首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
二极管矩阵检测器在开发多环芳烃HPLC方法中的应用   总被引:1,自引:0,他引:1  
《环境化学》1998,17(4):410-411
二极管矩阵检测器(PDA)作为紫外检测器的成员,不仅可获得色谱数据,同时得到被分析物质的光谱图,并且可以利用物质的光谱差异确定色谱峰的纯度.Waters高灵敏度996 PDA检测器具有杰出的数字与光谱分辨率,其强大的功能使之成为色谱工作者进行方法开发的有力工具.  相似文献   

2.
2 利用二极管矩阵检测器(PDA)的强大功能,为多环芳烃检测提供丰富的信息配二极管矩阵检测器的Alliance系统可为多环芳烃的检测提供最为丰富的色谱与紫外光谱信息.PDA检测器的多种功能可为分析提供很大的方便.2.1 多波长检测方式优化紫外检测的灵敏度不同的多环芳烃具有不同的紫外光谱,因而在同一波长下不同的化合物响应值各有不同.Waters  相似文献   

3.
SPME/HPLC 对水中多环芳烃的定量分析   总被引:9,自引:1,他引:9  
应用SPME/HPLC,通过对水中5种多环芳烃的确定,得到了吸附量/吸附时间和解吸量/解吸时间的关系,并在吸附时间和解吸时间一定的条件下,测定了5种多环芳烃的响应值与浓度的线性关系,重现性及加标回收率(76%-111%)。  相似文献   

4.
大气中多环芳烃的来源及采样方式的研究   总被引:12,自引:0,他引:12  
本文对大气中多环芳烃的来源进行了调查的基础上,对燃源,交通源,等采产方式进行了综述,评价了各种采样方式的优缺点,从而造反我环芳烃污染源解析的采样方式。  相似文献   

5.
青岛地区大气气溶胶中多环芳烃的GC/MS分析   总被引:3,自引:0,他引:3  
潘静  周成  郇宁  杨永亮  殷效彩 《环境化学》2003,22(3):311-312
本文采集了青岛5个区的大气气溶胶样品,参照美国EPA610方法,用GC/MS分析鉴定多环芳烃。结果表明,青岛市大气气溶胶中PAHs总量的总趋势是东部高于西部,中部高于南、北部。多环芳烃的环数分布表明,气溶胶中PAHs几乎全部由人类活动产生。16种优先控制多环芳烃化合物中的萘、苊、芴、荧蕙、茚并[1,2,3-cd]芘,苯并[b]荧蒽、苯并[k]荧蒽等有毒有害有机污染物普遍检出于市内五区。苯并[a]芘的大气含量甚微。  相似文献   

6.
高效液相色谱法分析水中痕量多环芳烃   总被引:14,自引:3,他引:14  
朱利中  沈学优 《环境化学》1999,18(5):488-492
本文利用高效液相色谱法测定水中痕量多环芳烃(PAHs)。以二氯甲烷作溶剂,超声提取水中痕量PAHs;甲醇、水作流动相,梯度淋洗,用程序可变波长荧光检测器测定。PHAs浓度为0.007=0.6μg·ml^-1范围时,线性相关系数均在0.9999以上;峰高、峰面积的相对标准偏差(n=10)分别为1.01-1.85%,2.00-3.94%;检测限(S/N=2)为3.1-23.0pg;实际水样的加标回收率  相似文献   

7.
多环芳烃是倍受关注的环境污染物.不同样品基质中多环芳烃的样品处理和HPLC分析方法在EPA标准方法中都有明确的描述(见表1).  相似文献   

8.
SPE-PDA/FLD串联HPLC法测定水样中痕量多环芳烃   总被引:1,自引:0,他引:1  
李竺  陈玲  郜洪文  袁园  赵建夫 《环境化学》2006,25(4):503-507
建立了固相萃取-PDA/FLD串联HPLC法测定水样中多环芳烃(PAHs)的分析方法,优化了固相萃取条件.结果表明,对1L水样加入10%有机改性剂进行固相萃取,采用3ml四氢呋喃洗脱后进行HPLC分析,平均回收率在95.22%-100.8%间,相对标准偏差为0.78%-6.68%,方法的检出限在0.03-220 ng·l-1之间.  相似文献   

9.
2007年6月至2008年3月分4个季度采集图们市4个监测点的大气可吸入颗粒物样品,采用超声波萃取法提取样品中多环芳烃,通过旋转蒸发对提取液进行浓缩,再用氮气吹至0.5 mL,用高效液相色谱法进行定量测定.结果表明,在图们市区大气可吸入颗粒物中共检出13种美国EPA优先控制的多环芳烃,含量范围为0.001—21.55μg.m-3.含量的时空变化规律明显,冬季各监测点多环芳烃的含量明显高于其它季节,夏季含量最低.一天之内早上或晚上多环芳烃的含量普遍高于中午.卫检处和气象局监测到的PAHs含量明显高于环保局和安山监测点.PAHs主要来源于燃煤和机动车尾气排放.  相似文献   

10.
大气气溶胶中多环芳烃的定量分析   总被引:40,自引:1,他引:40  
成玉  闵育顺 《环境化学》1996,15(4):360-365
参照美国EPA610方法,超声抽提气溶胶样品,抽提物经硅胶层析柱分离,用毛细管柱气相色谱与GC-MSD鉴定多环芳烃,使用16种多环节烃混合标准样品绘制校正曲线,以外标法对PAHs进行了定量分析。  相似文献   

11.
超声波萃取—GC/MS测定大气颗粒物中的多环芳烃   总被引:11,自引:0,他引:11  
采用超声波萃取大气颗粒物样品中的多环芳烃,样品不须纯化,直接可用于GC/MS分析,超声波萃取效率高,萃取时间短;采用MS的SIM方式对多环芳烃进行定性定量,回收率84.5%-108.5%,变异系数3.1%-14.5%。  相似文献   

12.
利用PUF大气被动采样技术,对深圳市室内大气多环芳烃(PAHs)进行了为期68周的连续观测.结果表明,深圳市室内大气PAHs主要以气态化合物为主,尤以菲的含量为最高.室内大气PAHs的含量范围为44.2395.4 ng·m-3,平均123.6 ng·m-3.不同场所的室内PAHs污染呈如下分布:ρ(工厂车间)>ρ(家居客厅)@ρ(办公环境),苯并[a]芘毒性质量浓度则为:ρ(工厂车间)>ρ(家居客厅)>ρ(办公环境).研究表明,工厂车间与家居办公环境中的PAHs来源不相尽同,认为办公环境中的PAHs污染主要来自户外的对流交换,而吸烟和厨房烹调是影响客厅PAHs含量的重要因素.总体来说,深圳地区室内大气PAHs污染较低,但工厂车间的PAHs污染及其健康危害值得关注.  相似文献   

13.
采用高效液相色谱技术(HPLC)对徐州市大气颗粒物中优控的16种多环芳烃(PAHs)进行定量研究。结果表明:萘、芴、苊等低分子量芳烃的含量相对较低;苯并(g,h,i)苝、茚并(1,2,3-cd)芘、苯并(k)荧蒽、苯并(a)芘等高分子量芳烃的含量相对较高;含量最高的单体为荧蒽,占待检的16种PAHs的19%以上。不同环数多环芳烃含量大小顺序为:4环〉5环〉6环〉3环〉2环。可吸入颗粒物(PM10)中苯并(a)芘和∑PAHs在不同功能区的分布特征大体上一致,并呈现一定规律性:交通干线区〉工业区〉风景文化区〉居民区〉新城区。由此可以初步认为徐州市区PM10中的PAHs主要来源于燃煤和汽车尾气。  相似文献   

14.
不同高度大气颗粒物中多环芳烃的粒径分布   总被引:9,自引:0,他引:9  
在天津地区20m,40m和60m三个不同高度同步采集冬季大气颗粒物中PM10样品,测定了16种多环芳烃(PAHs)含量.不同高度PM10中PAHs的含量均表现出大气颗粒物中随高度先增后降的趋势,颗粒物质量中值直径(MMD)也呈现类似规律,但PAHs总浓度的MMD则呈向上递增的趋势.不同高度PAHs的粒径分布差别不大,高分子量的PAHs主要集中在空气动力学直径Dp<2um的细颗粒上,而Dp>2um的粗颗粒上低分子量的PAHs相对较多.  相似文献   

15.
北京市不同区域采暖期大气颗粒物中多环芳烃的分布特征   总被引:6,自引:3,他引:6  
利用分级采样器分别采集北京市不同区域采暖期的大气颗粒物,分析多环芳烃的组成及含量.结果表明北京市大气总悬浮颗粒物中总多环芳烃的含量城乡结合带为7486—43687ng·m-3,郊区为11993—39786ng·m-3.在城乡结合带,80%以上的多环芳烃存在于粒径<20μm的颗粒物中;在郊区,77%以上的多环芳烃存在于粒径<20μm的颗粒物中.比较不同环数的多环芳烃在不同粒径范围内大气颗粒物中的分配比例,发现随环数的减少其分配比例呈现归一化.不同粒径范围的颗粒物中苯并(a)芘均与总多环芳烃含量显著相关(p<0001).  相似文献   

16.
垃圾焚烧中多环芳烃的高效液相色谱测定   总被引:3,自引:0,他引:3  
对垃圾焚烧过程中 1 6种多环芳烃经提取、浓缩和净化后 ,采用高效液相色谱法检测 .结果表明 :在实验浓度范围内 ,相关系数大多在 0 999以上 ,回收率范围为 60—1 1 7%,最低检出限为 1 97— 2 33pg ;同时 ,垃圾焚烧固体样品中多环芳烃浓度为 2 49—1 1 7 0 0mg·kg- 1 ,烟气中多环芳烃的浓度为 75 2 0— 1 88 0 0 μg·Nm- 3.  相似文献   

17.
大气颗粒物上多环芳烃的识别和源解析的进展   总被引:30,自引:0,他引:30  
本文对当前大气颗粒物上PAHs的识别和源解析的定量及定性和半定量的方法进行了综述,定性及半定量方法简便易行,但误差大;化学质量平衡法结果较准确具体,但PAHs会发生化学反应而降解,并且没有各种燃烧源较完整的PAHs成份谱,这已成为CMB广泛推行的障碍;多元统计方法不考虑PAHs的降解,但要求数据量大,国内外的科学工作者用不同的方法和手段,使PAHs来源的识别和源解析工作有了一定进展。  相似文献   

18.
2007年2月在攀枝花市不同功能区采集了大气PM10样品42个和污染源样品32个,采用超声抽提GC/MS方法测定分析了16种多环芳烃(PAHs)的含量。结果显示攀枝花市PM10颗粒相PAHs单体浓度范围为0.34~416.45ng/m3,总量浓度范围为24.56~2569.66ng/m3;攀枝花市5个采样点中河门口片区PM10多环芳烃单体浓度范围为5.64~416.45ng/m3,污染最严重。源样品测定结果分别为扬尘78.74ug/g,煤烟尘6.12ug/g,钢铁工业尘30.54ug/g,焦化尘3187.42ug/g。应用比值法和化学质量平衡(CMB)模型对污染源进行识别,燃煤和炼焦是攀枝花市PAHs的主要来源,对攀枝花市大气可吸入颗粒物中多环芳烃污染的分担率分别为55.8%、19.9%。  相似文献   

19.
北京东南郊大气中多环芳烃的相分配及其致癌毒性表征   总被引:6,自引:0,他引:6  
采用索氏提取法提取2005年3月至2006年1月间北京市东南郊3个采样点大气总悬浮颗粒物(TSP)样品和气相样品中的多环芳烃(PAHs),利用GC/MS分析其质量浓度,对PAHs在颗粒相和气相间的分配行为进行研究。结果表明,2环组分在气相PAHs中占优势地位,全年平均在95%左右;4环组分在颗粒相PAHs中全年平均占56%左右;5~6环组分几乎全部分布在颗粒相中。引入苯并[a]芘等当量毒性因子(TEFs),探讨致癌毒性组分在2相间的分配行为,研究发现低毒高质量浓度的低环组分与高毒低质量浓度的高环组分对致癌性贡献相当;利用苯并[a]芘等效质量浓度与16种PAHs组分质量浓度进行多元线性回归,得到的回归方程用于粗略计算大气中PAHs致癌性组分的等效质量浓度;在分析PAHs分配行为的季节变化规律基础上,结合气象参数和空气污染指数分析PAHs在大气气相和颗粒相中分配系数的影响因素,并提出了分配系数与气象参数和API指数的回归方程,并利用回归方程来计算PAHs组分在大气中的分配系数。  相似文献   

20.
以东莞市2011年夏季不同区域的大气颗粒物为研究对象,定性定量分析了其中多环芳烃(PAHs)及硝基多环芳烃(NPAHs)的浓度、组成.采用特征比值法分析了PAHs及NPAHs的来源,并通过PEFs毒性评价法评价了颗粒物中多环芳烃及硝基多环芳烃的BaP等效毒性,估算出个体致癌指数.结果表明东莞市颗粒物上16种多环芳烃总含量在12.60—193.95 ng·m-3范围内,6种硝基多环芳烃的总含量在5.88—62.79 ng·m-3,隧道环境中多环芳烃及硝基多环芳烃的浓度最高.除隧道环境中颗粒物的等效毒性及个体致癌指数超标外,东莞市颗粒物上PAHs及NPAHs对人体均不构成严重威胁.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号