首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
To evaluate the risk of corrosion of cement by geosequestered CO2, samples are being retrieved from wells placed in natural CO2 deposits [e.g., Crow et al., 2009]. If the cement passing through the cap rock is carbonated, it may indicate that annular gaps or cracks have allowed carbonic acid to come into contact with the cement. However, it must be recognized that the pore water in the cap rock has become saturated with CO2 over geological time. After the well is placed, the CO2 will diffuse toward the cement and react with it. A simple analysis of the diffusion kinetics demonstrates that carbonation depths of millimeters to centimeters can be expected from this reaction within the lifetime of a well, in the absence of any cracks or gaps. Therefore, the occurrence of carbonation in cement sealing natural CO2 deposits must be interpreted with caution.  相似文献   

2.
In this work the feasibility of a CO2 capture system based on sodium carbonate–bicarbonate slurry and its integration with a power plant is studied. The results are compared to monoethanolamine (MEA)-based capture systems. Condensing power plant and combined heat and power plant with CO2 capture is modelled to study the feasibility of combined heat and power plant for CO2 capture.Environmental friendly sodium carbonate would be an interesting chemical for CO2 capture. Sodium carbonate absorbs CO2 forming sodium bicarbonate. The low solubility of sodium bicarbonate is a weak point for the sodium carbonate based liquid systems since it limits the total concentration of carbonate. In this study the formation of solid bicarbonate is allowed, thus forming slurry, which can increase the capacity of the solvent. With this the energy requirement of stripping of the solvent could potentially be around 3.22 MJ/kg of captured CO2 which is significantly lower than with MEA based systems which typically have energy consumption around 3.8 MJ/kg of captured CO2.Combined heat and power plants seem to be attractive for CO2 capture because of the high total energy efficiency of the plants. In a condensing power plant the CO2 capture decreases directly the electricity production whereas in a combined heat and power plant the loss can be divided between district heat and electricity according to demand.  相似文献   

3.
A reaction calorimeter was used to determine the enthalpies of absorption of CO2 in aqueous ammonia and in aqueous solutions of ammonium carbonate at temperatures of 35–80 °C. The heat of absorption of CO2 with 2.5 wt% aqueous ammonia solution was found to be about 70 kJ/mol CO2, which is lower than that with MEA (around 85 kJ/mol) at 35 and 40 °C. The value decreases with increased loading, but not to as low a value as expected by the carbonate–bicarbonate reaction (26.88 kJ/mol). The enthalpy of absorption of CO2 in aqueous ammonia at 60 and 80 °C decreases with loadings at first, then increases between 0.2 mol CO2/mol NH3 and 0.6 mol CO2/mol NH3, and then decreases again. The behavior of the heat of absorption of CO2 in 10 wt% ammonium carbonate solution was found to be the same as that of aqueous ammonia at loadings above 0.6 mol CO2/mol NH3. The heat of absorption increases with increasing temperature. The heats of absorption are directly related to the extent of the various reactions with CO2 and can be assessed from the species variation in the liquid phase.  相似文献   

4.
5.
The simulation tool ASPEN Plus® is used to model the full CO2-capture process for chemical absorption of CO2 by piperazine-promoted potassium carbonate (K2CO3/PZ) and the subsequent CO2-compression train. Sensitivity analysis of lean loading, desorber pressure and CO2-capture rate are performed for various solvent compositions to evaluate the optimal process parameters. EbsilonProfessional® is used to model a 600 MWel (gross) hard coal-fired power plant. Numerical equations for power losses due to steam extraction for solvent regeneration are derived from simulation runs. The results of the simulation campaigns are used to find the process parameters that show the lowest specific power loss. Subsequently, absorber and desorber columns are dimensioned to evaluate investment costs for these main components of the CO2-capture process. Regeneration heat duty, net efficiency losses and column investment costs are then compared to the reference case of CO2-capture by monoethanolamine (MEA).CO2-capture by piperazine-promoted potassium carbonate with subsequent CO2-compression to 110 bar shows energetic advantages over the reference process which uses MEA. Additionally, investment costs for the main components in the CO2-capture process (absorber and desorber columns) are lower due to the enhanced reaction kinetics of the investigated K2CO3/PZ solvent which leads to smaller component sizes.  相似文献   

6.
The cement industry is one of the most significant sources of anthropogenic emissions of CO2. It is connected with the specific character of the production processes, during which great quantities of CO2 are produced. Basic actions to reduce CO2 emissions recommended by the European Union's, Reference Document on Best Available Techniques in the Cement and Lime Manufacturing Industries, include: reduction of fuel consumption, selection of raw materials with low content of organic compounds and fuels with low coal contribution to heating value. All actions connected with the improvement of energy conversion efficiency of the cement production process cause CO2 emissions reduction. The use of at most acceptable by the valid standards amounts of waste as raw materials and additives for cement production, also brings about the reduction of significant part of CO2 emissions. These measures have been and continue to be pursued by the cement factories in Poland. This article describes the evolution of the cement industry in Poland over the period 1998–2008 and the resulting changes in CO2 emissions and explores the drivers for these changes. The sources of CO2 emissions in cement industry have been presented in this article as well as a discussion of potential ways to reduce Polish cement industry emissions even further.  相似文献   

7.
A laboratory-scale reactor system was built and operated to demonstrate the feasibility of catalytically reacting carbon dioxide (CO2) with renewably-generated hydrogen (H2) to produce methane (CH4) according to the Sabatier reaction: CO2 + 4H2  CH4 + 2H2O. A cylindrical reaction vessel packed with a commercial methanation catalyst (Haldor Topsøe PK-7R) was used. Renewable H2 produced by electrolysis of water (from solar- and wind-generated electricity) was fed into the reactor along with a custom blend of 2% CO2 in N2, meant to represent a synthetic exhaust mixture. Reaction conditions of temperature, flow rates, and gas mixing ratios were varied to determine optimum performance. The extent of reaction was monitored by real-time measurement of CO2 and CH4. Maximum conversion of CO2 occurred at 300–350 °C. Approximately 60% conversion of CO2 was realized at a space velocity of about 10,000 h?1 with a molar ratio of H2/CO2 of 4/1. Somewhat higher total CO2 conversion was possible by increasing the H2/CO2 ratio, but the most efficient use of available H2 occurs at a lower H2/CO2 ratio.  相似文献   

8.
The concentration of CO2 in air near the ground needs to be predicted to assess environmental and health risks from leaking underground storage. There is an exact solution to the advection–diffusion equation describing trace gases carried by wind when the wind profile is modeled with a power-law dependence on height. The analytical solution is compared with a numerical simulation of the coupled air–ground system with a source of CO2 underground at the water table. The two methods produce similar results far from the boundaries, but the boundary conditions have a strong effect; the simulation imposes boundary conditions at the edge of a finite domain while the analytic solution imposes them at infinity. The reverse seepage from air to ground is shown in the simulation to be very small, and the large difference between time scales suggests that air and ground can be modeled separately, with gas emissions from the ground model used as inputs to the air model.  相似文献   

9.
Industrial Combined Heat and Power plants (CHPs) are often operated at partial load conditions. If CO2 is captured from a CHP, additional energy requirements can be fully or partly met by increasing the load. Load increase improves plant efficiency and, consequently, part of the additional energy consumption would be offset. If this advantage is large enough, industrial CHPs may become an attractive option for CO2 capture and storage CCS. We therefore investigated the techno-economic performance of post-combustion CO2 capture from small-to-medium-scale (50–200 MWe maximum electrical capacity) industrial Natural Gas Combined Cycle- (NGCC-) CHPs in comparison with large-scale (400 MWe) NGCCs in the short term (2010) and the mid-term future (2020–2025). The analyzed system encompasses NGCC, CO2 capture, compression, and branch CO2 pipeline.The technical results showed that CO2 capture energy requirement for industrial NGCC-CHPs is significantly lower than that for 400 MWe NGCCs: up to 16% in the short term and up to 12% in the mid-term future. The economic results showed that at low heat-to-power ratio operations, CO2 capture from industrial NGCC-CHPs at 100 MWe in the short term (41–44 €/tCO2 avoided) and 200 MWe in the mid-term future (33–36 €/tCO2 avoided) may compete with 400 MWe NGCCs (46–50 €/tCO2 avoided short term, 30–35 €/tCO2 avoided mid-term).  相似文献   

10.
The use of recycled concrete aggregates (RCA) in applications other than road sub-layers is limited by two factors: the high porosity of RCA in comparison with natural aggregates, and the restrictions set forth in standards and building codes. Research efforts aimed at alleviating these restrictions are focused on improving the quality of coarse RCAs by reducing the amount of adhered cement pastes, which is the weakest element in this system and influences the rheological behaviour.This paper presents an analysis of the environmental impacts of the recent mechanical and thermo-mechanical processing techniques which produce high performance RCA by reducing the volume of adhered cement paste. Based on published data, processing scenarios were established. These scenarios permit making rough estimates of energy consumption, CO2 emissions, fines generation and product quality. Using these data and the available emission factors from several countries, an objective comparison was made between these innovating processes and conventional recycling.The production of fines increases from 40% up to as much as 70% as the volume of adhered cement paste on the RCA is reduced. Fuel fed thermo-mechanical process energy consumption, per tonne of recycled aggregate, varies between 36 and 62 times higher than conventional recycling processes. Mechanical processing, combined with microwave heating, increases energy consumption from 3 to a little more than 4 times conventional recycling. Consequently, CO2 emissions released by conventional coarse aggregate production go from 1.5 to 4.5 kgCO2/t, to around 200 kgCO2/t, for that of fossil fuel fed thermo-mechanical treatments.Mechanical and mechanical/microwave treatments appear to have the greatest environmental potential. Notwithstanding, the further development of markets for fines is crucial for reducing environmental loads.  相似文献   

11.
Vacuum swing adsorptive (VSA) capture of CO2 from flue gas and related process streams is a promising technology for greenhouse gas mitigation. Although early reports suggested that VSA was problematic and expensive, through the application of more logical process configurations that are appropriately coupled to the composition of the feed and product gas streams, we can now refute this early assertion. Improved cycle designs coupled with tighter temperature control are also helping to optimise performance for CO2 separation. Simultaneously, new adsorbent materials are being developed. These separate CO2 by selective (acid-base) reaction with surface bound amine groups (chemisorption), rather than on the basis of non-bonding interactions (physisorption). This report describes some of these recent developments from our own laboratories and points to synergies that are anticipated as a result of combining these improvements in adsorbent properties and VSA process cycles.  相似文献   

12.
There is a strong political will to decrease CO2 emissions. Although the steel industry only accounts for some 5% of worldwide CO2 emissions (which totalled 1,200 million tonnes per annum in the late 1990s), it will be strongly affected by this. The EU, for example, is putting up strong economic incentives for reductions. This is taking place at a time when demand for steel products is greater than ever. To radically change existing processes and production routes to decrease the CO2 emissions would be extremely expensive, even if it were possible. Nevertheless, many of the solutions which have been discussed seem to go in this direction. The other alternative discussed seems to be the creation of process solutions and alterations that lead to a focusing of CO2 streams, i.e., much higher CO2 concentrations in flue gases than today, for entrapment of the CO2 so that it is not discharged into the atmosphere. These solutions are feasible, but expensive.

However, there exists today a number of solutions and technologies which, if fully implemented, could substantially decrease CO2 emissions without seriously altering current methods of operation; they are short-term viable solutions. The present paper reviews and discusses such technologies, throughout the steel production paths. If these solutions are fully implemented, the combined impact on CO2 emissions from the steel industry worldwide is estimated to be a reduction of 100–150 million tonnes of CO2 per annum, i.e., current emissions can be reduced by some 8–10% within a relatively short time span.  相似文献   

13.
The capture of CO2 from a hot stove gas in steel making process containing 30 vol% CO2 by chemical absorption in a rotating packed bed (RPB) was studied. The RPB had an inner diameter of 7.6 cm, an outer diameter of 16 cm, and a height of 2 cm. The aqueous solutions containing 30 wt% of single and mixed monoethanolamine (MEA), 2-(2-aminoethylamino)ethanol (AEEA), and piperazine (PZ) were used. The CO2 capture efficiency was found to increase with increasing temperature in a range of 303–333 K. It was also found to be more dependent on gas and liquid flow rates but less dependent on rotating speed when the speed was higher than 700 rpm. The obtained results indicated that the mixed alkanolamine solutions containing PZ were more effective than the single alkanolamine solutions. This was attributed to the highest reaction rate of PZ with CO2. A higher portion of PZ in the mixture was more favorable to CO2 capture. The highest gas flow rates allowed to achieve a desired CO2 capture efficiency and the correspondent height of transfer unit (HTU) were determined at different aqueous solution flow rates. Because all the 30 wt% single and mixed alkanolamine solutions could result in a HTU less than 5.0 cm at a liquid flow rate of 100 mL/min, chemical absorption in a RPB instead of a packed bed adsorber is therefore suggested to capture CO2 from the flue gases in steel making processes.  相似文献   

14.
In the Republic of Estonia, local low-grade carbonaceous fossil fuel--Estonian oil-shale--is used as a primary energy source. Combustion of oil-shale is characterized by a high specific carbon emission factor (CEF). In Estonia, the power sector is the largest CO(2) emitter and is also a source of huge amounts of waste ash. Oil-shale has been burned by pulverized firing (PF) since 1959 and in circulating fluidized-bed combustors (CFBCs) since 2004-2005. Depending on the combustion technology, the ash contains a total of up to 30% free Ca-Mg oxides. In consequence, some amount of emitted CO(2) is bound by alkaline transportation water and by the ash during hydraulic transportation and open-air deposition. The goal of this study was to investigate the possibility of improving the extent of CO(2) capture using additional chemical and technological means, in particular the treatment of aqueous ash suspensions with model flue gases containing 10-15% CO(2). The results indicated that both types of ash (PF and CFBC) could be used as sorbents for CO(2) mineral sequestration. The amount of CO(2) captured averaged 60-65% of the carbonaceous CO(2) and 10-11% of the total CO(2) emissions.  相似文献   

15.
Canadian oil sands are considered to be the second largest oil reserves in the world. However, the upgrading of bitumen from oil sands to synthetic crude oil (SCO) requires nearly ten times more hydrogen (H2) than conventional crude oils. The current H2 demand for oil sands operations is met mostly by steam reforming of natural gas (SMR). The future expansion of oil sands operations is likely to quadruple the demand of H2 for oil sand operations in the next decade.This paper presents modified process schemes that capture CO2 at minimum energy penalty in modern SMR plants. The approach is to simulate a base case H2 plant without CO2 capture and then look for the best operating conditions that minimize the energy penalty associated with CO2 capture while maximizing H2 production. The two CO2 capture schemes evaluated in this study include a membrane separation process and the monoethanolamine (MEA) absorption process. A low energy penalty is observed when there is lower CO2 production and higher steam production. The process simulation results show that the H2 plant with CO2 capture has to be operated at lower steam to carbon ratio (S/C), higher inlet temperature of the SMR and lower inlet temperatures for the water gas-shift (WGS) converters to attain lowest energy penalty. Also it is observed that both CO2 capture processes, the membrane process and the MEA absorption process, are comparable in terms of energy penalty and CO2 avoided when both are operated at conditions where lowest energy penalty exists.  相似文献   

16.
Oxyfuel combustion in a pulverised fuel coal-fired power station produces a raw CO2 product containing contaminants such as water vapour plus oxygen, nitrogen and argon derived from the excess oxygen for combustion, impurities in the oxygen used, and any air leakage into the system. There are also acid gases present, such as SO3, SO2, HCl and NOx produced as byproducts of combustion. At GHGT8 (White and Allam, 2006) we presented reactions that gave a path-way for SO2 to be removed as H2SO4 and NO and NO2 to be removed as HNO3. In this paper we present initial results from the OxyCoal-UK project in which these reactions are being studied experimentally to provide the important reaction kinetic information that is so far missing from the literature. This experimental work is being carried out at Imperial College London with synthetic flue gas and then using actual flue gas via a sidestream at Doosan Babcock's 160 kW coal-fired oxyfuel rig. The results produced support the theory that SOx and NOx components can be removed during compression of raw oxyfuel-derived CO2 and therefore, for emissions control and CO2 product purity, traditional FGD and deNOx systems should not be required in an oxyfuel-fired coal power plant.  相似文献   

17.
Abstract

As one of the natural working fluids for the refrigeration system, CO2 has been attracting increasing attention over the last ten years. But CO2 has to work at the supercritical region for the so-called “condensation” process regarding the conventional refrigerants and evaporate at the two-phase region, and therefore results in larger throttling loss for the practical refrigeration application. Consequently, new technologies must be developed to improve the performance efficiency of the CO2 transcritical cycle, and make it to be equal or closer to that of the refrigeration system with the conventional refrigerants. In this study, an expander is employed in the CO2 transcritical cycle to replace the throttling valve, and as a result the throttling loss can be decreased significantly. The paper presents the development of a rolling piston expander and the activity items in the expander design, including the seal technology, the contact friction control, the suction design, etc. The performance experiments for the expander are conducted in the present testing system for the CO2 transcritical cycle. The results show that the recovery power of the expander is related to the revolution speed of the expander. The efficiency of the expander prototype is observed to be about 32%.  相似文献   

18.
TETA对CO_2的吸收及其动力学参数的推导   总被引:2,自引:0,他引:2  
为了提高CO2的吸收量,选用含四个氮原子的三乙烯四胺(简写为TETA)为吸收剂,在常压下,采用搅拌式反应器对TETA吸收CO2进行了研究。得到TETA吸收CO2的最佳温度为308K、最佳浓度为1.0mol/L,并与常用的醇胺吸收剂一乙醇胺(简写为MEA)、二乙醇胺(简写为DEA)、三乙醇胺(简写为TEA)的吸收效果进行比较,实验结果显示:TETA是一种性能优良的CO2吸收剂。同时分析了各吸收剂对二氧化碳的吸收机理;应用化学动力学理论计算了不同温度下TETA吸收CO2反应的级数,速率常数及反应的平均活化能。计算结果表明,在最佳温度308K时,反应的速率常数最大,反应速率最快,反应级数n=1.6,速率常数k′=0.172,平均活化能Ea=132kJ/mol。  相似文献   

19.
水泥是重要的建筑材料,水泥工业的快速发展有力地支撑了我国经济的高速增长。但水泥生产过程中石灰石分解产生的CO2已成为重要的CO2排放源。根据2006年IPCC提供的水泥生产过程碳排放估算方法,采用全国吨水泥熟料比推算河南水泥熟料产量,对1990--2010年河南水泥生产过程CO2的排放量进行了估算,其结果可为河南省节能减排政策的制定提供科学依据。  相似文献   

20.
Assessment of the potential CO2 emission reduction by development of non-grain-based ethanol in China is valuable for both setting up countermeasures against climate change and formulating bioethanol policies. Based on the land occupation property, feedstock classification and selection are conducted, identifying sweet sorghum, cassava, and sweet potato as plantation feedstocks cultivated from low-quality arable marginal land resources and molasses and agricultural straws as nonplantation feedstocks derived from agricultural by-products. The feedstock utilization degree, CO2 reduction coefficient of bioethanol, and assessment model of CO2 emission reduction potential of bioethanol are proposed and established to assess the potential CO2 emission reduction by development of non-grain-based bioethanol. The results show that China can obtain emission reduction potentials of 10.947 and 49.027 Mt CO2 with non-grain-based bioethanol in 2015 and 2030, which are much higher than the present capacity, calculated as 1.95 Mt. It is found that nonplantation feedstock can produce more bioethanol so as to obtain a higher potential than plantation feedstock in both 2015 and 2030. Another finding is that developing non-grain-based bioethanol can make only a limited contribution to China’s greenhouse gas emission reduction. Moreover, this study reveals that the regions with low and very low potentials for emission reduction will dominate the spatial distribution in 2015, and regions with high and very high potentials will be the majority in 2030.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号