共查询到20条相似文献,搜索用时 15 毫秒
1.
Due to the lack of appropriate policies in the last decades, 60% of Brazilian cities still dump their waste in non-regulated landfills (the remaining ones dump their trash in regulated landfills), which represent a serious environmental and social problem. The key objective of this study is to compare, from a techno-economic and environmental point of view, different alternatives to the energy recovery from the Municipal Solid Waste (MSW) generated in Brazilian cities. The environmental analysis was carried out using current data collected in Betim, a 450,000 inhabitants city that currently produces 200 tonnes of MSW/day. Four scenarios were designed, whose environmental behaviour were studied applying the Life Cycle Assessment (LCA) methodology, in accordance with the ISO 14040 and ISO 14044 standards. The results show the landfill systems as the worst waste management option and that a significant environmental savings is achieved when a wasted energy recovery is done. The best option, which presented the best performance based on considered indicators, is the direct combustion of waste as fuel for electricity generation. The study also includes a techno-economical evaluation of the options, using a developed computer simulation tool. The economic indicators of an MSW energy recovery project were calculated. The selected methodology allows to calculate the energy content of the MSW and the CH4 generated by the landfill, the costs and incomes associated with the energy recovery, the sales of electricity and carbon credits from the Clean Development Mechanism (CDM). The studies were based on urban centres of 100,000, 500,000 and 1,000,000 inhabitants, using the MSW characteristics of the metropolitan region of Belo Horizonte. Two alternatives to recovering waste energy were analyzed: a landfill that used landfill biogas to generate electricity through generator modules and a Waste-to-Energy (WtE) facility also with electricity generation. The results show that power generation projects using landfill biogas in Brazil strongly depend on the existence of a market for emissions reduction credits. The WtE plant projects, due to its high installation, Operation and Maintenance (O&M) costs, are highly dependent on MSW treatment fees. And they still rely on an increase of three times the city taxes to become attractive. 相似文献
2.
Energy and resource basis of an Italian coastal resort region integrated using emergy synthesis 总被引:1,自引:0,他引:1
Paolo Vassallo Chiara Paoli David R. Tilley Mauro Fabiano 《Journal of environmental management》2009,91(1):277-289
Sustainable development of coastal zones must balance economic development that encourages human visitation from a larger population with desires that differ from the local residents with the need to maintain opportunities for the local resident society and conserve ecological capital, which may serve as the basis for residents.We present a case study in which the sustainability level of a coastal zone (Riviera del Beigua), located along the Ligurian coast of north-western Italy, was assessed through the lens of systems ecology using emergy synthesis to integrate across economic, social and environmental sub-systems.Our purposes were (1) to quantify the environmental sustainability level of this coastal zone, (2) to evaluate the role of tourism in affecting the economy, society and environment, and (3) to compare emergy synthesis to Butler's Tourism Area Life Cycle model (TALC). Results showed that 81% of the total emergy consumption in the coastal zone was derived from external sources, indicating that this tourist-heavy community was not sustainable. Tourism, as the dominant economic sub-system, consumed 42% of the total emergy budget, while local residents used the remaining 58%. The progressive stages of the TALC model were found to parallel the dynamic changes in the ratio of external emergy inputs to local emergy inputs, suggesting that emergy synthesis could be a useful tool for detecting a tourist region's TALC stage. Use of such a quantitative tool could expedite sustainability assessment to allow administrative managers to understand the complex relationship between a region's economy, environment and resident society so sound policies can be developed to improve overall sustainability. 相似文献
3.
This paper analyses different alternatives for solid waste management that can be implemented to enable the targets required by the European Landfill and Packaging and Packaging Waste Directives to be achieved in the Valencian Community, on the east coast of Spain. The methodology applied to evaluate the environmental performance of each alternative is Life Cycle Assessment (LCA). The analysis has been performed at two levels; first, the emissions accounted for in the inventory stage have been arranged into impact categories to obtain an indicator for each category; and secondly, the weighting of environmental data to a single unit has been applied. Despite quantitative differences between the results obtained with four alternative impact assessment methods, the same preference ranking has been established: scenarios with energy recovery (1v and 2v) achieve major improvements compared to baseline, with scenario 1v being better than 2v for all impact assessment methods except for the EPS'00 method, which obtains better results for scenario 2v. Sensitivity analysis has been used to test some of the assumptions used in the initial life cycle inventory model but none have a significant effect on the overall results. As a result, the best alternative to the existing waste management system can be identified. 相似文献
4.
Magdalena Svanstrm Morgan Frling Michael Modell William A. Peters Jefferson Tester 《Resources, Conservation and Recycling》2004,41(4):573
Environmental aspects of using supercritical water oxidation (SCWO) to treat sewage sludge were studied using a life cycle assessment (LCA) methodology. The system studied is the first commercial scale SCWO plant for sewage sludge in the world, treating sludge from the municipal wastewater treatment facility in Harlingen, TX, USA. The environmental impacts were evaluated using three specific environmental attributes: global warming potential (GWP), photo-oxidant creation potential (POCP) and resource depletion; as well as two single point indicators: EPS2000 and EcoIndicator99. The LCA results show that for the described process, gas-fired preheating of the sludge is the major contributor to environmental impacts, and emissions from generating electricity for pumping and for oxygen production are also important. Overall, SCWO processing of undigested sewage sludge is an environmentally attractive technology, particularly when heat is recovered from the process. Energy-conserving measures and recovery of excess oxygen from the SCWO process should be considered for improving the sustainability potential. 相似文献
5.
Synthesis of distributed wastewater treatment plants (WTPs) has focused on cost reduction, but never on the reduction of environmental impacts. A mathematical optimization model was developed in this study to synthesize existing distributed and terminal WTPs into an environmentally friendly total wastewater treatment network system (TWTNS) from a life cycle perspective. Life cycle assessment (LCA) was performed to evaluate the environmental impacts of principal contributors in a TWTNS. The LCA results were integrated into the objective function of the model. The mass balances were formulated from the superstructure model, and the constraints were formulated to reflect real wastewater treatment situations in industrial plants. A case study validated the model and demonstrated the effect of the objective function on the configuration and environmental performance of a TWTNS. This model can be used to minimize environmental impacts of a TWTNS in retrofitting existing WTPs in line with cleaner production and sustainable development. 相似文献
6.
Municipal solid waste (MSW) disposal and management is one of the most significant challenges faced by urban communities around the world. Municipal solid waste management (MSWM) over the years has utilized many sophisticated technologies and smart strategies. Municipalities worldwide have pursued numerous initiatives to reduce the environmental burden of the MSW treatment strategies. One of the most beneficial MSWM strategies is the thermal treatment or energy recovery to obtain cleaner renewable energy from waste. Among many waste-to-energy strategies, refuse-derived fuel (RDF) is a solid recovered fuel that can be used as a substitute for conventional fossil fuel. The scope of this study is to investigate the feasibility of RDF production with MSW generated in Metro Vancouver, for co-processing in two cement kilns in the region. This study investigates environmental impacts and benefits and economic costs and profits of RDF production. In addition, RDF utilization as an alternative fuel in cement kilns has been assessed. Cement manufacturing has been selected as one of the most environmentally challenged industries and as a potential destination for RDF to replace a portion of conventional fossil fuels with less energy-intensive fuel. A comprehensive environmental assessment is conducted using a life cycle assessment (LCA) approach. In addition, cost–benefit analysis (CBA) has been carried out to study the economic factors. This research confirmed that RDF production and use in cement kilns can be environmentally and economically viable solution for Metro Vancouver. 相似文献
7.
This article presents a general multi-objective mixed-integer linear programming (MILP) optimization model aimed at providing decision support for waste and resources management in industrial networks. The MILP model combines material flow analysis, process models of waste treatments and other industrial processes, life cycle assessment, and mathematical optimization techniques within a unified framework. The optimization is based on a simplified representation of industrial networks that makes use of linear process models to describe the flows of mass and energy. Waste-specific characteristics, e.g. heating value or heavy metal contamination, are considered explicitly along with potential technologies or process configurations. The systems perspective, including both provision of waste treatment and industrial production, enables constraints imposed upon the systems, e.g. available treatment capacities, to be explicitly considered in the model. The model output is a set of alternative system configurations in terms of distribution of waste and resources that optimize environmental and economic performance. The MILP also enables quantification of the improvement potential compared to a given reference state. Trade-offs between conflicting objectives are identified through the generation of a set of Pareto-efficient solutions. This information supports the decision making process by revealing the quantified performance of the efficient trade-offs without relying on weighting being expressed prior to the analysis. Key features of the modeling approach are illustrated in a hypothetical case. The optimization model described in this article is applied in a subsequent paper (Part II) to assess and optimize the thermal treatment of sewage sludge in a region in Switzerland. 相似文献
8.
In the present article, the thermal treatment of digested sewage sludge generated in the Swiss region of Zürich is modeled and optimized from an environmental perspective. The optimization problem is solved using a multi-objective mixed-integer linear program that combines material flow analysis, process models, life cycle assessment (LCA), and mathematical optimization techniques. The treatment options include co-incineration in municipal solid waste incineration, co-processing in cement production, and mono-incineration with the prospect of phosphorus recovery. The model is optimized according to six environmental objectives. Five of the six single-objective optimal solutions involve splits over the treatment options. The results reflect the available treatment capacities and other constraints, aspects rarely considered in conventional LCA studies. Co-processing in cement production is used to the maximum extent possible when minimizing impacts on climate change, human toxicity, fossil resource depletion, and fully aggregated impacts (ReCiPe H/A), whereas mono-incineration with phosphorus recovery receives the bulk of the sludge when optimizing for ecotoxicity and mineral resource depletion. Four of the single-objective optimal solutions (minimization of fossil energy resource depletion and contribution to climate change, human toxicity, and fully aggregated impacts) outperform the reference case over the six impact categories considered, showing that the current situation can be improved in some environmental categories without compromising others. The results of the sensitivity analysis indicate that assumptions regarding the product systems displaced by recovered by-products are critical for the outcome of the optimization. Our approach identifies in all of the cases solutions in which significant environmental improvements can be attained. 相似文献
9.
Life cycle assessment (LCA) can be successfully applied to municipal solid waste (MSW) management systems to identify the overall environmental burdens and to assess the potential environmental impacts. In this study, two methods used for current MSW management in Phuket, a province of Thailand, landfilling (without energy recovery) and incineration (with energy recovery), are compared from both energy consumption and greenhouse gas emission points of view. The comparisons are based on a direct activity consideration and also a life cycle perspective. In both cases as well as for both parameters considered, incineration was found to be superior to landfilling. However, the performance of incineration was much better when a life cycle perspective was used. Also, landfilling reversed to be superior to incineration when methane recovery and electricity production were introduced. This study reveals that a complete picture of the environmental performance of MSW management systems is provided by using a life cycle perspective. 相似文献
10.
The life cycle of rice: LCA of alternative agri-food chain management systems in Vercelli (Italy) 总被引:1,自引:0,他引:1
The Vercelli rice district in northern Italy plays a key role in the agri-food industry in a country which accounts for more than 50% of the EU rice production and exports roughly 70%. However, although wealth and jobs are created, the sector is said to be responsible for environmental impacts that are increasingly being perceived as topical. As a complex and comprehensive environmental evaluation is necessary to understand and manage the environmental impact of the agri-food chain, the Life Cycle Assessment (LCA) methodology has been applied to the rice production system: from the paddy field to the supermarket. The LCA has pointed out the magnitude of impact per kg of delivered white milled rice: a CO2eq emission of 2.9 kg, a primary energy consumption of 17.8 MJ and the use of 4.9 m3 of water for irrigation purposes. Improvement scenarios have been analysed considering alternative rice farming and food processing methods, such as organic and upland farming, as well as parboiling. The research has shown that organic and upland farming have the potential to decrease the impact per unit of cultivated area. However, due to the lower grain yields, the environmental benefits per kg of the final products are greatly reduced in the case of upland rice production and almost cancelled for organic rice. LCA has proved to be an effective tool for understanding the eco-profile of Italian rice and should be used for transparent and credible communication between suppliers and their customers. 相似文献
11.
AHP based life cycle sustainability assessment (LCSA) framework: a case study of six storey wood frame and concrete frame buildings in Vancouver 总被引:1,自引:0,他引:1
Navid Hossaini Bahareh Reza Sharmin Akhtar Kasun Hewage 《Journal of Environmental Planning and Management》2015,58(7):1217-1241
Construction and building industry is in dire need for developing sustainability assessment frameworks that can evaluate and integrate related environmental and socioeconomic impacts. This paper discusses an analytic hierarchy process (AHP) based sustainability evaluation framework for mid-rise residential buildings based on a broad range of environmental and socioeconomic criteria. A cradle to grave life cycle assessment technique was applied to identify, classify, and assess triple bottom line (TBL) sustainability performance indicators of buildings. Then, the AHP was applied to aggregate the impacts into a unified sustainability index. The framework is demonstrated through a case study to investigate two six storey structural systems (i.e. concrete and wood) in Vancouver, Canada. The results of this paper show that the environmental performance of a building in Canada, even in regions with milder weather such as Vancouver, is highly dependent on service life energy, rather than structural materials. 相似文献
12.
Life cycle assessment, LCA, has become a key methodology to evaluate the environmental performance of products, services and processes and it is considered a powerful tool for decision makers. Waste treatment options are frequently evaluated using LCA methodologies in order to determine the option with the lowest environmental impact. Due to the approximate nature of LCA, where results are highly influenced by the assumptions made in the definition of the system, this methodology has certain non-negligible limitations. Because of that, the use of LCA to assess waste co-incineration in cement kilns is reviewed in this paper, with a special attention to those key inventory results highly dependent on the initial assumptions made. Therefore, the main focus of this paper is the life cycle inventory, LCI, of carbon emissions, primary energy and air emissions. When the focus is made on cement production, a tonne of cement is usually the functional unit. In this case, waste co-incineration has a non-significant role on CO2 emissions from the cement kiln and an important energy efficiency loss can be deduced from the industry performance data, which is rarely taken into account by LCA practitioners. If cement kilns are considered as another waste treatment option, the functional unit is usually 1 t of waste to be treated. In this case, it has been observed that contradictory results may arise depending on the initial assumptions, generating high uncertainty in the results. Air emissions, as heavy metals, are quite relevant when assessing waste co-incineration, as the amount of pollutants in the input are increased. Constant transfer factors are mainly used for heavy metals, but it may not be the correct approach for mercury emissions. 相似文献
13.
Life cycle impact assessment (LCIA) is performed to quantitatively evaluate all environmental impacts from products, systems, processes and services. However, LCIA does not always provide valuable information for choosing among alternatives with different specifications, functionalities and lifetimes. The objectives of this study are (1) to propose environmental indicators to evaluate environmental efficiency and value qualitatively and quantitatively on the basis of analogies to financial and economic indicators, and (2) to present the application of the indicators. Incremental evaluation using a reference is employed to obtain the environmental indicators. The environmental efficiency indicators are conceptually based on the ratios of reduced environmental burdens returned to environmental burdens required: environmental return on investment, environmental payback period and environmental internal rate of return. The environmental value indicator is the sum of all reduced and required environmental burdens: i.e., environmental net present value. All the environmental indicators can be used to compare and rank the environmental efficiencies or values of alternatives. The environmental efficiency indicators can be applied to a new environmental labeling. The concept of eco-efficiency labeling is developed by combining the environmental efficiency indicators with financial indicators. A case study is performed to illustrate the necessity and importance of the environmental indicators. These environmental indicators can help easily communicate LCIA results in the field of environmental management. 相似文献
14.
Marco Beccali Maurizio Cellura Maria Iudicello Marina Mistretta 《Environmental management》2009,43(4):707-724
Food production and consumption cause significant environmental burdens during the product life cycles. As a result of intensive
development and the changing social attitudes and behaviors in the last century, the agrofood sector is the highest resource
consumer after housing in the EU. This paper is part of an effort to estimate environmental impacts associated with life cycles
of the agrofood chain, such as primary energy consumption, water exploitation, and global warming. Life cycle assessment is
used to investigate the production of the following citrus-based products in Italy: essential oil, natural juice, and concentrated
juice from oranges and lemons. The related process flowcharts, the relevant mass and energy flows, and the key environmental
issues are identified for each product. This paper represents one of the first studies on the environmental impacts from cradle
to gate for citrus products in order to suggest feasible strategies and actions to improve their environmental performance.
相似文献
Marina Mistretta (Corresponding author)Email: |
15.
Hayo M.G. van der Werf Claver Kanyarushoki Michael S. Corson 《Journal of environmental management》2009,90(11):3643-3652
This paper describes and applies EDEN-E, an operational method for the environmental evaluation of dairy farms based on the life cycle assessment (LCA) conceptual framework. EDEN-E requires a modest amount of data readily available on-farm, and thus can be used to assess a large number of farms at a reasonable cost. EDEN-E estimates farm resource use and pollutant emissions mostly at the farm scale, based on-farm-gate balances, amongst others. Resource use and emissions are interpreted in terms of potential impacts: eutrophication, acidification, climate change, terrestrial toxicity, non-renewable energy use and land occupation. The method distinguishes for each total impact a direct component (impacts on the farm site) and an indirect component (impacts associated with production and supply of inputs used). A group of 47 dairy farms (41 conventional and six organic) was evaluated. Expressed per 1000 kg of fat-and-protein-corrected milk, total land occupation was significantly larger for organic than for conventional farms, while total impacts for eutrophication, acidification, climate change, terrestrial toxicity, and non-renewable energy use were not significantly different for the two production modes. When expressed per ha of land occupied all total impacts were significantly larger for conventional than organic farms. This study largely confirms previously published findings concerning the effect of production mode on impacts of dairy farms. However, it strikingly reveals that, for the set of farms examined, the contribution of production mode to overall inter-farm variability of impacts was minor relative to inter-farm variability within each of the two production modes examined. The mapping of impact variability through EDEN-E opens promising perspectives to move towards sustainable farming systems by identifying the structural and management characteristics of the farms presenting the lowest impacts. 相似文献
16.
1 and C2 hydrocarbons (trichloroethane, trichloroethene, tetrachloroethene, dichloromethane). Measures aiming at the reduction of
toxic emissions and ozone depletion potential (ODP) may possibly lead to a shift of environmental impacts towards higher energy
consumption, emission of waste water, and volatile organic compounds (VOC) with photochemical oxidant creation potential (POCP).
The present article concerns itself with a life cycle assessment of the three main degreasing processes in order to compare
their integral environmental impacts with one another. This is supplemented by presenting the methodology of the life cycle
inventory life cycle inventory analysis (LCI). Generally, the applicability of the established LCI method can be shown quite
clearly. However, some difficulties arise, especially at the stage of the goal definition, as the use of the process and the
functional unit cannot be pinned down as easily and neatly as for most other products. The definition of the use of the process
and the functional unit is not as straightforward as for most products. Among the potential functional units identified are
the mass of removed impurities, cleaning time, cleaning work, percentage of purity, throughput of parts, loads, mass or surface
and virtual coefficients. The mass of removed impurities turned out to be the most suitable parameter for measuring the technical
performance of degreasing processes. The article discusses background, purpose, scope, system boundaries, target group, process
tree and representativeness of the present study. 相似文献
17.
Separate collection of municipal solid waste has overcome the 50% threshold in the Asti District in northern Italy, nearly one-third being composed of household and green organic waste. In order to address present and future solutions, it becomes therefore fundamental to assess the environmental performances of the current management of organic waste from separate collection. A from-gate-to-cradle life cycle assessment (LCA) model has been developed by expanding system boundaries, in order to carry out the assessment in the context of the whole waste management streamline. The environmental performances of an existing aerobic plant were made available, based on field measured data, by paying attention to the role and contribution of waste management subsystems. The need for actual and reliable data on materials and energy input, as well as gross and net gains from materials recovery, including benefits arising from use of compost in farming activities, was probably the major drawback that had to be faced. The study integrated the findings of different investigations from the literature with field measured data in order to obtain a more comprehensive framework representative of the area under study. The results may help public administrators to better understand the suitability of using LCA tools when dealing with solid waste management strategies. 相似文献
18.
Acid mine drainage (AMD), resulting from open-cast coal mining, is currently one of the largest environmental challenges facing the mining industry. In this study, a life cycle assessment (LCA) was conducted to evaluate the environmental impacts associated with the construction, operation and maintenance of different AMD treatment options typically employed. LCA is a well-reported tool but is not documented for AMD treatment systems despite their ubiquitous implementation worldwide. This study conducted detailed LCA analysis for various passive and active AMD treatment approaches implemented or considered at a major coal mine in New Zealand using a comparative functional unit of kg acidity removed per day for each treatment option. Eight treatment scenarios were assessed including active limestone and hydrated lime treatments, and compared to passive treatments using limestone and waste materials such as mussel shells. Both midpoint and endpoint LCA impact categories were assessed. Generally, the active treatment scenarios demonstrated greater LCA impacts compared to an equivalent level of treatment for the passive treatment approaches. Lime slaking had the greatest LCA impacts, while passive treatment approaches incurred consistently less impacts except for one passive treatment with a purchased energy scenario. A 50% reduction in transportation distances resulted in the lowest LCA impacts for all scenarios. This study highlights the importance of evaluating the environmental and social impacts of AMD treatment for the mining industry. 相似文献
19.
Environmental evaluation of transfer and treatment of excess pig slurry by life cycle assessment 总被引:1,自引:0,他引:1
Lopez-Ridaura S Werf Hv Paillat JM Le Bris B 《Journal of environmental management》2009,90(2):1296-1304
Slurry management is a central topic in the agronomic and environmental analysis of intensive livestock production systems. The objective of this study is to compare the environmental performance of two scenarios of collective slurry management for the disposal of excess nitrogen from animal manure. The scenarios are the transfer of slurry and its injection to crop land, and the treatment of slurry in a collective biological treatment station. The study is based on a real case in the West of France, where a group of farmers is developing a collective plan for the disposal of almost 7000 m(3) of excess pig slurry. The evaluation is carried out by Life Cycle Assessment, where emissions and resource consumption are quantified and aggregated into four environmental impact categories: eutrophication, acidification, climate change, and non-renewable energy use. Ammonia emitted is the most important contributor to acidification and eutrophication, while methane contributes most to climate change. Both ammonia and methane are mostly emitted during the storage of slurry and, in the case of the treatment scenario, also during composting the solid fraction of the slurry. The two management strategies are similar with respect to climate change, whereas eutrophication and acidification are twice as large for treatment relative to transfer. Electricity needed for the treatment process is the main contributor to non-renewable energy use for the treatment scenario, while the transfer scenario represents a net energy saving, as energy saved by the reduction of mineral fertiliser use more than compensates for the energy needed for transport and injection of slurry. The overall environmental performance of transfer is better than that of treatment, as it involves less acidification, eutrophication and non-renewable energy use. The method employed and the results obtained in this study can provide elements for a transparent discussion of the advantages and disadvantages of contrasting excess slurry management scenarios as well as the identification of the main aspects determining their environmental performance. 相似文献
20.
Silicon carbide (SiC) heating elements (siliconits) are widely used at high-temperature fields. The raw materials, manufacture process and application fields of siliconits are all related to heavy energy consumption and pollutions, and bring high environmental loads. The resources consumption and pollution emissions in siliconit manufacture process were quantificationally estimated by input/output method. Difference between two traditional techniques to produce siliconits in China was also compared and analyzed. The results show that siliconit manufacture processes consume large quantities of resources because the furnace is open to environment and too much thermal-protection materials are used. For the thick-end technique is more complicated and the thick-end siliconits have a bigger size and mass, there are more resources and energy consumptions and pollution emissions for thick-end process than that for equal-diameter process. Some suggestions were introduced to improve the traditional techniques and a new process was designed. It is the most important that the open furnace should be replaced by close vacuum furnace. Sintering and siliconizing process can be combined into one high-temperature process. As results of process simplification and vacuum sintering, resources and energy consumption and wastes emission can be decreased remarkably. 相似文献