure. An environmental co-benefit is expected following from the deeper reduction of hydrogen fluoride and hydrogen chloride emissions. Most notable environmental trade-offs are the increase in human toxicity, ozone layer depletion and fresh water ecotoxicity potential for which the CCS chain is outperformed by both other chains. The state-of-the-art power plant without CCS also shows a better score for the eutrophication, acidification and photochemical oxidation potential despite the deeper reduction of SOx and NOx in the CCS power plant. These reductions are offset by increased emissions in the life cycle due to the energy penalty and a factor five increase in NH3 emissions.  相似文献   

18.
This study analyses the general-equilibrium impacts of an international climate change response policy on the economy of Western Australia (WA), one of the most mining-based and energy-intensive states of Australia. It finds that emissions would fall by up to 11% from the base level in WA. However, such environmental benefits emanate at some costs to the state economy; in terms of foregone gross state product, the costs are up to 3% of the base level. Indeed, the actual costs and benefits depend on the precise design of the climate change response policy as well as on the other policies within which it operates. For example, when emission quota permits are sold to industries and no tradeable carbon credits (i.e. credits for the carbon sequestrated in Kyoto forests) are granted, emissions decline by about 8% and GSP falls by about 3% of the base levels. If carbon credits are tradeable, however, the environmental benefits could be increased and the GSP cost could be reduced substantially. Also, the reduced economic activity caused by emission abatement results in a modest fall in net government revenue, despite the additional revenue from permit sales in some cases. Accordingly, government’s fiscal package surrounding the emission permits would influence the emission abatement impacts on the economy. With regard to the effects on the structure of the state economy, the oil and gas industry suffers only a slight contraction but the energy-supplying sector as a whole contracts substantially. It is therefore not surprising that the impacts on the WA economy of curbing emissions by energy and transport industries alone are quite significant when compared to those resulted from all industries’ compliance with the abatement scheme. It needs to be noted that the model projections analysed in the paper are based on simplifying assumptions and tentative scenarios, and hence should be viewed with caution and not be understood as unconditional forecasts.  相似文献   

19.
Phosphogypsum (PG), a by-product of the phosphate fertilizer industry, reduces N losses when added to composting livestock manure, but its impact on greenhouse gas emissions is unclear. The objective of this research was to assess the effects of PG addition on greenhouse gas emissions during cattle feedlot manure composting. Sand was used as a filler material for comparison. The seven treatments were PG10, PG20, PG30, S10, S20, and S30, representing the rate of PG or sand addition at 10, 20, or 30% of manure dry weight and a check treatment (no PG or sand) with three replications. The manure treatments were composted in open windrows and turned five times during a 134-d period. Addition of PG significantly increased electrical conductivity (EC) and decreased pH in the final compost. Total carbon (TC), total nitrogen (TN), and mineral nitrogen contents in the final composted product were not affected by the addition of PG or sand. From 40 to 54% of initial TC was lost during composting, mostly as CO(2), with CH(4) accounting for <14%. The addition of PG significantly reduced CH(4) emissions, which decreased exponentially with the compost total sulfur (TS) content. The emission of N(2)O accounted for <0.2% of initial TN in the manure, increasing as compost pH decreased from alkaline to near neutral. Based on the total greenhouse gas budget, PG addition reduced greenhouse gas emissions (CO(2)-C equivalent) during composting of livestock manure by at least 58%, primarily due to reduced CH(4) emission.  相似文献   

20.
Compared with natural ecosystems and managed agricultural systems, engineered landfills represent a highly managed soil system for which there has been no systematic quantification of emissions from coexisting daily, intermediate, and final cover materials. We quantified the seasonal variability of CH, CO, and NO emissions from fresh refuse (no cover) and daily, intermediate, and final cover materials at northern and southern California landfill sites with engineered gas extraction systems. Fresh refuse fluxes (g m d [± SD]) averaged CH 0.053 (± 0.03), CO 135 (± 117), and NO 0.063 (± 0.059). Average CH emissions across all cover types and wet/dry seasons ranged over more than four orders of magnitude (<0.01-100 g m d) with most cover types, including both final covers, averaging <0.1 g m d with 10 to 40% of surface areas characterized by negative fluxes (uptake of atmospheric CH). The northern California intermediate cover (50 cm) had the highest CH fluxes. For both the intermediate (50-100 cm) and final (>200 cm) cover materials, below which methanogenesis was well established, the variability in gaseous fluxes was attributable to cover thickness, texture, density, and seasonally variable soil moisture and temperature at suboptimal conditions for CH oxidation. Thin daily covers (30 cm local soil) and fresh refuse generally had the highest CO and NO fluxes, indicating rapid onset of aerobic and semi-aerobic processes in recently buried refuse, with rates similar to soil ecosystems and windrow composting of organic waste. This study has emphasized the need for more systematic field quantification of seasonal emissions from multiple types of engineered covers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号